
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 3, 623–635
DOI: 10.2478/amcs-2013-0047

EPOCH–INCREMENTAL REINFORCEMENT LEARNING ALGORITHMS

ROMAN ZAJDEL

Faculty of Electrical and Computer Engineering
Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

e-mail: rzajdel@prz.edu.pl

In this article, a new class of the epoch-incremental reinforcement learning algorithm is proposed. In the incremental mode,
the fundamental TD(0) or TD(λ) algorithm is performed and an environment model is created. In the epoch mode, on the
basis of the environment model, the distances of past-active states to the terminal state are computed. These distances and
the reinforcement terminal state signal are used to improve the agent policy.

Keywords: reinforcement learning, epoch-incremental algorithm, grid world.

1. Introduction

In reinforcement learning algorithms, the interactions of
an agent with an environment are divided into episodes
or epochs. Each episode is composed of a series of
agent–environment interactions. The number of these
iterations is usually unknown a priori. Each episode ends
in a special state called the terminal state (Sutton and
Barto, 1998). This is a state which cannot be left.

The efficiency of the basic reinforcement learning
algorithm, e.g., Q-learning (Watkins, 1989), AHC (Barto
et al., 1983) or Sarsa (Rummery and Niranjan, 1994),
measured in the number of epochs to obtain the optimal
policy is relatively small. For this reason, the number
of practical implementations of these algorithms in
more complex problems is rather insignificant. The
unquestionable advantage of these algorithms is low
computational complexity, which implies an extremely
short learning time of each epoch. The short learning
time is essential for application of reinforcement learning
algorithms to on-line control problems. Thus, acceleration
methods of reinforcement learning algorithms should
ensure both relatively small computational complexity
and high efficiency.

Unfortunately, the acceleration methods used up to
date, which reduce the number of epochs needed to
obtain the optimal policy, have required significantly more
learning time. For example, one of the most often used
acceleration methods, such as the temporal-differences
mechanism TD(λ > 0), requires additional memory
elements known as eligibility traces. The learning time

of TD(λ > 0) grows because the updates of the policy
function are made for all states, not only for one (actual),
like in the class of basic reinforcement learning algorithms
TD(0) (Sutton and Barto, 1998; Watkins, 1989). Learning
methods such as Dyna-learning (Sutton, 1990; 1991) or
prioritized sweeping (Moore and Atkeson, 1993; Peng
and Williams, 1993), which are much more efficient than
TD(λ > 0), also belong to the class of memory based
algorithms.

The basic idea behind these methods is the use of the
adaptive environment model in reinforcement learning.
The efficiency of these approaches is much better than
the one obtained for TD(λ > 0), but it is followed by a
considerable increase in the learning time. The increase
in the learning time is caused by an additional update of
the policy for states active in the past. Policy updates
in the algorithms mentioned above are performed in the
incremental mode, i.e., in each iteration of the algorithm.
The advantage of such an approach is the immediate
policy update. However, the application of methods which
are related to the use of the information about states active
in the past may lead to an increase in the algorithm’s
computational time.

The epoch policy update method is completely
different. It is characterized by a suspension of the policy
update up to the end of an episode. The experiences
(series of states, actions and rewards) observed within the
episode are stored directly or indirectly, i.e., in a processed
form. The agent works on the basis of an unchanged
policy in all steps of an episode. Once the last step
of an episode is performed, the policy is modified by

rzajdel@prz.edu.pl

624 R. Zajdel

using stored experiences. A drawback of such a learning
method is the lack of the policy update within the episode
while the advantage is no computational burden. Epoch
algorithms are not widely used due to a delay in the policy
update (Reynolds, 2002; Rummery and Niranjan, 1994).
The truncating temporal differences technique, in short
TTD(λ) (Cichosz, 1995), is a example of the algorithm
where a policy update delay takes place. In TTD(λ), the
delay is set to some number of steps, and for the policy
update a cumulative reward is used. The learning time of
a single step is slightly longer than in the TD(0) method.

TTD(λ) is also applied by Reynolds (2002) in
the algorithm that used the environment observation
stored in a stack but the updates are performed in
the epoch mode. For policy modification in the
epoch mode one also uses simulated annealing (Atiya
et al., 2003), the tree based method (Ernst et al.,
2005), the temporal differences approach (Lagoudakis and
Parr, 2003; Markowska-Kaczmar and Kwaśnicka, 2005),
neural networks (Riedmiller, 2005) or genetic algorithms
(Moriarty et al., 1999) and evolutionary computation
approaches (Whiteson, 2012). The suspension of the
policy update, either for some number of iterations or until
the end of the episode, causes the environment exploration
to be performed on the basis of the policy which cannot
follow the environment changes. This type of learning
has one undisputed advantage: it offers a possibility of
advanced processing of a series of interactions between
the agent and the environment.

The epoch-incremental mode is a compromise
between incremental and epoch learning modes. It allows
modifying the policy in both the modes. In the literature,
one can find two implementations of epoch-incremental
algorithms. The first approach consists in the use of
an agent experience in preliminary determination of the
parameters of a learning system. For example, the solution
proposed by Lin (1993), named ‘experience replay’,
similarly to the temporal differences algorithm TD(λ)
allows a single experience to update the state-action
function of some states active in the past. For this
purpose, supervised learning in the epoch mode is used
for preliminary adjustment of the action-value function.
Such a solution allows constraining the number of a
real-object experiments. This idea is applied in the
control of a mobile robot (Smart and Kaelbing, 2002;
Ye et al., 2003) or a car in a traffic (Forbes, 2002).
However, this approach requires a training set. The second
method of connecting the epoch mode algorithm and the
incremental mode algorithm relies on the execution of
the reinforcement learning algorithm in the incremental
mode. In turn, in the epoch mode, the policy update
is based on the stored experiences. Gelly and Silver
(2007) proposed an epoch-incremental algorithm which,
in the epoch mode, creates the optimal policy by means
of the decision tree from the initial to the terminal

state. An interesting idea can be found in the work
of Vanhulsel et al. (2009), where the bucket brigade
algorithm is applied. This approach is used to determine
the order of state update on the basis of the temporal
differences error TD. Moreover, there are also hybrid
methods which combine coevolutionary algorithms and
basic value-function approaches (Q-learning or TDL)
(Krawiec et al., 2011; Whiteson and Stone, 2006).
These methods can be considered early examples of
epoch-incremental learning algorithms.

In the environment where the rewards are located
in the terminal states, it is possible to perform the
policy update on the basis of a partial environment
model after the terminal state is achieved. One can
modify the policy elements which allow achieving the
terminal state in the optimal way, i.e., according to
the shortest path. In this paper, epoch-incremental
reinforcement learning algorithms are proposed in order
to obtain a highly efficient learning method with a small
learning time. The main idea of these algorithms is to
combine the Q-learning algorithm (either Q(0)-learning
or Q(λ)-learning), which is performed in the incremental
mode, with the acceleration method performed in the
epoch mode. The proposed acceleration method is
based, to a large extent, on the semi-optimal policy
of states visited within a single episode. This
semi-optimal strategy forms a basis for the modification
of either the action-value function Q (in the algorithm
that uses Q(0)-learning) or eligibility traces (in the
algorithm that uses Q(λ)-learning). The proposed
algorithms are compared with four well-known and often
used reinforcement learning algorithms: Q(0)-learning,
Q(λ)-learning, Dyna-Q and prioritized sweeping. All
algorithms are used to solve the control problem of four
grid worlds.

The article is organized as follows. Section 2
highlights reinforcement learning algorithms such as
Q(0)-learning, Q(λ)-learning, Dyna-Q and prioritized
sweeping. In Section 3, two epoch-incremental
reinforcement learning algorithms are described.
Section 4 compares Q(0)-learning, Q(λ)-learning,
Dyna-Q, prioritized sweeping and two proposed
epoch-incremental algorithms in the grid environment. In
Section 5, results of experiments are shown. The work is
concluded in Section 6.

2. Reinforcement learning

Reinforcement learning addresses the problem of an agent
that must learn to perform a task through a trial-and-error
interaction with an unknown environment. The agent and
the environment interact until a terminal state is reached.
The agent senses the environment through its sensors and,
based on its current sensory inputs, selects an action to
be performed in the environment. Depending on the

Epoch-incremental reinforcement learning algorithms 625

effect of its action, the agent obtains a reward (Lanzi,
2000). It is necessary to note that an agent interacts
in the environment which has the Markov property. An
environment has the Markov property if the reward and
the next state depend only on the current state and action.
However, this dependency may be stochastic. Thus, P a

ss′

defines the probability of the transition to the state s′ ∈ S
after the execution of the action a ∈ A in the state s ∈ S.
A Markov Decision Process (MDP) in an environment is
understood as the following quadruple: a set of states S, a
set of actions A, a probability P a

ss′ and a reward function
r. The goal of the agent in the Markov environment is to
maximize the discounted sum of future reinforcements rt

received in the long run, which is usually formalized as∑∞
t=0 γtrt, where γ ∈ [0, 1] is the agent’s discount rate.

2.1. Q-learning. There exist various types of
reinforcement learning algorithms. Q-learning, proposed
by Watkins (1989), is one of the most often used. This
algorithm computes the table of all values Q (s, a) (called
the Q-table) by successive approximations. Q (s, a)
represents the expected payoff that the agent can obtain in
state s after it performs action a. The Q-table is updated
according to the following formula (Watkins, 1989):

Q (s, a)← Q (s, a)

+ β
(
r + γ max

a′
Q (s′, a′)−Q (s, a)

)
, (1)

where the maximization operator refers to the action value
a′ which may be performed in the next state s′ and β ∈
(0, 1] is the learning rate.

The basic Q-learning algorithm (1-step Q-learning)
can be significantly improved considering the history
of states’ activation represented by eligibility traces.
The eligibility trace is parametrized by the recency
factor λ ∈ [0, 1], and therefore this enriched learning
method is called Q(λ)-learning. Watkins (1989) proposed
combining eligibility traces and Q-learning, which leads
to the following update method:

Q (s, a)← Q (s, a)

+ β
(
r + γ max

a′
Q (s′, a′)

−Q (s, a)
)
e (s, a) , (2)

where the eligibility trace for the state-action pair (s, a) is
determined as

e (s, a)← γλe (s, a) + δ (s, a) , (3)

and

δ (s, a) =
{

1 for the active pair (s, a),
0 for all other pairs (s, a). (4)

Fig. 1. Model based reinforcement learning.

Since e (s, a) represents the eligibility trace of an
action pair (s, a), its initial value is set to zero. This is
because there is no action pair (s, a) active before the
exploration of the environment. The eligibility trace of
each pair (s, a) becomes large after state activation and
then it decreases exponentially until the state is visited
again.

2.2. Dyna-Q and prioritized sweeping. Dyna-Q and
prioritized sweeping require a model of the environment
in order to improve the policy represented by a Q-table.
Given a state and an action, a model predicts the next state
and the next reward. Dyna-Q is a Q(0)-learning based
algorithm which simultaneously uses experience to build
the model and to adjust the policy (Fig. 1). Additionally,
it uses the model to adjust the policy. Dyna-Q operates in
a loop of interactions with the environment as follows:

• Update the model after each transition (s, a) →
(s′, r). The model is stored in the table of state and
action indices; the table predicts next state s′ and
reward r.

• Update the policy at the state s and the action a using
the rule in (1).

• Perform N additional policy updates on the basis
of the model. Each of these updates consists of a
random choice of the state action pair (si, ai) that
has been experienced before and the query to the
model with this pair. The model returns the next state
s′i and the reward ri as its prediction. Finally, the
update according to (1) is performed. A reasonable
value of N can be determined on the basis of the
relative speeds of computation and of taking action
(Kaelbing et al., 1996).

The prioritized sweeping algorithm is similar to
the Dyna-Q, except that its updates are not chosen
at random but depending on the priority which is
the absolute value of the temporal difference error
|r + γ maxa′ Q (s′, a′)−Q (s, a)|. If this priority is
greater than the arbitrary defined threshold, then the pair

626 R. Zajdel

(s, a) is stored into the queue with priority. Finally, only
N pairs with the highest priority are updated according
to (1) using the model, similarly to Dyna-Q (Sutton and
Barto, 1998).

3. Epoch-incremental reinforcement
learning algorithms

This section describes two proposed reinforcement
learning algorithms executed in the epoch-incremental
mode. The first algorithm, which uses Q(0)-learning,
is called EIQ(0)-learning. The second one, which
uses Q(λ)-learning, is called EIQ(λ)-learning. The
EIQ(0)-learning algorithm with fuzzy approximation of
the action-value function is described by Zajdel (2012).
This section presents an implementation of this algorithm
for a tabular representation of the action-value function. In
both the algorithms, the agent–environment interactions
take place in the incremental mode. These interactions
are then used to modify the agent’s policy represented by
the action-value function Q (Fig. 2). The incremental
mode is ended when the terminal state is reached and
the reinforcement signal rTERMINAL is assigned. Then,
the epoch mode begins where, on the basis of the
environment model, the distances d from the terminal
state are computed for all the states active in the past.
Moreover, an action a, which allows reaching the terminal
state in an optimal way, is assigned to each state. The
shortest distance is meant to be the optimality criterion.

3.1. EIQ(0)-learning. The epoch-incremental
reinforcement learning algorithm which uses the
Q(0)-learning method is executed in two stages. The first,
incremental stage is performed until the terminal state is
reached. In this mode, the agent policy is modified using
the Q(0)-learning algorithm (1) and the environment
model is created.

Algorithm 1 shows the instructions of the
EIQ(0)-learning algorithm expressed in terms of
the pseudocode. It starts with the initialization of the
action-value function Q(s, a) and the function M(s, a, s′)
which is used to store the indicator of possible transitions
from the state s to s′ after the execution of the action a.
Additionally, the queue DQueue is set to be empty. This
queue contains the following four elements: the state s,
the optimal action a, the next state s′ and the distance d
from the terminal state (Step 1 of Algorithm 1).

In Step 2, a series of episodes begins. Each episode
consists of the instructions performed in the incremental
mode (Steps 3–9) and in the epoch mode (Steps 10–17)
after the terminal state is reached. At the beginning
of each episode, the state s is initialized. Then, the
Q(0)-learning algorithm is executed (Steps 5–7). For the
state s, where the execution of the action a results in the
transition to the state s′, the activity indicator M(s, a, s′)

Fig. 2. Epoch-incremental reinforcement learning algorithm.

is set to 1. After the terminal state sTERMINAL is reached
and the reinforcement signal rTERMINAL is assigned, the
epoch mode begins. In the first step of the epoch mode, all
four initial elements are inserted in DQueue. These four
elements constitute a quadruple. This quadruple informs
that the terminal state is reached and the distance between
the current and the terminal state equals 0 (Step 10).
DQueue is realized as a priority queue where d acts as
a priority parameter. The notation DQueued is simply the
set of quadruples for which the distance from the terminal
states equals d.

Since DQueue is not empty (Step 11), the distance
to the terminal state is incremented (Step 12). Then,
the state-action pairs are searched to find the ones for
which the next state is the terminal state (Steps 13–15).
DQueued−1 denotes the set of 4-tuples (s, a, s′, d− 1) in
which the distance from the terminal states equals d − 1.
s′ ∈ DQueued−1 denotes the next state s′ (i.e., the
third element of DQueued−1) for which the distance is
d − 1. Thereafter, the action-value function is updated as
follows:

Q (s, a)← Q (s, a) + β(rTERMINAL(γλ)d

+γ max
a′

Q (s′, a′)−Q (s, a)), (5)

where d is the shortest distance between the actual and the
terminal state, and λ ∈ (0, 1] is the recency factor. The
multiplication of the reinforcement signal rTERMINAL

by the (γλ)d coefficient realizes exponentially decreasing
dependence between states active in the past and the
terminal state.

The γλ product was first introduced in the TD(λ)
algorithm in which the eligibility trace of state-action
pairs is decreased by this factor in each iteration. In

Epoch-incremental reinforcement learning algorithms 627

Algorithm 1. EIQ(0)-learning.

1. Initialize Q(s, a) and M(s, a, s′) = 0 for all s, s′ ∈ S, a ∈ A and DQueue to empty
2. foreach episode:
3. Initialize s

4. repeat (for each step of episode):
5. Choose a from s using policy derived from Q (e.g., ε-greedy(s, Q)
6. Execute action a, observe resultant state s′ and reward r

7. Q(s, a)← Q(s, a) + β(r + γ maxa′ Q(s′, a′)−Q(s, a))
8. M(s, a, s′) = 1
9. until s = sTERMINAL

10. DQueue0 ← (s, a, sTERMINAL, d = 0)
11. while DQueued is not empty
12. d← d + 1
13. foreach s′ ∈ DQueued−1

14. foreach s ∈ preds(s′) and a ∈ A:
15. if M(s, a, s′) = 1
16. DQueued ← (s, a, s′, d)
17. Q(s, a)← Q(s, a) + β(rTERMINAL(γλ)d + γ maxa′ Q(s′, a′)−Q(s, a))
18. remove DQueued−1

the TD(λ) method, all the elements of the action-value
function are updated depending on the distance from the
actual state. In the case of the proposed epoch-incremental
algorithm, the updates are performed only for these
elements of the action-value function Q which are
responsible for the suboptimal strategy determined on
the basis of the shortest distance to the absorbing state.
After the update of the action-value function for the pairs
(s, a) for which the next state is the terminal state, the
initializing quadruple (Step 10) is removed from DQueue.
At this stage of the algorithm, DQueue contains only
quadruples with d = 1. The algorithm iterates from Step
12 until (i) the shortest distance to the terminal state is
assigned to all active states within a current episode and
(ii) the action-value function with reinforcement signal
rTERMINAL is updated according to the formula (5). It
is worth noting that Steps 10–16 of Algorithm 1 can be
actually considered a BFS (Breadth-First Search) through
the graph of state transitions, starting from the terminal
state.

3.2. EIQ(λ)-learning. EIQ(λ)-learning is an
epoch-incremental reinforcement learning algorithm
which uses the Q(λ)-learning method. In order to
improve the agent policy, this algorithm uses the distance
d, in much the same way as EIQ(0)-learning. In
the incremental mode, the Q(λ)-learning algorithm is
performed and, therefore, the eligibility traces are applied
(3) (Steps 7–12 in Algorithm 2). In the last step of
the incremental mode, the activity indicator M(s, a, s′)

of a 3-tuple (s, a, s′) is set to 1. As in the case of
EIQ(0)-learning (Algorithm 1), the epoch part starts
when the terminal state is reached. DQueue is initialized
(Step 15) and the eligibility traces are set to zero (Step
16). In Watkins’ (1989) Q(λ)-learning algorithm, the
eligibility traces are set to zero at the beginning of each
episode.

The eligibility traces are some kind of memory of
state–action pairs active in the past. In the proposed
algorithm, the eligibility traces, at the beginning of each
episode, represent the suboptimal policy obtained from
the previous episode. Similarly to EIQ(0)-learning,
one computes the shortest distance d to the terminal
state of the states active in the past (starting from step
17). The important difference between EIQ(λ)-learning
and EIQ(0)-learning is the way of utilizing d. In the
EIQ(0)-learning algorithm, the distance d to the terminal
state is used in the backpropagation of the reinforcement
signal rTERMINAL (5). In the algorithm described in
this section, the update of the action-value function is
performed throughout the initialization of the eligibility
traces before each episode in the following way:

e(s, a) =
{

(γλ)d if M(s, a, s′) = 1,
0 otherwise.

(6)

In this way, the eligibility traces which are nearest to
the terminal state (d = 1) are set to the highest value
equal to γλ. Along with the increase in the distance d,
the initial values of e (s, a) are the numbers that decrease
exponentially.

628 R. Zajdel

Algorithm 2. EIQ(λ)-learning.

1. Initialize Q(s, a), e(s, a) = 0 and M(s, a, s′) = 0 for all s, s′ ∈ S, a ∈ A and DQueue to empty
2. foreach episode:
3. Initialize s

4. repeat (for each step of episode):
5. Choose a from s using policy derived from Q (e.g., ε-greedy(s, Q)
6. Execute action a, observe resultant state s′ and reward r

7. foreach (s, a)
8. e(s, a) = γλe(s, a)
9. for actual (s, a)

10. e(s, a)← e(s, a) + 1
11. foreach (s, a)
12. Q(s, a)← Q(s, a) + β(r + γ maxa′ Q(s′, a′)−Q(s, a))e(s, a)
13. M(s, a, s′) = 1
14. until s = sTERMINAL

15. DQueue0 ← (s, a, sTERMINAL, d = 0)
16. Initialize e(s, a) = 0 for all s ∈ S and a ∈ A

17. while DQueued is not empty
18. d← d + 1
19. foreach s′ ∈ DQueued−1:
20. foreach s ∈ preds(s′) and a ∈ A:
21. if M(s, a, s′) = 1
22. DQueued ← (s, a, s′, d)
23. e(s, a) = (γλ)d

24. remove DQueued−1

4. Case study

The idea of the epoch-incremental reinforcement learning
algorithms is the result of the observation of the
performance of Q(0)-learning, Q(λ)-learning, Dyna-Q
and prioritized sweeping algorithms in grid worlds. Let
us consider the environment GRID69 shown in Fig. 3(a)
(Sutton, 1990). This is a stationary environment with the
initial state ‘Start’ (State 19) and the single absorbing state
‘Stop’ (State 9). The states marked as dark gray squares
represent obstacles and are unreachable for an agent. In
this environment, in each of reachable states, the agent
can perform one of four actions: ←, →, ↑ and ↓. When
reaching the absorbing state (the execution of action ↑ in
State 18 and the transition to State 9), the agent is assigned
the reinforcement signal equal to 1 and the episode is
finished. The reinforcement signal in the remaining states
is 0 (Fig. 3(a)).

Let us consider the performance of the agent in
the first episode. The agent policy is represented
by the action-value function Q. Let us also assume
that this function is initialized with 0 values for all
state–action pairs. Therefore, the agent does not possess
any information related to the way of how to reach

the goal. Moreover, since the reinforcement signal is
zero, the action-value function is not updated, either (see
(1) and (2)). The agent only performs the exploration
of the environment. Figure 3(b) presents the actions
which might be performed in the first episode before the
absorbing state is reached. The real experiments show
that such a situation is unlikely to occur. Within the first
episode, the agent usually performs 95%–100% of actions
in all grid states. A hypothetical situation presented in
Fig. 3(b) will highly facilitate further analysis. Let us
also assume that the agent reaches the absorbing state by
moving along the path illustrated in Fig. 3(c). Taking
into account the actions shown in Fig. 3(b), the agent
moves along this path in both directions (either to or from
the state ‘Stop’). The transition to the absorbing State
9 results in receiving a reward equal to 1. The type of
learning algorithm determines the way of policy update.

In the Q(0)-learning algorithm, only Q(18, ↑) is
updated (Fig. 3(d)). In the Q(λ)-learning algorithm,
only these elements of Q-table are modified for which
the appropriate state–action pairs were active in the
past (e(s, a) > 0). It is worth noting that not only
Q(s, a) elements responsible for the transition to the
absorbing state (e.g., Q(18, ↑) are modified, but also the

Epoch-incremental reinforcement learning algorithms 629

Fig. 3. GRID69 environment: numbers of states and rewards (a), actions performed within the episode considered (b), sample path
of transitions from the ‘Start’ state to the absorbing ‘Stop’ state (c), presentation of the modified elements of the action-value
function for the algorithms: Q(0)-learning (d), Q(λ)-learning (e), EIQ(0)-learning and EIQ(λ)-learning (f).

elements which correspond to non-optimal actions (e.g.,
Q(18,←), Q(18,→), Q(18, ↓)). Let us also pay attention
to the fact that in State 34 all four actions are performed.
The action ← is executed as the last one. It causes
transition to State 33 and increases the distance from the
goal (Figs. 3(b) and (c)). The Q(λ)-learning algorithm
does not use the information whether the agent has visited
State 35, which is placed much closer to the terminal
state. This algorithm enhances “the path of last executed
or most active” state–action pairs. The distance from
the absorbing state ‘Stop’ (Fig. 3(c)) is marked in the

bottom-right corner of the squares which correspond to
the states active in the past. In the first episode, this
distance results from the transition path determined only
throughout the environment exploration.

Exponentially decreasing values of the eligibility
traces are functions of these distances (Fig. 3(e)). One
can notice that State 35 is located four transitions away
from the terminal state (Fig. 3(c)). The neighbouring
State 34 lies nineteen transitions away from the terminal
state. The use of information that the transition from State
34 to 35 after the execution action → (M(34,→, 35) =

630 R. Zajdel

1) would improve the agent policy. Epoch-incremental
reinforcement learning algorithms use such information.
In the epoch mode of these algorithms, one determines
the pair (34,→) as the candidate for learning. Moreover,
the shorter distance equal to 5 is assigned to State 34.
Such a distance results from the states’ neighbourhood
represented by the function M(s, a, s′). On the basis
of this information, the element of the action-value
function Q(34,→) is updated either in EIQ(0)-learning
or throughout e(34,→) in EIQ(λ)-learning. As a
result of the aforementioned procedure, out of all actions
executed in states active in the past only these actions are
selected which realize the suboptimal policy in the sense
of the shortest path, as shown in Fig. 3(f). Thus, after the
first episode, the agent policy is updated with the use of a
suboptimal action.

5. Experiments

Grid worlds are often used for comparing how quickly
different reinforcement learning methods converge to a
stable solution (Cichosz, 1995; Crook and Hayes, 2003;
Forbes, 2002; Gelly and Silver, 2007; Moore and Atkeson,
1993; Peng and Williams, 1993; Reynolds, 2002; Sutton,
1990; Sutton and Barto, 1998). This chapter presents
the results of experiments conducted in two types of grid
environments which model task to success and task to fail-
ure. In task to success, the purpose of the update of the
agent policy is to reach the terminal state as quickly as
possible. When the agent moves to the terminal state,
it receives the reinforcement signal rTERMINAL greater
than in previous states, and hence rTERMINAL > r. Task
to failure, in turn, is a type of episodic task where the goal
for an agent is to avoid certain undesirable states. The
achievement of such a state denotes a failure and ends
the episode. In such a type of task, the achievement of
absorbing states is rewarded with the reinforcement signal
rTERMINAL < r.

5.1. Task to success. The experiments are performed
in GRID69 and GRID2436 grid worlds presented by
Sutton (1990) as well as Peng and Williams (1993),
respectively. GRID2436 contains 24 rows and 36 columns
(Fig. 4) extended form of the GRID69 environment
shown in Fig. 3. The minimal number of transitions
(states’ changes) from the starting state (‘Start’) to the
terminal state (‘Stop’) equals 16 in GRID69 and 58 in
GRID2436. The number of reachable states in GRID69
and GRID2436 is 47 and 752, respectively.

EIQ(0)-learning and EIQ(λ)-learning algorithms
are compared with Q(0)-learning, Q(λ)-learning,
Dyna-Q and prioritized sweeping. The initial values of
Q(s, a) and M(s, a, s′) are zero. For all the algorithms
one assumes the learning rate α = 0.1, the discount rate
γ = 0.95 and the recency factor λ = 0.2. The values of

Fig. 4. Grid world GRID2436.

these coefficients are chosen by a trial-and-error method,
which provided the best performance among all tested
algorithms. The exploration policy parameter ε is set
to 0.1. Moreover, in Dyna-Q and prioritized sweeping
algorithms, the number of the updates based on the
environment model is assumed to be 50.

Figures 5(a) and 6(a) show the averaged (over 30
repetitions) number of the transitions required to reach the
terminal state ‘Stop’. One can notice that the convergence
of the Q(0)-learning algorithm is slightly worse in the
case of GRID69 and much worse for GRID2436 in
comparison with other algorithms. It is worth keeping
in mind that the minimal number of transitions for this
environment is 58.

In Figs. 5(b) and 6(b), the results for five most
efficient algorithms are shown. In order to illustrate the
difference between the efficiencies of the algorithms, the
results are shown starting from the fourth episode. In
the case of the GRID69 environment one can distinguish
two groups of plots. Q(λ)-learning and EIQ(λ)-learning
are visibly worse than the remaining ones, i.e., Dyna-Q,
prioritized sweeping and EIQ(0)-learning. In the case of
GRID2436, the use of the information about the distance
between all the states and the absorbing state as well
as the initialization of the eligibility traces in the epoch
mode (realized in EIQ(λ)-learning algorithm) increase
the efficiency of the Q(λ)-learning algorithm. In both the
environments, the EIQ(0)-learning algorithm performs
much better than the EIQ(λ)-learning method.

In GRID2436 the number of steps per episode is
smaller for EIQ(0)-learning in comparison with Dyna-Q
and prioritized sweeping algorithms only for the fourth
and the fifth episode. Along with the increase in the
number of the episodes, the EIQ(0)-learning algorithm
requires a greater (compared with Dyna-Q and prioritized
sweeping) number of steps to reach the terminal state. The
average number of steps (μ) and its standard deviation (σ)
for the first 3 episodes, the average for all 40 episodes and
the average for the last 30 episodes are presented in Tables
1 and 2.

Task to success modelled by the GRID69
environment turns out to be relatively undemanding.

Epoch-incremental reinforcement learning algorithms 631

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

Episodes

S
te

ps
 p

er
 E

pi
so

de

Q(0)−learning
Q(λ)−learning
Dyna−Q
prioritized sweeping
EIQ(0)−learning
EIQ(λ)−learning

0 5 10 15 20 25 30 35 40
15

16

17

18

19

20

21

22

23

24

Episodes

S
te

ps
 p

er
 E

pi
so

de

Q(λ)−learning
Dyna−Q
prioritized sweeping
EIQ(0)−learning
EIQ(λ)−learning

(a) (b)

Fig. 5. GRID69 environment: steps from the first (a) and the fourth (b) episode.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Episodes

S
te

ps
 p

er
 E

pi
so

de

Q(0)−learning
Q(λ)−learning
Dyna−Q
prioritized sweeping
EIQ(0)−learning
EIQ(λ)−learning

0 5 10 15 20 25 30 35 40
60

70

80

90

100

110

120

130

140

150

160

Episodes

S
te

ps
 p

er
 E

pi
so

de

Q(λ)−learning
Dyna−Q
prioritized sweeping
EIQ(0)−learning
EIQ(λ)−learning

(a) (b)

Fig. 6. GRID2436 environment: steps from the first (a) and the fourth (b) episode.

Table 1. GRID69 environment: number of steps necessary to reach the terminal ‘Stop’ state starting from the ‘Start’ state.

Episodes

Number of steps

Q(0)-learning Q(λ)-learning Dyna-Q
prioritized EIQ(0)- EIQ(λ)-
sweeping learning learning

μ σ μ σ μ σ μ σ μ σ μ σ

1 1089 942 909 637 949 864 811 681 979 439 821 415
2 908 842 20 4 38 9 22 4 17 2 22 5
3 450 342 21 5 18 4 221 455 17 3 22 5

Average for
all episodes
(1–40)

121 94 41 20 41 25 42 31 34 14 32 14

Average for
last 30
episodes
(11–40)

32 24 19 5 17 3 17 2 17 2 19 4

Except for Q(0)-learning, all the remaining algorithms,
already in the second episode, achieve the number of
steps one order smaller than in the first episode. For

GRID2436, the number of steps for first three episodes
is almost constant for Q(0)-learning. For the remaining
algorithms, already in the third episode, the number of

632 R. Zajdel

Table 2. GRID2436 environment: number of steps necessary to reach the terminal ‘Stop’ state starting from the ‘Start’ state.

Episodes

Number of steps

Q(0)-learning Q(λ)-learning Dyna-Q
prioritized EIQ(0)- EIQ(λ)-
sweeping learning learning

μ σ μ σ μ σ μ σ μ σ μ σ

1 11206 11773 14311 11044 15452 16808 13022 10323 12051 9862 7474 6302
2 11572 13133 2380 2380 1098 230 116 15 78 15 1794 1269
3 12773 10533 402 452 283 155 73 10 80 22 458 407

Average for
all episodes
(1–40)

7793 6650 537 373 488 438 398 268 376 261 335 221

Average for
last 30
episodes
(11–40)

6406 5322 114 25 70 7 73 9 76 18 95 18

Table 3. GRID69 and GRID2436 environments: average times of a single iteration in the incremental and the epoch mode. The
simulations were performed on a computer with an Intel Pentium M 2.0 GHz processor and 1 GB RAM, the algorithms were
implemented in Matlab.

Environment Mode
Time [ms]

Q(0)-learning Q(λ)-learning Dyna-Q
Prioritized EIQ(0)- EIQ(λ)-
sweeping learning learning

GRID69
incremental 0.07 0.07 0.86 6.07 0.08 0.10
epoch − − − − 3.56 2.55

GRID2436
incremental 0.08 0.11 0.91 119.88 0.10 0.12
epoch − − − − 652.61 603.42

steps is of at least one order smaller than in the first
episode. In the proposed EIQ(0)-learning algorithm,
the number of steps decreases in the fastest way. For
the prioritized sweeping algorithm, a decrease in the
number of steps to 73 occurs in the third episode. The
standard deviation in the first episode computed for all
algorithms is large and of the order of μ. This is because
the environment exploration is performed on the basis of
a pure stochastic policy. In the next stages, a decrease
of σ is an indicator of a semioptimal policy creation
degree. Analysing the average number of steps for all
40 episodes, one can notice that the EIQ(λ)-learning
algorithm seems to be the best method. It is influenced
by a relatively small number of transitions in the first
episode. Hence, discarding the initial episodes makes
the average number of transitions for 30 last episodes
(bottom row in Tables 2 and 3) the most reliable measure
of efficiency. As can be observed, for GRID2436, only
Dyna-Q, prioritized sweeping and EIQ(0)-learning
algorithms have the number of transitions smaller than
80, 70, 73 and 76, respectively. In the case of GRID69,
only for Q(0)-learning, the average number of episodes
much higher than for the remaining methods.

It is necessary to pay attention to the computational
cost of such a result. In Table 3, the execution
times of each compared algorithm are presented.

For epoch-incremental algorithms, the times of the
incremental and epoch mode are shown. The
times of the incremental modes for EIQ(0)-learning
and EIQ(λ)-learning algorithms are slightly longer
than the corresponding results of Q(0)-learning and
Q(λ)-learning. This results from the necessity of building
the environment model represented by M(s, a, s′). The
execution times of Dyna-Q and prioritized sweeping
algorithms are longer than the times of the algorithms
mentioned above. This is a result of the action-value
function update which is based on the environment
model. The execution time of the prioritized sweeping
algorithm is particularly long since in this method the
states’ sorting is applied according to the absolute value
of the temporal differences error |TD|. Moreover, for
these sorted states, one determines related state–action
pairs (Moore and Atkeson, 1993; Sutton and Barto,
1998). The computational time of the epoch mode of
EIQ(0)-learning and EIQ(λ)-learning is long but this
mode is performed after the episode ends. Therefore it is
executed rarely in comparison with the incremental mode.

As one can observe, the use of the environment
model in the epoch mode leads to improvements in
both the Q(0)-learning and the Q(λ)-learning algorithm.
However, much better results are achieved in the case of
the EIQ(0)-learning algorithm by the direct interference

Epoch-incremental reinforcement learning algorithms 633

in the action-value function. The modification of
the eligibility traces in the EIQ(λ)-learning algorithm
improves the efficiency of the Q(λ)-learning method, but
this improvement is not so spectacular, in contrast to the
EIQ(0)-learning algorithm.

5.2. Task to failure. A sample 10 × 10 grid
environment (denoted henceforth as GRID1010)
modelling task to failure is presented in Fig. 7(a).
The environment has the initial ‘Start’ state, 32 terminal

Fig. 7. GRID1010 environment: starting state, unreachable and
terminal states (a), reinforcement signals for the particu-
lar states (b), GRID2525 environment (c).

states located at the edge of the environment and 4
unreachable states (in the corners of the grid).

Figure 7(c) shows GRID2525, which is an extension

of the GRID1010 environment. The achievement of
the terminal states is related to the assignment of the
reinforcement signal rTERMINAL = −1 and ends the
episode. The purpose of the learning algorithm is to keep
the agent within the white-field square as long as possible.
Then, the agent is assigned the reinforcement signal r = 0
(Fig. 7(b)). It is assumed that the system learns to avoid
the terminal states if it performs 1000 steps inside the area
of white fields. For each of the compared algorithms, the
learning process is repeated 10 times.

The averaged results are presented in Table 4. The
number of episodes before the agent learned to avoid
terminal states is a measure of the efficiency of the
algorithms. The smaller the number in Table 4, the more
efficient the learning algorithm. In both the environments,
the application of epoch-incremental algorithms decreases
the number of episodes necessary to achieve a stable
policy. In the GRID2525 environment, the number
of episodes for all algorithms is similar. However,
the GRID1010 environment is more demanding. The
advantages of using epoch-incremental algorithms are
more noticeable. The EIQ(0)-learning algorithm
provides the best results since it only requires 3.3
episodes to learn how to avoid the terminal states.
For EIQ(λ)-learning and Q(λ)-learning algorithms 4.0
and 7.6 episodes, respectively are merely needed.
For Q(0)-learning, Dyna-Q and prioritized sweeping
methods, the number of episodes exceeds 26.

6. Conclusions

This article proposed a new class o reinforcement learning
algorithms: EIQ(0)-learning and EIQ(λ)-learning.
These algorithms are based on the environment model and
the distance from the absorbing state.

The novelty introduced to the proposed methods
consisted in the improvement of the agent policy on the
basis of the model in the epoch mode. Such a solution
shortened the execution time of the instructions in the
incremental mode in comparison to Dyna-Q or prioritized
sweeping algorithms. Nonetheless, the efficiencies
of EIQ(0)-learning, EIQ(λ)-learning, Dyna-Q and
prioritized sweeping algorithms were comparable in the
discussed task to success. In the examined task to failure,
the efficiency of the proposed algorithms was the highest.
The results of the experiments confirmed the validity of
proposed modifications.

Another novelty presented in this contribution is
the use of the environment model in the creation of a
suboptimal policy. Furthermore, the environment model
was utilized in the determination of the shortest distances
between past-active states and the terminal state.

The author will adapt the proposed algorithms in a
problem of mobile robot control, a cart pole system and
a ball-beam system. The use of these algorithms in a

634 R. Zajdel

Table 4. GRID1010 and GRID2525 environments: average number of episodes required to learn how to avoid the terminal states.

Environment

Average number of episodes

Q(0)-learning Q(λ)-learning Dyna-Q
Prioritized EIQ(0)- EIQ(λ)-
sweeping learning learning

μ σ μ σ μ σ w μ σ μ σ μ σ

GRID1010 26.4 1.8 7.6 2.5 26.5 2.5 26.3 2.0 3.3 1.6 4.0 1.0

GRID2525 7.5 1.4 5.1 1.3 7.7 1.3 7.1 1.4 4.9 1.6 3.2 0.9

continuous-state environment will require the application
of function approximators, e.g., a Takagi–Sugeno system,
a fuzzy CMAC or a radial basis function neural network.

Acknowledgment

This work was supported by the Polish Ministry of
Science and Higher Education under the grant N N516
374536.

References
Atiya, A.F., Parlos, A.G. and Ingber, L. (2003). A reinforcement

learning method based on adaptive simulated annealing,
Proceedings of the 46th International Midwest Symposium
on Circuits and Systems, Cairo, Egypt, pp. 121–124.

Barto, A., Sutton, R. and Anderson, C. (1983). Neuronlike
adaptive elements that can solve difficult learning problem,
IEEE Transactions on Systems, Man, and Cybernetics
13(5): 834–847.

Cichosz, P. (1995). Truncating temporal differences: On
the efficient implementation of TD(λ) for reinforcement
learning, Journal of Artificial Intelligence Research
2: 287–318.

Crook, P. and Hayes, G. (2003). Learning in a state of confusion:
Perceptual aliasing in grid world navigation, Techni-
cal Report EDI-INF-RR-0176, University of Edinburgh,
Edinburgh.

Ernst, D., Geurts, P. and Wehenkel, L. (2005). Tree-based batch
mode reinforcement learning, Journal of Machine Learn-
ing Research 6: 503–556.

Forbes, J. R. N. (2002). Reinforcement Learning for Autonomous
Vehicles, Ph.D. thesis, University of California, Berkeley,
CA.

Gelly, S. and Silver, D. (2007). Combining online and offline
knowledge in UCT, Proceedings of the 24th International
Conference on Machine Learning, Corvallis, OR, USA,
pp. 273–280.

Kaelbing, L.P., Litman, M.L. and Moore, A.W. (1996).
Reinforcement learning: A survey, Journal of Artificial In-
telligence 4(1): 237–285.

Krawiec, K., Jaśkowski, W.G. and Szubert, M.G. (2011).
Evolving small-board Go players using coevolutionary
temporal difference learning with archives, International
Journal of Applied Mathematics and Computer Science
21(4): 717–731, DOI: 10.2478/v10006-011-0057-3.

Lagoudakis, M. and Parr, R. (2003). Least-squares
policy iteration, Journal of Machine Learning Research
4: 1107–1149.

Lanzi, P. (2000). Adaptive agents with reinforcement learning
and internal memory, From Animals to Animats 6: Pro-
ceedings of the Sixth International Conference on Sim-
ulation of Adaptive Behavior, Cambridge, MA, USA,
pp. 333–342.

Lin, L.-J. (1993). Reinforcement Learning for Robots Us-
ing Neural Networks, Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA.

Markowska-Kaczmar, U. and Kwaśnicka, H. (2005). Neu-
ral Networks Applications, Wrocław University of
Technology Press, Wrocław, (in Polish).

Moore, A. and Atkeson, C. (1993). Prioritized sweeping:
Reinforcement learning with less data and less
time, Machine Learning 13(1): 103–130, DOI:
10.1007/BF00993104.

Moriarty, D., Schultz, A. and Grefenstette, J. (1999).
Evolutionary algorithms for reinforcement learning, Jour-
nal of Artificial Intelligence Research 11: 241–276.

Peng, J. and Williams, R. (1993). Efficient learning and
planning within the Dyna framework, Adaptive Behavior
1(4): 437–454.

Reynolds, S. (2002). Experience stack reinforcement
learning for off-policy control, Technical Report
CSRP-02-1, University of Birmingham, Birmingham,
ftp://ftp.cs.bham.ac.uk/pub/tech-reports
/2002/CSRP-02-01.ps.gz.

Riedmiller, M. (2005). Neural reinforcement learning to
swing-up and balance a real pole, Proceedings of the IEEE
2005 International Conference on Systems, Man and Cy-
bernetics, Big Island, HI, USA, pp. 3191–3196.

Rummery, G. and Niranjan, M. (1994). On-line q-learning
using connectionist systems, Technical Report CUED/F-
INFENG/TR 166, Cambridge University, Cambridge.

Smart, W. and Kaelbing, L. (2002). Effective reinforcement
learning for mobile robots, Proceedings of the Interna-
tional Conference on Robotics and Automation, Washing-
ton, DC, USA, pp. 3404–3410.

Sutton, R. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming, Proceedings of the Seventh International
Conference on Machine Learning, Austin, TX, USA,
pp. 216–224.

ftp://ftp.cs.bham.ac.uk/pub/tech-reports
/2002/CSRP-02-01.ps.gz

Epoch-incremental reinforcement learning algorithms 635

Sutton, R. (1991). Planning by incremental dynamic
programming, Proceedings of the 8th International
Workshop on Machine Learning, Evanston, IL, USA,
pp. 353–357.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA.

Vanhulsel, M., Janssens, D. and Vanhoof, K. (2009).
Simulation of sequential data: An enhanced reinforcement
learning approach, Expert Systems with Applications
36(4): 8032–8039.

Watkins, C. (1989). Learning from Delayed Rewards, Ph.D.
thesis, Cambridge University, Cambridge.

Whiteson, S. (2012). Evolutionary computation for
reinforcement learning, in M. Wiering and M. van
Otterlo (Eds.), Reinforcement Learning: State of the Art,
Springer, Berlin, pp. 325–358.

Whiteson, S. and Stone, P. (2006). Evolutionary function
approximation for reinforcement learning, Journal of Ma-
chine Learning Research 7: 877–917.

Ye, C., Young, N.H.C. and Wang, D. (2003). A fuzzy
controller with supervised learning assisted reinforcement
learning algorithm for obstacle avoidance, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 33(1): 17–27.

Zajdel, R. (2012). Fuzzy epoch-incremental reinforcement
learning algorithm, in L. Rutkowski, M. Korytkowski, R.
Scherer, R. Tadeusiewicz, L.A. Zadeh and J.M. Zurada
(Eds.), Artificial Intelligence and Soft Computing, Lecture
Notes in Computer Science, Vol. 7267, Springer-Verlag,
Berlin/Heidelberg, pp. 359–366.

Roman Zajdel received the M.Sc. degree in
electrical engineering from the Rzeszów Univer-
sity of Technology in 1990 and the Ph.D in com-
puter science from the Wrocław University of
Technology in 1999. He is an assistant professor
at the Institute of Control and Computer Engi-
neering, Rzeszów University of Technology. His
research interests concentrate on reinforcement
learning, fuzzy logic and neural networks.

Received: 10 July 2012
Revised: 13 March 2013
Re-revised: 20 June 2013

	Introduction
	Reinforcement learning
	Q-learning
	Dyna-Q and prioritized sweeping

	Epoch-incremental reinforcement learning algorithms
	EIQ(0)-learning
	EIQ(λ)-learning

	Case study
	Experiments
	Task to success
	Task to failure

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

