
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 2, 327–339
DOI: 10.2478/amcs-2013-0025

ASYNCHRONOUS DISTRIBUTED STATE ESTIMATION FOR
CONTINUOUS–TIME STOCHASTIC PROCESSES

ZDZISŁAW KOWALCZUK, MARIUSZ DOMŻALSKI

Department of Decision Systems (ETI)
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

e-mail: {kova,mardo}@eti.pg.gda.pl

The problem of state estimation of a continuous-time stochastic process using an Asynchronous Distributed multi-sensor
Estimation (ADE) system is considered. The state of a process of interest is estimated by a group of local estimators
constituting the proposed ADE system. Each estimator is based, e.g., on a Kalman filter and performs single sensor filtration
and fusion of its local results with the results from other/remote processors to compute possibly the best state estimates. In
performing data fusion, however, two important issues need to be addressed namely, the problem of asynchronism of local
processors and the issue of unknown correlation between asynchronous data in local processors. Both the problems, along
with their solutions, are investigated in this paper. Possible applications and effectiveness of the proposed ADE approach are
illustrated by simulated experiments, including a non-complete connection graph of such a distributed estimation system.

Keywords: continuous-time stochastic processes, distributed systems, state estimation, Kalman filtering.

1. Introduction

The main objective of estimation is to infer on the
state of an observed process of interest. Classical
estimation is based on Kalman filtering (Kalman, 1960;
Bar-Shalom and Li, 1993; Blackman and Popoli, 1999),
usually processing data from a single data source at
predefined time moments. Precision and robustness
of the classical state estimation based on one sensor
can, in certain circumstances, appear unacceptable.
Multiple-data sources can be considered in such cases.

Distributed (decentralized) estimation and
identification (Hall and Llinas, 1997; Liggins et al.,
1997; Ribeiro et al., 2006; Uciński, 2012; Patan, 2012)
is an important and challenging issue in the field of
control and estimation. A typical multi-sensor distributed
estimation system is composed of a set of local data
processors, also referred to as nodes, accordingly
connected. Each of those local processors, computing
state estimates of the observed process, works on data
obtained from two groups of sources. The first group of
sources is composed of sensors integrated with a given
local processor. The second group is comprised of the
remaining (local otherwise) processors working within
the same system. This means that each local processor
combines data supplied by its own sensors and other

processing nodes. Such a process is called data fusion.
Two sample configurations of a distributed system,

composed of four processing nodes (working as local
data processors), are presented in Fig. 1. In these
configurations each node processes data from one sensor
and data gained from the other three nodes (the dashed
line represents a border between the two groups for
node 1). However, in the configuration presented in
Fig. 1(a) each node is connected with all other nodes (i.e.,
the system has a complete connection graph), whereas in
the configuration of Fig. 1(b) the nodes are interconnected
in a chain form (the system has thus an incomplete
connection graph).

The main advantages of such a completely
distributed processing system lie in its robustness
and flexibility. Any failure in any local processor does
not stop the other processing nodes from functioning.
Moreover, models of the process used in each local
processor can be completely different. The models can,
for example, be chosen specifically (optimally) to cope
with data taken from the process observed by a given
local sensor. What is more, as the data passed between
the local systems are of the same type (state estimates),
the existing infrastructure of the distributed estimation
system can be easily extended to compose a new system
structure or to include new processors in an existing

{kova,mardo}@eti.pg.gda.pl

328 Z. Kowalczuk and M. Domżalski

�������	 �������

����������������

����
�����	

����
�����

����
������

����
������

�

�������	 �������

����������������

����
�����	

����
�����

����
������

����
������

�

Fig. 1. Distributed estimation system: complete connection graph (a), incomplete connection graph (b).

system. Thus decentralization can effectively provide a
new degree of scalability in estimation systems. Note
that typical applications of such distributed estimation
systems can be found both in air traffic control and in
mobile robotics.

In the recent years two groups of distributed
estimation algorithms for dynamic systems have emerged.
The first group can be associated with average consensus
algorithms. Solutions for distributed estimation of scalar
random processes based on average consensus over
a network of filters is presented by Olfati-Saber and
Shamma (2005), Olfati-Saber (2007), Xiao et al. (2005)
and Speranzon et al. (2006), and is refined by Del Favero
and Zampieri (2009) for the case of communication in
a sensor network according to randomized strategies (in
each cycle a pair of nodes is allotted for mutual data
exchange). Distributed estimation of states of linear
dynamic systems is discussed by Carli et al. (2008)
as well as Cattivelli and Sayed (2010). In distributed
systems based on the average consensus approach, at
each time step, each node takes a weighted average of
differences between the values received from the other
nodes and the value of its own estimate. If this average is
positive, the estimate for this particular node is increased
proportionally to the average, and if this average is
negative, the estimate is decreased. Both the amount of
information exchanged between the nodes and the weights
used in the average consensus algorithms, which can
be chosen according to many different strategies, affect
the rate of convergence toward the asymptotic agreement
between the nodes.

The distributed method presented in this paper
belongs to the second group of estimation algorithms that
are based on a set of state estimators exchanging full
state information between themselves (Rao et al., 1993;
Bar-Shalom and Li, 1995; Hall and Llinas, 2001). This
information is usually comprised of current state estimates
and their corresponding covariance matrices. In each of
the computing nodes, weights used for data fusion of local
and foreign/received estimates are computed based on
these covariance matrices and are therefore proportional

to the quality of particular estimates.
There is an essential assumption in the consensus

filter that all the nodes use the same process model.
Whereas in our system comprised of the local state
estimators each node can utilize a different model for the
observed process (assuming that the set of state variables
is the same for each model, or the state variables can
be transformed from one set to another; otherwise the
fusion, or rather an aggregation, has to be performed in
a completely different way).

Unfortunately, distributed estimation brings
about certain difficulties. One problem is unknown
cross-correlation between data in local processors. Even
with the assumption that measurements from sensors are
uncorrelated, data in the processing nodes are certain
to be correlated. In particular, data received by a local
processor from other nodes contain information spread by
this processor over the network in previous cycles. Such
information (used more than once) corrupts the results of
state estimation. It is clear that cross-correlation cannot
be ignored and has to be taken into account in a data
fusion process in a way that the resulting state estimates
stay consistent. A solution to the problem of unknown
cross-correlation is incorporated in a method based on
a set of estimators (Julier and Uhlmann, 1997). This
problem is rarely addressed in the context of consensus
filters.

Another important issue is that processing nodes can
work asynchronously, as they can perform measurements
and compute state estimates at different time moments.
However, both the average consensus methods and those
based on local estimators usually assume that sensors
take measurements and communicate with each other
synchronously or that the sensors exchange data multiple
times at a regular pace during each of measurement cycles.

In the case of truly Asynchronous Distributed
Estimation (ADE), data fusion is of a special meaning,
since each node of the system has to perform
synchronization between its own data and the data
obtained from other nodes, before fusing them.

A straightforward solution to the problem of

Asynchronous distributed state estimation for continuous-time stochastic processes 329

asynchronous estimation consists in using Kalman filters
and discrete time models expressed in terms of the
corresponding system matrices dependent on the current
sampling time (possibly different for each cycle). Such a
method is presented by Bilenne (2004), for example.

Another solution to the problem of estimation based
on data gained at different sampling intervals is multi-rate
Kalman filtering (Chen and Chen, 1995; Kuchler and
Therrien, 2003). A multi-rate Kalman filter performs
state estimation based on data from multiple sources, each
working at a different sampling rate. Each of these sources
is described by an appropriate discrete-time model.

The main drawback of the above methods is the need
for evaluation of multiple discrete-time models, where
each model corresponds to a different sampling time.
This is not an issue when using the methods based on
continuous-time (c-t) models.

An optimal estimator for continuous-time linear
stochastic systems applicable to arbitrary combination
of continuous and discrete measurements, which can
be sampled at unknown, variant, and possibly random
rates and delays, is presented by Zhang et al. (2007).
Such an optimal estimator is not, however, designed for
decentralized implementation (the necessary transfer of
c-t process trajectories along with their corresponding
c-t covariance matrices between the distributed nodes of
the system can be a complex task). Therefore, we propose
an ADE method that is, due to its distributed nature,
more robust in the face of communication and processing
failures (though it yet ignores communication delays).
In order to accomplish this effect, we utilize a hybrid
approach in which the c-t stochastic process model is used
as a basis for analyzing and solving the synchronization
problem of discrete-time data transferred between the
system nodes.

Nonlinear problems (interesting from several
practical points of view) are not discussed in this
paper. This is because the use of nonlinear models
and appropriate estimation algorithms causes additional
problems with respect to the sheer multi-sensor estimation
problem. Thus, at this stage, it would be difficult to draw
general conclusions about the discussed asynchronous
distributed estimation system independent of the other
issues.

The paper is organized as follows. In Section 2 a
continuous-time stochastic process model and its
discrete-time version are presented. Next, the problem
of data synchronization is described in Section 3.
A complete ADE fusion algorithm is derived in Section 4.
Simulation examples and applications are presented in
Section 5. Section 6 contains conclusions and plans for
future research.

2. Process model

As has been mentioned above, to deal with asynchronous
data a suitable continuous-time (c-t) process
model (Karatzas and Shreve, 1991; Oksendal, 2003)
is to be considered, whose stochastic nature allows us
to aptly describe data uncertainty. A corresponding
sampled-data model will be obtained afterwards.

2.1. c-t Gauss–Markov model. It is assumed that the
dynamics of the process of interest can be described by
the following n-dimensional linear stochastic differential
equation:

dX(t) = [AX(t) + b] dt + σ dw(t), 0 ≤ t < ∞,

X(0) = X0,
(1)

where w is the r-dimensional Brownian motion
independent of the initial vector X0, which has a
given n-variate normal distribution. The (n × n), (n × 1)
and (n × r) matrices A, b, and σ, respectively, are
nonrandom and bounded.

The solution of (1) has the following
representation (Karatzas and Shreve, 1991; Rogers
and Williams, 2000):

X(t) � Φ(t)
[
X(0) +

∫ t

0

Φ−1(η)b dη

+
∫ t

0

Φ−1(η)σ dw(η)
]

, 0 ≤ t < ∞,

(2)

where Φ(t) is a non singular matrix called the
fundamental solution of the following homogeneous
ordinary differential equation:

ζ̇(t) = Aζ(t). (3)

The fundamental solution to (3) can be easily expressed
as

Φ(t) = etA �
∞∑

i=0

ti

i!
Ai. (4)

It can be proved that X in (2) is a Gaussian
process with the strong Markov property. Thus the
finite-dimensional distributions of the process X are
completely determined by the mean and the covariance
functions (Karatzas and Shreve, 1991; Rogers and
Williams, 2000).

2.2. Sampled-data model. As the data fusion
is performed at selected discrete-time moments,
a sampled-data process model is necessary. Such
a model can be obtained based on the above c-t model.

For any two particular time moments τ and t, τ ≤
t, the following transitional (reference) equation results
from the c-t model described above by (1)–(4):

x(t) = F (t, τ)x(τ) + u(t, τ) + w(t, τ) (5)

330 Z. Kowalczuk and M. Domżalski

with

F (t, τ) = Φ(t)Φ−1(τ), (6)

u(t, τ) = Φ(t)
∫ t

τ

Φ−1(η)b dη, (7)

w(t, τ) = Φ(t)
∫ t

τ

Φ−1(η)σ dw(η), (8)

where (8) represents the Itô stochastic integral (Karatzas
and Shreve, 1991; Rogers and Williams, 2000; Oksendal,
2003), which can be calculated by parts. The mean of (8)
is E {w(t, τ)} = 0, ∀t, τ , and the covariance matrix of (8)
is

Q(t, τ) � E
{
w(t, τ) [w(t, τ)]�

}

= Φ(t)

[∫ t

τ

Φ−1(η)σ
[
Φ−1(η)σ

]�
dη

]
Φ�(t).

(9)
A useful optimal solution for asynchronous sampling

of two dimensional Gauss–Markov stochastic processes,
based on explicit forms of the matrix exponential, is
presented by Kowalczuk and Domżalski (2012a).

A necessary discrete-time signal (zi ∈ R
p) of

observations of the process x(t), performed by any of the
local sensors (i = 1, . . . , N), can be described by the
following equation:

zi(t) = Hi(t)x(t) + ξi(t), (10)

where Hi(t) is a p(i) × n observation matrix, p(i) ∈
N+, and ξi ∈ R

p(i) represents zero-mean Gaussian
discrete-time measurement noise with a known covariance
matrix

Ri(t) � E
{

ξi(t) [ξi(t)]
�}

. (11)

Note that the size p(i) of the measurement vector zi can
be different for each local sensor.

3. Data synchronization

In the distributed estimation system considered each local
processor (i = 1, . . . , N) generates estimation data
comprised of local state estimates and their corresponding
covariance matrices. The processing nodes can circulate
these data asynchronously among themselves.

To perform data fusion, in each data-fusion cycle the
i-th local processor synchronizes all data obtained from
the other processors to a common time moment. The
best choice for such a synchronization moment is the
time of the last local measurement. Then the respective
measurement can be included in data fusion without any
modifications. Such an approach will be exercised in this
paper.

Let us consider an example time scale, presented
in Fig. 2, for the first processing node of the distributed
estimation system of Fig. 1(a).

node 2
node 3
node 4

node 1

tp-1

measurement, filtration
and fusion (node 1)

2tp

tq

trtr-1

2

3

4 4

tktk-1

Fig. 2. Example time scale.

The time moments of both data fusion and sensor
measurement for this processor are denoted by tk, k ∈ N.
The time moments of data fusion at nodes 2, 3 and 4 are
t2p, t3q and t4r , respectively, with p, q, r ∈ N. At time tk the
first local processor utilizes data from the second node and
from the fourth one attributed to the time moments t2p and
t4r , respectively. Data from the second processor for time
t2p−1 are not considered, as newer data (from time t2p) are
available. On the other hand, no new data from the third
node are available (since the previous data fusion at time
tk−1).

In the first local processor, for synchronization
purposes the estimate x̂j(τ |τ) of the process state gained
from the j-th local processor (j = 2, 3, 4) calculated
using the data up to time τ can be predicted for time tk
according to the following equation:

x̂j(tk|τ) = F (tk, τ)x̂j(τ |τ) + u(tk, τ). (12)

The above equation is based on the c-t model (5).
The noise w in (5) is unknown, although the mean of this
noise is zero. The corresponding covariance matrix is

Pj(tk|τ) = F (tk, τ)Pj(τ |τ) [F (tk, τ)]� + Qj(tk, τ).
(13)

The state transition matrix F (tk, τ), the input signal
u(tk, τ) and the covariance matrix Q(tk, τ) of the process
noise w can be determined according to (6), (7) and (9),
respectively. From (9) it is clear that the elements of the
matrix Q are in proportion to the time difference between
tk and τ . In a sense, the matrix Q represents a loss of
‘information’ about the corresponding state estimate x̂j .

With the use of (12) and (13) all the state estimates
considered in each data-fusion cycle in any local processor
can be synchronized to a common time moment. Such
synchronization, executed by each of the processors,
allows performing data fusion.

Note, however, that the ample time scale in Fig. 2
is for the first node. Other nodes perform filtration and
fusion according to the same algorithm. Therefore in this
example case, at time t2p the second node used all data
from the all other nodes (from the third node from time

Asynchronous distributed state estimation for continuous-time stochastic processes 331

t3q , from the fourth node from time t4r , and even from the
first node from time tk−1). So the estimate for time tp
from the second node contains a lot of common (for all
the nodes) information. In a distributed estimation system
it is not easy to track all data exchanges between nodes
and to remove this common information. Therefore, an
appropriate data fusion algorithm is used instead, which
takes into account unknown cross-correlation between
data from different nodes to perform consistent data
fusion.

4. Multi-sensor ADE algorithm using CI
fusion

The proposed ADE algorithm is based on a standard
Kalman filter algorithm (Kalman, 1960; Bar-Shalom
and Li, 1993; Blackman and Popoli, 1999), and is an
asynchronous extension of the procedure presented by
Hall and Llinas (2001, Chapter 12). A general procedural
framework for asynchronous data fusion in the first
local processors (denoted with the subscript 1) using
Kalman filters and data synchronization is described in
the following. The other local processors work according
to the same algorithm. The complete flowchart of the
algorithm is given in Fig. 3.

4.1. ADE algorithm.
Step 1. Calculate the state estimate prediction x̂0

1(tk|tk−1)
and the corresponding covariance matrix P 0

1 (tk|tk−1) by
utilizing the process model, the results from the previous
cycle of the fusion algorithm, and the Kalman prediction
equations

x̂0
1(tk|tk−1) = F (tk, tk−1)x̂1(tk−1|tk−1)

+ u(tk, tk−1), (14)

P 0
1 (tk|tk−1) =F (tk, tk−1)P1(tk−1|tk−1) [F (tk, tk−1)]

�

+ Q(tk, tk−1).
(15)

The upper index 0 means that the results are local and do
not include data from other processing nodes.

Step 2. Compute the local estimate by processing the
predicted estimate and the local measurement with the use
of the following Kalman filter approach:

Compute the measurement prediction

ẑ0
1(tk|tk−1) = H1(tk)x̂0

1(tk|tk−1) (16)

and the covariance matrix of this prediction

S0
1(tk) = H1(tk)P 0

1 (tk|tk−1) [H1(tk)]�+R1(tk), (17)

where R1(tk) is the covariance matrix (11) of the
measurement noise ξ1.

The gain matrix of the Kalman filter is described as

K0
1 (tk) = P 0

1 (tk|tk−1) [H1(tk)]�
[
S0

1(tk)
]−1

. (18)

The Kalman filter innovation is

r0
1(tk) = z1(tk) − ẑ0

1(tk|tk−1), (19)

where z1(tk) is a measurement vector, gained from
the corresponding sensor, and associated with the time
moment t.

The local state estimate for time t is computed as

x̂0
1(tk|tk) = x̂0

1(tk|tk−1) + K0
1 (tk)r0

1(tk) (20)

with the effective covariance matrix expressed by the
following Joseph formula:

P 0
1 (tk|tk) =K0

1 (tk)R1(tk)
[
K0

1 (tk)
]�

+
[
I − K0

1(tk)H1(tk)
]
P 0

1 (tk|tk−1)

× [
I − K0

1(tk)H1(tk)
]�

,

(21)

where I stands for the identity matrix.
The results x̂0

1(tk|tk) and P 0
1 (tk|tk) are

propagated to other processing nodes.

Step 3. Synchronize all the (local) state estimates (j =
2, . . . , N) received from other nodes, according to (12)
and (13). The synchronization time is the time for which
the predictions x̂0

1(tk|tk−1) and P 0
1 (tk|tk−1) from Step 1

are calculated, i.e., tk.

Step 4. Perform the fusion of the synchronized estimates
from Step 3 with the local predicted estimate from Step 1
using the Covariance Intersection (CI) method1 (Julier and
Uhlmann, 1997; Kowalczuk and Domżalski, 2009; Chen
et al., 2002) or any other method of data fusion (Baranski
et al., 2011; Bar-Shalom and Li, 1995, Chapter 8), if the
CI is computationally too expensive.

The CI is a useful method for data fusion in cases
where cross correlation between estimation errors for
different nodes is unknown or hard to calculate. Data
fusion is then performed according to the following
equations (the time indices are omitted here):

(P1)
−1 = ω1

(
P 0

1

)−1
+ ω2

(
P 0

2

)−1
+ · · ·

+ ωN

(
P 0

N

)−1
, (22)

x̂1 = P1

[
ω1

(
P 0

1

)−1
x̂0

1 + ω2

(
P 0

2

)−1
x̂0

2 + · · ·

+ωN

(
P 0

N

)−1
, x̂0

N

]
(23)

where x̂0
j and P 0

j (j = 2, . . . , N) are the local state
estimates and their corresponding covariance matrices

1As the cross-correlation between data is unknown.

332 Z. Kowalczuk and M. Domżalski

�������	
�	�

����	�����	�
�

�������
��

���
	���	�

�������
���	�

����	
��
�	�����	�
���������
� ��
����
����������

���������
����

��
�	!�����������������
�����������
����

�	
"��
��
���

#����

�	����

�������
��������
$��!	���

�
��

�	
����������
��������
����
�

�
��

Fig. 3. Flowchart of the ADE algorithm.

received from all the nodes, synchronized in Step 3,
together with the local predicted state estimate from Step 1
(j = 1), x̂1 and P1 are the resulting (aggregate) state
estimate and its corresponding covariance matrix for the
considered first node, and ωi ∈ [0, 1] (

∑i=N
i=1 ωi = 1) are

the weighting parameters. In practice, the parameters ωi

are chosen so as to minimize given performance criteria,
like the trace or the determinant of P1. Such optimization
must be performed to guarantee that the fusion algorithm
is non-divergent. The CI algorithm guarantees that the
fused state estimate is consistent.

A classical (and computationally less expensive than
CI) algorithm for fusion of data from multiple sources is
the following:

(P1)
−1 =

(
P 0

1

)−1
+

(
P 0

2

)−1
+ · · · + (

P 0
N

)−1
, (24)

x̂1 = P1

[(
P 0

1

)−1
x̂0

1 +
(
P 0

2

)−1
x̂0

2 + · · ·

+
(
P 0

N

)−1
x̂0

N

]
. (25)

Note that the above algorithm is similar to the CI
method, but with all the weights equal to one. However,
by contrast to the CI method, this algorithm does not
guarantee consistency in the presence of cross-correlation
between data the fused state estimate.

From the above step a new predicted state estimate
x̂1(tk|tk−1) (denoted without the upper index 0) results
with the corresponding covariance matrix P1(tk|tk−1).

Step 5. Perform the ultimate Kalman filtration of
the local measurement z1(tk) with the fused predicted
estimate x̂1(tk|tk−1) from Step 4 treated as the prior
prediction x̂0

1(tk|tk−1), based on (16)–(21). In such a
way the ultimate local state estimate x̂1(tk|tk) and the
corresponding covariance matrix P1(tk|tk) are effectively
computed. These results are used in the next cycle of the
fusion algorithm.

4.2. Remarks on optimality. It is clear that a single
Kalman filter used in each node is an optimal estimator for
processes described by linear stochastic dynamic models,
but only for the subset of measurements available for this
node. Moreover, the method of data fusion applied is
not optimal since the algorithm fuses the estimates with
the use of their covariance matrices solely, i.e., without
referring to precise information on cross-correlations
between the estimation errors of different nodes. At
least, a consistent estimation in terms of the states
and their covariances is performed. The consequence
of existing cross-correlations is thus reduced to the
resulting covariance matrix of the estimate being fused
that is cautiously evaluated by the covariance intersection
method. The ‘caution’ effect can be attributed here to the
upper bound of all possible resulting covariance matrices.
As an effect, the estimation is consistent in terms of
a cautious estimation of the error obtained in the CI-based
fusion.

5. Simulation example

In this section we show two simulation examples. The
first one concerns the problem of state estimation of
an Ornstein–Uhlenbeck stochastic process. The second
example deals with estimation of two crossing trajectories
in the presence of additional false detections (clutter).

5.1. OU process. Let us consider a problem
of distributed state estimation of a two-dimensional
Ornstein–Uhlenbeck (OU) stochastic process describing
the movement of a particle in a Cartesian plane. The
OU process can be utilised, for example, as a model of
a moving object in air traffic control systems or mobile
robotics.

The state equation for velocity v of the OU process

Asynchronous distributed state estimation for continuous-time stochastic processes 333

is the following (Rogers and Williams, 2000):

dv(t) =
[
dvx(t)
dvy(t)

]
= κ (θ − v(t)) dt + σdw(t)

=
[
κ11 κ12

κ21 κ22

] ([
θ1

θ2

]
−

[
vx(t)
vy(t)

])
dt

+
[
σ1 0
0 σ2

] [
dwx(t)
dwy(t)

]
(26)

and the equation for the position p is simply

dp(t) =
[
dpx(t)
dpy(t)

]
=

[
vx(t)
vy(t)

]
dt = v(t) dt, (27)

where dw is an infinitesimal increment of the
two-dimensional Brownian motion, the matrix κ
describes the rate of velocity mean reversion, the vector
θ is the long-term mean of the velocity, and the diagonal
matrix σ describes the average magnitude of random
velocity fluctuations.

Let us assume the following parameters of the
process:

κ =
[

0.05 0.02
−0.04 0.1

]
, θ =

[
2
−1

]
, σ =

[
0.2 0
0 0.2

]

(28)
and the initial state

[
px(0) py(0) vx(0) vy(0)

]� =
[
0 0 1 1

]�
.

(29)
Sensors are assumed to measure the position of

the process, solely. Therefore, the common observation
matrix for all sensors is

H1 = H2 = H3 = H4 = H =
[
1 0 0 0
0 1 0 0

]
. (30)

Now let us consider two different configurations of
the sensors. In the first configuration, the system shown
in Fig. 1(a) is assumed, which has four local nodes and
their corresponding sensors (i = 1, 2, 3, 4) and represents
a complete connection graph between the nodes, whereas
the connection graph applied in a second configuration
will not be complete (as will be described later).

In the experiments performed in the first
configuration all the sensors adopt the following
sampling scheme. In each time interval (t, t + 1),
t = 0, 1, 2, . . .59 (the final time was 60 s), each sensor
performed one measurement at random. Sample values
for the sampling times for the first sensor could be
(0.396, 1.798, 2.134, . . .), and for the second sensor
(0.743, 1.347, 2.014, . . .), etc. An average sampling rate
for all the sensors was one measurement per second. The
real time of a measurement, once determined, was used
for data synchronisation.

What differentiated the sensors in the first
configuration was their accuracy described by the

following (time constant) measurement covariance
matrices:

R1 =
[
5 0
0 0.3

]
, R2 =

[
3 0
0 1

]
,

R3 =
[
2 0
0 2

]
, R4 =

[
0.5 0
0 4

]
. (31)

Clearly, the measurement accuracy for position x
is the worst for sensor 1, slightly better for sensor 2,
better for sensor 3, and the best for sensor 4. This
effect is reversed for position y, with sensor 1 having the
best accuracy and sensor 4 being the worst in terms of
accuracy.

The announced second configuration of the system is
comprised of the same nodes as in the first configuration.
This time, however, the connection graph for the ADE
system is not complete, as presented in Fig. 1(b). For
example, note that the first node (the worst at measuring
position x) and the fourth node (the best at measuring
position x) are not directly connected; instead, there are
two connecting (intermediate) nodes between them.

For a proper exposition of the performance of
asynchronous distributed estimation, their results should
be compared with those of estimation using both the
Kalman filter based on data from a single sensor
and the optimal (centralised) estimator utilising all raw
measurements from all the nodes.

We have defined the estimation error as the average
absolute value (over 2000 trajectories) of the difference
between the true value computed by the trajectory
simulator and the value estimated by the discussed
algorithms.

Estimation errors for the position (px and py) and
velocity (vx and vy) for the first and the fourth nodes
working in the first configuration are presented in Figs. 4
and 5, respectively. The results for these two nodes are the
two extreme cases of sensor accuracy, with the results for
the second and the third node inbetween. Therefore, the
results for the second and the third node are not presented.

The sensor corresponding to the first node is the
best at measuring the position in y and the worst at
measuring the position in x as compared to the sensors
corresponding to the other nodes. Therefore, the estimates
of the position in x and the velocity in x for the first node
are significantly improved by using data from the other
nodes (Figs. 4(a) and (c), respectively), whereas there is
almost no improvement in the estimates of the position in
y and the velocity in y when using data from the other
nodes (Figs. 4(b) and (d), respectively), as compared to
the Kalman filter. The results are reversed for the fourth
node. There is almost no improvement of estimates of the
position in x and the velocity in x (Figs. 5(a) and (c)),
whereas a significant improvement can be observed in the
case of estimating the position in y and the velocity in y
(Figs. 5(b) and (d)).

334 Z. Kowalczuk and M. Domżalski

0 10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

time (s)

p x e
st

im
at

io
n

er
ro

r
(m

)

 a
distributed
single sensor
optimal

0 10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

time (s)

p y e
st

im
at

io
n

er
ro

r
(m

)

 b
distributed
single sensor
optimal

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v x e
st

im
at

io
n

er
ro

r
(m

/s
)

 c
distributed
single sensor
optimal

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v y e
st

im
at

io
n

er
ro

r
(m

/s
)

 d
distributed
single sensor
optimal

Fig. 4. Estimation errors for the first node: position px (a), position py (b), velocity vx (c), velocity vy (d).

0 10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

time (s)

p x e
st

im
at

io
n

er
ro

r
(m

)

 a
distributed
single sensor
optimal

0 10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

time (s)

p y e
st

im
at

io
n

er
ro

r
(m

)

 b
distributed
single sensor
optimal

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v x e
st

im
at

io
n

er
ro

r
(m

/s
)

 c
distributed
single sensor
optimal

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v y e
st

im
at

io
n

er
ro

r
(m

/s
)

 d
distributed
single sensor
optimal

Fig. 5. Estimation errors for the fourth node: position px (a), position py (b), velocity vx (c), velocity vy (d).

Note that the improved state estimates of the first
node for the coordinate x (the continuous-line estimates
in Figs. 4(a) and (c)) are still worse than their counterparts
corresponding to the fourth sensor (Figs. 5(a) and (c)).
Thus the information exchange between the nodes is not
perfect and the errors of the first node for the coordinate
x are larger than those of the optimal estimator, whereas

the errors of the fourth node in the case of the coordinate
x are equal to those of the optimal estimator.

The results of estimating the position x for the
first node working within the system of the incomplete
connection graph, compared with the results discussed
above for the same node working in the system of the
complete connection graph, are presented in Fig. 6.

Asynchronous distributed state estimation for continuous-time stochastic processes 335

Since the first node has no direct connection with
the fourth node, accurate estimates of position x gained
by the fourth node are transmitted to the first node with
a certain delay. Clearly, this delay leads to a degradation
in the estimation performance of the first node, as the
delay makes the (good) estimates of the state invalid
for the dynamic process considered. To confirm this
conclusion, an additional experiment was performed.
Namely, estimation of a static process (with constant
parameters) perturbed solely by measurement noise. The
obtained results are presented in Fig. 7. For such a
static process with a constant state, the transmission delay
does not invalidate the state estimates being exchanged.
Therefore, the estimation error for the first node in the
system with the incomplete graph converges to the error
of the same node in the system with the complete graph.

0 10 20 30 40 50 60

0.4

0.6

0.8

1

1.2

time (s)

p x e
st

im
at

io
n

er
ro

r
(m

)

distributed
distributed
single sensor
optimal

not complete graph

Fig. 6. Position estimation errors for the first node in the second
configuration.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

p x e
st

im
at

io
n

er
ro

r
(m

)

distributed
distributed
single sensor
optimal

not complete graph

Fig. 7. Position estimation errors for the first node: estimation
of a static value.

More extensive results for the above examples
and the results for another configuration of the local
processors are presented in the work of Kowalczuk and
Domżalski (2012b).

5.2. Two trajectories. In this section we consider
the problem of estimating crossing trajectories of two
moving objects in a 2D Cartesian space. In this case,
instead of a Kalman filter, the estimation algorithm in
a local processor is based on a joint probabilistic data

association filter (Fotmann et al., 1980; 1983; Fitzgerald,
1985; Bar-Shalom and Li, 1995; Chen and Tugnait, 2001).
The JPDA filter makes an efficient method for estimating
trajectories of multiple objects moving in a common space
in the presence of undesired false detections.

In the performed experiments, both objects were
described by two-dimensional OU processes. The
parameters for the first object were

κ1 =
[

0.05 0.02
−0.04 0.1

]
, θ1 =

[
2
−1

]
, (32)

σ1 =
[
0.01 0
0 0.01

]
,

with the following initial state:

X1(0) =
[
p1

x(0) p1
y(0) v1

x(0) v1
y(0)

]�
=

[
0 0 1 1

]�
.

(33)

For the second object, the model matrices were the
following:

κ2 = κ1, θ2 =
[−1
−2

]
, σ2 = σ1, (34)

and the initial state was

X2(0) =
[
p2

x(0) p2
y(0) v2

x(0) v2
y(0)

]�
=

[
32 5 −1 1

]�
.

(35)

The ADE system from Fig. 1(a) was utilized, with
the same sampling scheme as the one described in the
example from Section 5.1. The only difference was
that (for this case) all the measurement noise covariance
matrices were the same and equal to

R1 = R2 = R3 = R4 =
[
0.8 0
0 0.8

]
. (36)

The JPAD filter applied allows us to estimate
trajectories of moving objects in the presence of undesired
false detection2. However, for time t < 5, false detections
were not simulated in order to allow the JPDA filters to
perform robust track initialization. For time t ≥ 5, for
each node, the number of false detections in each cycle
was assumed to have the Poisson probability distribution
described by the following probability mass function:

P (m) =
(λ × Vol)me−λ×Vol

m!
, (37)

where λ is a sensor-dependent density of false detections,
chosen for this example as λ = 0.1, and ‘Vol’ is the
surface of the space observed by the sensors.

2By broad definition, a false detection is anything that is not a valid
object, e.g., noise originating detections or detections from stationary
structures in the observed space.

336 Z. Kowalczuk and M. Domżalski

Example results of tracking the two trajectories, for
time t ∈ [0, 20], are presented in Fig. 8. The simulated
trajectories are represented by dashed lines, the objects
originated measurements have the symbol ×, and the
results of estimation are denoted with the token ◦ and
connected with the use of straight lines. Additional false
detections simulated in the last cycle of the algorithm are
represented by the symbol +.

−5 0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

x

y

Fig. 8. Example results of the tracking of two trajectories using
the JPDA filter.

In the discussed case the observed space was defined
as a rectangle with its lower left vertex at (−5,−15) and
its upper right vertex at (35, 10). Thus the surface of the
observed space was Vol = 1000, and in each cycle, on
average, λ × Vol = 0.1 × 1000 = 100 false detections
were created with a uniform distribution over the observed
space.

The results of estimation of the position px and py

and the velocity vx i vy for the first trajectory in the first
node are presented in Fig. 9. As the results for the other
(identical) nodes were similar, they are not attached here.

As in the case of estimating a single trajectory
(example in Section 5.1), the results for the distributed
system are slightly worse than those for the optimal
(central) processing, and are much better than those for
the single sensor systems.

For time t ∈ [0, 5] the estimation errors decline since,
as mentioned earlier, no additional false detections were
simulated. The estimation errors for all algorithms have
their maximum for time t ∈ [10, 12], that is, during the
time of crossing the two trajectories. For time t > 15 the
objects move apart and the errors suitably decline again.

6. Conclusions

In this paper we have discussed a new framework
for asynchronous distributed estimation based on
continuous-time stochastic models. In general, we have
assumed that nodes of such an estimation system are
not synchronized and work independently of each other.
From a systemic viewpoint, very important is that one can
easily add new nodes to such systems and in the case of

a failure in any node the rest of the nodes can continue to
operate independently. In this respect the proposed ADE
system is thus flexible and robust.

From the presented results it is clear that the
performance of the nodes improves if they exchange
information with each other. The difference between the
ADE system and a single sensor Kalman filter is even
more apparent if one node sensor performs inaccurate
measurements (i.e., its measurement noise variance is
large) compared with the other ones. In such cases, data
from more accurate nodes positively support the work of
this node, i.e, improve its local estimates.

Compared with the optimal estimator, the results for
the presented ADE algorithm are slightly worse. The
basic difficulty lies in the fact that each node exchanges
data with other nodes completely asynchronously,
and that in real distributed systems getting necessary
cross-correlations is practically impossible. In fact, the
asynchronous interaction between the nodes of the ADE
system stymies analytical estimation of cross-correlations
between the estimation errors.

In spite of that, the problem of optimality of ADE
has also been addressed. Note that a single Kalman
filter is an optimal estimator for plants described by
linear stochastic dynamic models, but solely for the subset
of measurements available at this node (a centralized
globally optimal filter uses all measurements). The
method of data fusion applied cannot be fully optimal,
because the algorithm fuses the estimates solely with the
use of their covariance matrices (and without referring
to precise information on cross-correlations between the
estimation errors of different nodes). Thus the ADE
estimation is consistent in terms of the states and their
covariances. This also means that the effect of existing
cross-correlations is reduced to the resulting covariance
matrix of the fused estimate that is cautiously evaluated
with the use of the covariance intersection method.

The case of systems described by their connection
graphs being not complete has also been considered. In
such systems, the lack of connections between certain
nodes introduces some transmission delay. This delay
leads to a degradation in the estimation performance,
since the delay invalidates the exchanged estimates of
the state in the case of dynamic objects. For static
ones the estimation error in the ADE systems with
incomplete graphs converges to an error corresponding
to the system configuration with a complete connection
graph. Such an effect of data degradation can be more
evident for systems comprised of a large number of
nodes. Therefore, great care should be taken in selecting
the system configuration with incomplete connections.
Moreover, a general conclusion can be drawn for such
cases that an acceptable delay introduced by the ADE
system should be comparable with the time constant
(dynamics) of the observed plant.

Asynchronous distributed state estimation for continuous-time stochastic processes 337

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

er
r(

p x)

 a
distributed
single sensor
optimal

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

er
r(

p y)

 b
distributed
single sensor
optimal

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

time

er
r(

v x)

 c
distributed
single sensor
optimal

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

time

er
r(

v y)

 d
distributed
single sensor
optimal

Fig. 9. Estimation errors for the first trajectory in the first node (JDPA filter): position px (a), position py (b), velocity vx (c), velocity
vy (d).

Note that the above conclusions are also valid for
ADE systems utilizing other estimation algorithms, e.g.,
JPDA filters.

It appears that in future studies it can be worth
considering the issues of data synchronization, based on
a more general stochastic process model, implementation
of the presented estimation algorithm on an embedded
computer used for mobile robotics, as well as evaluating
certain nonlinear problems which may happen in real (air
traffic control) multi-sensor systems.

References
Baranski, P., Polanczyk, M. and Strumillo, P. (2011).

Fusion of data from inertial sensors, raster maps and
GPS for estimation of pedestrian geographic location
in urban terrain, Metrology and Measurement Systems
18(1): 145–158.

Bar-Shalom, Y. and Li, X.R. (1993). Estimation and Track-
ing: Principles, Techniques, and Software, Artech House,
Boston, MA.

Bar-Shalom, Y. and Li, X.R. (1995). Multitarget-Multisensor
Tracking: Principles and Techniques, YBS Publishing,
Storrs, CT.

Bilenne, O. (2004). Fault detection by desynchronized Kalman
filtering: Introduction to robust estimation, in P. Svensson
and J. Schubert (Eds.), Proceedings of the Seventh In-
ternational Conference on Information Fusion, Vol. I,
International Society of Information Fusion, Mountain
View, CA, pp. 99–106.

Blackman, S. and Popoli, R. (1999). Design and Analysis of
Modern Tracking Systems, Artech House, Boston, MA.

Carli, R., Chiuso, A., Schenato, L. and Zampieri, S. (2008).
Distributed Kalman filtering based on consensus strategies,
IEEE Journal on Selected Areas in Communications
26(4): 622–633.

Cattivelli, F. and Sayed, A. (2010). Diffusion strategies for
distributed Kalman filtering and smoothing, IEEE Trans-
actions on Automatic Control 55(9): 2069–2084.

Chen, B. and Tugnait, J. (2001). Tracking of multiple
maneuvering targets in clutter using IMM/JPDA filtering
and fixed-lag smoothing, Automatica 37(2): 239–249.

Chen, L., Arambel, P.O. and Mehra, R.K. (2002). Estimation
under unknown correlation: Covariance intersection
revisited, IEEE Transactions on Automatic Control AC-
47(11): 1879–1882.

Chen, Y.-L. and Chen, B.-S. (1995). Optimal reconstruction of
ARMA signals with decimated samples under corrupting
noise by use of multirate Kalman filter, Circuits, Systems,
Signal Processing 14(6): 771–786.

Del Favero, S. and Zampieri, S. (2009). Distributed estimation
through randomized gossip Kalman filter, Proceedings of
the 48th IEEE Conference on Decision and Control.

Fitzgerald, R. (1985). Track biases and coalescence with
probabilistic data association, IEEE Transactions on
Aerospace and Electronic Systems 21(6): 822–825.

Fortmann, T., Bar-Shalom, Y. and Scheffe, M. (1980).
Multi-target tracking using joint probabilistic data
association, Proceedings of 1980 IEEE Conference on

338 Z. Kowalczuk and M. Domżalski

Decision and Control, Albuquerque, NM, USA, pp.
807–812.

Fortmann, T., Bar-Shalom, Y. and Scheffe, M. (1983). Sonar
tracking of multiple targets using joint probabilistic
data association, IEEE Journal of Oceanic Engineering
8(3): 173–184.

Hall, D.L. and Llinas, J. (1997). An introduction to multisensor
data fusion, Proceedings of the IEEE 85(1): 6–23.

Hall, D. L. and Llinas, J. (2001). Handbook of Multisensor Data
Fusion, CRC, Boca Raton, FL.

Julier, S. and Uhlmann, J. (1997). A non-divergent estimation
algorithm in the presence of unknown correlations, Pro-
ceedings of the American Control Conference, Albu-
querque, NM, USA, pp. 2369–2373.

Kalman, R. (1960). A new approach to linear filtering and
prediction problems, Transactions of the ASME, Journal
of Basic Engineering 82(1): 34–45.

Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and
Stochastic Calculus, Springer, New York, NY.

Kowalczuk, Z. and Domżalski, M. (2009). Asynchronous
distributed state estimation based on covariance
intersection, System Science 35(1): 23–30.

Kowalczuk, Z. and Domżalski, M. (2012a). Optimal
asynchronous estimation of 2D Gaussian–Markov
processes, International Journal of Systems Science
43(8): 1431–1440.

Kowalczuk, Z. and Domżalski, M. (2012b). Asynchronous
distributed state estimation based on a continuous-time
stochastic model, International Journal of Adaptive Con-
trol and Signal Processing 26(5): 384–399.

Kuchler, R. and Therrien, C. (2003). Optimal filtering with
multirate observations, Proceedings of the 37th Asilomar
Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, pp. 1208–1212.

Liggins, M., Chong, C., Kadar, I., Alford, M., Vinnicola, V. and
Thomopoulos, S. (1997). Distributed fusion architectures
and algorithms for target tracking, Proceedings of the IEEE
85(1): 95–107.

Oksendal, B. (2003). Stochastic Differential Equations: An In-
troduction with Applications, Springer-Verlag, Berlin.

Olfati-Saber, R. (2007). Distributed Kalman filtering for
sensor networks, Proceedings of the 46th IEEE Confer-
ence on Decision and Control, New Orleans, LA, USA,
pp. 5492–5498.

Olfati-Saber, R. and Shamma, J. (2005). Consensus filters for
sensor networks and distributed sensor fusion, Proceed-
ings of the 44th IEEE Conference on Decision and Con-
trol/2005 European Control Conference (CDC-ECC 05),
Seville, Spain, pp. 6698–6703.

Patan, M. (2012). Distributed scheduling of sensor networks for
identification of spatio-temporal processes, International
Journal of Applied Mathematics and Computer Science
22(2): 299–311, DOI: 10.2478/v10006-012-0022-9.

Rao, B., Durrant-Whyte, H. and Sheen, J. (1993). A
fully decentralized multi-sensor system for tracking and
surveillance, International Journal of Robotics Research
12(1): 20–44.

Ribeiro, A., Giannakis, G.B. and Roumeliotis, S. (2006).
SOI-KF: Distributed Kalman filtering with low-cost
communications using the sign of innovations, IEEE
Transactions on Signal Processing 54(12): 4782–4795.

Rogers, L. and Williams, D. (2000). Diffusion, Markov Pro-
cesses and Martingales, Vol. 2: Itô Calculus, Cambridge
University Press, Cambridge.

Speranzon, A., Fischione, C. and Johansson, K. (2006).
Distributed and collaborative estimation over wireless
sensor networks, Proceedings of the 45th IEEE Confer-
ence on Decision and Control, San Diego, CA, USA,
pp. 1025–1030.

Uciński, D. (2012). Sensor network scheduling for identification
of spatially distributed processes, International Journal of
Applied Mathematics and Computer Science 22(1): 25–40,
DOI: 10.2478/v10006-012-0002-0.

Xiao, L., Boyd, S. and Lall, S. (2005). A scheme for robust
distributed sensor fusion based on average consensus, Pro-
ceedings of the 4th International Symposium on Informa-
tion Processing in Sensor Networks, Los Angeles, CA,
USA, pp. 63–70.

Zhang, H., Basin, M. and Skliar, M. (2007). Itô–Volterra optimal
state estimation with continuous, multirate, randomly
sampled, and delayed measurements, IEEE Transactions
on Automatic Control 52(3): 401–416.

Zdzisław Kowalczuk, Prof., D.Sc., Ph.D.,
M.Sc.E.E. (2003, 1993, 1986, 1978). Since
1978 he has been with the Faculty of Electron-
ics, Telecommunications and Computer Science
at the Gdańsk University of Technology, where
he is a full professor of automatic control and
the chair of the Department of Decision Sys-
tems. He held visiting appointments at the Uni-
versity of Oulu (1985), Australian National Uni-
versity (1987), Technische Hochschule Darm-

stadt (1989), and George Mason University (1990–1991). His main
interests include adaptive and predictive control, system identification,
failure detection, signal processing, artificial intelligence, control engi-
neering and computer science. He has authored and co-authored about
15 books and 45 book chapters, about 85 journal papers and 200 confer-
ence publications. He is a recipient of the 1990 and 2003 Research Ex-
cellence Awards of the Polish National Education Ministry, and a 1999
Polish National Science Foundation Award in automatic control.

Asynchronous distributed state estimation for continuous-time stochastic processes 339

Mariusz Domżalski received an M.Sc. (2002)
and a Ph.D. (2012, with honours) from the
Gdańsk University of Technology in the domain
of automatic control and robotics. His research
interests are in continuous time stochastic pro-
cesses and estimation theory. His current re-
search activities are focused on distributed esti-
mation based on data from multiple sources.

Received: 26 January 2012
Revised: 6 June 2012

	Introduction
	Process model
	c-t Gauss--Markov model
	Sampled-data model

	Data synchronization
	Multi-sensor ADE algorithm using CI fusion
	ADE algorithm
	Remarks on optimality

	Simulation example
	OU process
	Two trajectories

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

