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The Robinson–Foulds (RF) distance is the most popular method of evaluating the dissimilarity between phylogenetic trees.
In this paper, we define and explore in detail properties of the Matching Cluster (MC) distance, which can be regarded as a
refinement of the RF metric for rooted trees. Similarly to RF, MC operates on clusters of compared trees, but the distance
evaluation is more complex. Using the graph theoretic approach based on a minimum-weight perfect matching in bipartite
graphs, the values of similarity between clusters are transformed to the final MC-score of the dissimilarity of trees. The
analyzed properties give insight into the structure of the metric space generated by MC, its relations with the Matching
Split (MS) distance of unrooted trees and asymptotic behavior of the expected distance between binary n-leaf trees selected
uniformly in both MC and MS (Θ(n3/2)).
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1. Introduction

Phylogenetic trees (phylogenies) are widely used in
research related to evolution. Such trees (sometimes
also called evolutionary trees) represent the historical
evolutionary relationships among different species.
Present-day organisms correspond to the labels on
the leaves of those trees, while ancestral species are
represented by the remaining (unlabeled) vertices.
A phylogenetic analysis often starts with finding an
unrooted tree that describes evolutionary relationships in
a group of taxa under study. This is a natural consequence
of commonly used models of the evolution of DNA or
amino acid sequences in the form of a time-reversible
process, e.g., the reversible Markov chain. However, a
complete solution to the phylogeny problem requires
finding a rooted tree, which gives information about the
location of a common ancestor of the group of taxa under
study and defines the time flow along branches (from the
root to leaves).

Many popular methods for constructing phylogenetic
trees (e.g., the distance, parsimony, maximum likelihood,
Bayesian approaches; see the work of Felsenstein (2003)
for a review) often result in different trees for the same
input data, and an important problem is to determine
how distant are two reconstructed trees from each other.

This is the most common application of phylogenetic
metrics, but phylogenetic tree distances are used not
only for simple comparison of slightly different results.
There are many other applications of the distances,
e.g., mining phylogenetic information databases (Wang
et al., 2005), defining the consensus and median point
of trees (Bryant, 1997), the postprocessing of Bayesian
phylogenetic analysis results with clustering techniques
(Stockham et al., 2002) or its visualizations (Hillis
et al., 2005), analyzing sets of gene trees using the
TreeOfTrees method (Darlu and Guénoche, 2011). It is
worth noting that analyzing data using clustering and
other grouping methods based on some measure of
distance or similarity is a common approach used across
many areas in bioinformatics, not only in phylogenetics
(see, e.g., Frąckiewicz and Palus, 2011; Biedrzycki and
Arabas, 2012). Moreover, a relatively new application
concerns using polynomially computable tree comparison
metrics in constructing heuristic algorithms for detecting
Horizontal Gene Transfers (HGTs) (for details, see
Boc et al., 2010). Phylogenetic tree distances are also
useful in different branches of science, e.g., computer
science—analysis of malware evolution (Hayes et al.,
2009), chemistry (Restrepo et al., 2007) or linguistics
(Penny et al., 1993; Pompei et al., 2011).

For rooted trees, there is a deficiency of metrics in
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the literature. Therefore new definitions appear constantly,
e.g., the triples distance (Critchlow et al., 1996; Bansal
et al., 2011), the symmetric duplication cost (Ma
et al., 1998), the Minimal Agreement Partition (MAP)
metric (Bolikowski and Gambin, 2007), the transposition
distance (Alberich et al., 2009), or nodal (Williams and
Clifford, 1971) and splitted nodal metrics (Cardona et al.,
2010).

In a recent work (Bogdanowicz and Giaro, 2012)
we presented a general method for creating matching
metrics for unrooted phylogenetic trees (not necessarily
binary) and an example of a new metric constructed
using the method—the Matching Split (MS) distance
with interesting properties. Moreover, the usability
and desirable properties of the MS distance have
been confirmed by a recent work of Lin et al.
(2012). In particular, the authors showed that the MS
metric performs significantly better than the well-known
Robinson–Foulds distance (Robinson and Foulds, 1981)
when applied to the clustering of phylogenetic trees.

The main idea of those matching distances is based
on comparing splits that correspond to the edges of the
analyzed trees using an arbitrary metric h. This approach
is extended to entire phylogenetic trees in such a manner
that the value of the distance is equal to the weight of a
minimum-weight perfect matching in a complete bipartite
graph constructed based on the trees and the function h.

In this article we want to show that the described
approach can be generalized or transferred to more
complex structures, i.e., rooted trees. As a case study we
consider in detail the properties of the simplest metrics
defined by this method, i.e., the Matching Cluster (MC)
distance.

The proposed definitions can be regarded as an
extension of the most popular method of comparing
phylogenetic trees—the Robinson–Foulds distance
(Robinson and Foulds, 1981). The values of the proposed
distances can be effectively computed using algorithms
with polynomial time complexity.

2. Definitions and notation

For sets A, B, let A ⊕ B = (A \ B) ∪ (B \ A) be their
symmetric difference. Let |A| denote the cardinality of set
A. By 2A we denote the family of all subsets of A. Let
G = (V, E) be a graph with a set of vertices V and a set
of edges E. A bipartite graph G(V1, V2, E) has vertices
decomposed into two disjoint sets V1 ∪ V2 = V such
that no two vertices within the same set are adjacent. A
bipartite graph is complete if every two vertices v1 ∈ V1

and v2 ∈ V2 are adjacent. A tree is a connected acyclic
graph. A path is a tree with two vertices of degree 1 and
all the others of degree 2. A caterpillar is a graph whose
subgraph induced by vertices of degree grater than 1 is a
path.

A matching M ⊆ E in a graph G = (V, E)
is a set of pairwise non-adjacent edges; that is, no
two edges share a common vertex. A perfect matching
covers all vertices of the graph. If we assign a weight
function w : E → Z≥0 to the edges of G, then a
minimum-weight perfect matching is defined as a perfect
matching where the sum of the weights of its edges has
a minimum value. Minimum-weight perfect matchings
in bipartite graphs can be computed efficiently in time
O(|E|√|V | log(|V |maxe∈E w(e))) (Gabow and Tarjan,
1989; Orlin and Ahuja, 1992).

A metric defined over an arbitrary set is often used
to quantify a difference or a distance between any two
elements of the set. A metric space is a pair (X, d)
consisting of a set X and a function d : X × X →
R≥0 (the metric over X) such that (i) ∀x,y∈Xd(x, y) =
0 ⇔ x = y, (ii) ∀x,y∈Xd(x, y) = d(y, x), and (iii)
∀x,y,z∈Xd(x, y) + d(y, z) ≥ d(x, z)—the triangle ine-
quality.

Besides this common notation, the phylogenetic
literature uses also a set of specific terms, a part of which
we recall in this section (see Bryant, 1997; Semple and
Steel, 2003).

A rooted phylogenetic tree T = (V, E) is a tree
whose leaves, that is, vertices of degree one are labeled
bijectively by the elements of a finite set L (representing
the species), each non-leaf vertex is unlabeled, there is
exactly one distinguished non-leaf vertex r(T ) ∈ V \ L
called the root and none of the vertices of V \ {r(T )} has
degree two.

Present-day species under examination form the
finite set L and are represented by leaves of a tree. Internal
vertices, i.e., members of V \ L; represent hypothetical
ancestors of the taxa of L, in particular, r(T ) is the
ancestor of all species under study. For the sake of
simplicity, we can identify leaves with their labels, i.e.,
for a phylogenetic tree T , by L(T ) we denote a set
of leaves of T or a set of labels of those leaves. This
general definition includes trees for which the sequence
of speciation events may not be fully resolved. Such
a situation, called multifurcation, concerns the vertex
(node) in a tree that is incident to more than three
edges (branches). A multifurcation may represent the
lack of resolution due to insufficient data available for
inferring the phylogeny. Multifurcations can also occur
in consensus trees (see the work of Bryant (1997) for a
review of consensus methods) that present information
common to a set of partially contradictory trees obtained
from, e.g., maximum parsimony. The most informative are
binary (fully resolved) phylogenetic trees.

A rooted binary phylogenetic tree is a rooted
phylogenetic tree such that the root has degree 2 and all
other internal vertices have degree 3. In each rooted binary
phylogenetic tree T over the set of leaves L, there are
|L| − 2 internal edges (i.e., not pendant) and |L| − 1
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internal vertices. In a non-binary tree these numbers are
smaller. By RL and RB

L we denote the sets of all rooted
phylogenetic trees and all rooted binary phylogenetic trees
over the set of leaves L, respectively. For L = {1, . . . , n},
we use the notation Rn and RB

n . A rooted tree T defines
a partial order relation of being descendant (and ancestor)
on its vertices, denoted by ≤T . For a, b ∈ V (T ), we have
a ≤T b (that is, a is a descendant of b) if the path in T from
a to r(T ) contains b. In particular, v ≤T r(T ) and v ≤T v
for any v ∈ V (T ). To every vertex v we can assign its
cluster c(v) ⊆ L, i.e., the set of leaves (labels) that are
descendants of v. There are |L|+1 trivial clusters in a tree
T that are related to leaves u (where c(u) = {u}) and to
the root (where c(r(T )) = L(T )); all the other clusters are
non-trivial. By σ(T ) and σ∗(T ) we denote families of all
clusters of T and all non-trivial clusters of T , respectively.
Therefore for a tree T ∈ RL we have |σ(T )| ≤ 2|L| − 1,
|σ∗(T )| ≤ |L| − 2, and both inequalities are tight for
binary trees. A rooted phylogenetic tree T is uniquely
described by a set σ∗(T ) and the translation between these
two descriptions can be performed efficiently in linear
time (see Semple and Steel, 2003, Section 3.5).

In order to compare phylogenetic histories
represented by trees T1, T2 ∈ RL, the structure of a
metric space in the set RL is introduced. One of the most
widely used metrics on a set RL is the Robinson–Foulds
distance (Robinson and Foulds, 1981) based on clusters:

Definition 1. The Robinson–Foulds (RF) distance
between two rooted trees T1, T2 ∈ RL is defined as 1

dRF (T1, T2) =
1
2
|σ(T1) ⊕ σ(T2)|. (1)

The relationship among the species without the
knowledge of the location of the common ancestor nor
about the time flow along edges is illustrated by an
unrooted phylogenetic tree. An unrooted phylogenetic tree
is a tree whose leaves (vertices of degree one) are labeled
bijectively by the elements of a finite set L (species) and
no vertex has degree 2. An unrooted phylogenetic tree is
binary if each non-leaf vertex has degree 3.

Let UL and UB
L denote the set of all unrooted

phylogenetic trees and the set of all unrooted binary trees
over the set of leaves L, respectively. For L = {1, . . . , n},
we use the notation Un and UB

n . In each T ∈ UB
L there

are |L| − 2 internal vertices and |L| − 3 internal edges. In
an unrooted tree there is no descendant–ancestor relation,
but, analogically to the correspondence between vertices
and clusters in the rooted case, we now have a similar
relation between edges and splits. A split A|B of a set L
is an unordered pair (i.e., A|B = B|A) of its nonempty
subsets such that L = A ∪ B and A ∩ B = ∅. Let
min(A|B) = min{|A|, |B|} and, if min(A|B) = 1, then

1A version of this definition without factor 1/2 is also used in the
literature.

A|B is trivial, otherwise it is non-trivial (Bryant, 1997). A
set of all splits of a finite set L is denoted as Splits(L). For
T ∈ UL and an edge e of T , removing e divides T into two
components. Let A be the set of leaves in one of them and
B in the other. Then A|B is a split of L(T ) corresponding
to e. The set of splits corresponding to edges in T ∈ UL is
denoted by β(T ) (Bryant, 1997), thus |β(T )| ≤ 2|L| − 3
and there are |L| trivial splits. The remaining (non-trivial)
splits form the set β∗(T ). Similarly as in the rooted case,
there is a linear time algorithm for reconstructing a tree
from the set of its splits (Gusfield, 1991).

A well-known metric used for comparing unrooted
phylogenetic trees is the RF distance (Robinson and
Foulds, 1981), defined analogically to (1), where β(T ) is
used instead of σ(T ).

Inferring the root of an unrooted phylogenetic tree
from UL is usually called rooting. The root is usually
introduced in an internal vertex or on an edge by adding
a new vertex dividing this edge, so we obtain a tree from
RL. Unrooting is the opposite operation transforming a
rooted tree into an unrooted one.

Finally, consider trees that contain less phylogenetic
information than T ∈ RL. For an internal edge e = {u, v}
of T we define contracting an edge e as an operation
that transforms T into the tree Te ∈ RL, in which e
is removed and the vertices u and v are identified. Let
A ⊆ L, and let T (A) be a minimal subgraph of T that
connects leaves of A and choose as its root the vertex
closest to r(T ). The subtree of T induced by A is a tree
T|A ∈ RA obtained from T (A) by successively removing
all vertices of degree 2 (with exception of the root) and
identifying their adjacent edges. Hence T|A is the tree
containing the whole phylogenetic information from T ,
but only concerning the species from A (these definitions
are often used in mathematical phylogenetics; for details,
see the work of Bryant (1997)).

3. Matching method for rooted and
unrooted phylogenetic trees

The crucial point for the proposed method is describing
a way for defining the distance between finite subsets of
a given metric space (see Bogdanowicz and Giaro, 2012).
Lemmas 1, 2 and Definition 2 here correspond to Lemmas
3.3, 3.2 and Definition 3.1 in the above-mentioned work,
respectively, where we considered the sets of splits.

Lemma 1. There are given a metric space (X, d), a com-
plete bipartite graph G(V1, V2, E), |V1| = |V2| = n and a
labeling l : V1 ∪ V2 → X . We assign weights to the edges
of G so that w({a, b}) = d(l(a), l(b)) for a ∈ V1, b ∈ V2.
Let a1, . . . , ak ∈ V1, b1, . . . , bk ∈ V2. If l(ai) = l(bi)
for 1 ≤ i ≤ k ≤ n. Then there exists a minimum-weight
perfect matching M ⊆ E satisfying {ai, bi} ∈ M for
1 ≤ i ≤ k.
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Definition 2. There are given a finite set D, an element
O /∈ D and a metric h on D ∪ {O}. We define a
metric dh : 2D × 2D → R≥0, where the distance
between A, B ∈ 2D, dh(A, B), is equal to the value of a
minimum-weight perfect matching in a complete bipartite
graph G = (V1, V2, E) defined as follows:

• for arbitrary s, t such that s−t = |A|−|B|, we define
the sets V1 = {a1, . . . , a|A|, a|A|+1, . . . , a|A|+t},
V2 = {b1, . . . , b|B|, b|B|+1, . . . , b|B|+s} as the
vertices partitions of the graph G(V1, V2, E) and
vertex labeling l : V1 ∪ V2 → D ∪ {O}, so that A =
{l(ai) : 1 ≤ i ≤ |A|}, B = {l(bj) : 1 ≤ j ≤ |B|}
and l(ai) = l(bj) = O for |A| + 1 ≤ i ≤ |A| + t,
|B| + 1 ≤ j ≤ |B| + s;

• the weights of the edges are defined using the metric
h as w({ai, bj}) = h(l(ai), l(bj)).

Lemma 2. The function dh is a metric and the value of
dh(A, B) does not depend on s or t (when s − t = |A| −
|B|).

Hence, we can always assume that min{s, t} = 0
and max{s, t} = ||A| − |B||. The distance dh(A, B) can
be interpreted as the total cost of the most accurate pairing
between the elements of A and B. The value h(O, x) is
the cost of leaving the element x unmatched. Note that, if
|A| = |B|, then considering the element O and defining
its distance h(x, O) for x ∈ D are unnecessary.

The presented method gives a convenient way to
define metrics for phylogenetic trees (i.e., introducing a
metric space in RL and UL) based on any metric h on
subsets of L and Splits(L) ∪ {O} appropriately. First
note that the classical RF metric defined by the formula
(1) can be expressed using Definition 2 and Lemma 2
by taking D = 2L \ {∅}, O = ∅ and the following
simple function hRF : 2L × 2L → {0, 0.5, 1} for
clusters comparison: hRF (c1, c2) = 1 if c1 
= c2 and
c1, c2 
= ∅, and hRF (c1, c2) = 0.5 if exactly one of
c1, c2 is an empty set. Hence we obtain dRF (T1, T2) =
dhRF (σ(T1), σ(T2)) = dhRF (σ∗(T1), σ∗(T2)). An
analogous equality for unrooted trees can be derived using
a similar {0, 0.5, 1}-valued metric on Splits(L) ∪ {O}.

Using a similar approach in our earlier work
(Bogdanowicz and Giaro, 2012), we described a more
complex metric on Splits(L) ∪ {O}:

hS(A1|B1, A2|B2) = min{|A1 ⊕ A2|, |A1 ⊕ B2|}, (2)

hS(A|B, O) = min{|A|, |B|},
and used it to define the matching split distance between
unrooted trees T1, T2 ∈ UL as

dMS(T1, T2) = dhS (β(T1), β(T2))
= dhS (β∗(T1), β∗(T2)). (3)

b
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Fig. 1. Calculation of the MC distance between trees T1 and T2.
The bipartite graph of their non-trivial clusters has a per-
fect matching of minimum weight equal to 3.

Thus customization of the function for comparing
splits h leads us to more utile metrics than the traditional
RF. We now apply a similar approach for comparison of
rooted trees introducing the matching cluster distance that
can be regarded as an analogy of MS for the rooted case.

The most natural manner for quantifying an amount
of phylogenetic information represented by an internal
vertex of a rooted tree is the size of its clade, i.e.,
the cardinality of the cluster related to it. Dissimilarity
between two clades A, B can be measured as the number
of elements that appear in one of the clades but not in
the other, i.e., the cardinality of the set A ⊕ B. Since the
cardinality of A⊕B introduces a metric space structure in
an arbitrary family of finite sets, we obtain what follows.

Definition 3. Let T1, T2 ∈ RL be rooted phylogenetic
trees, hC : 2L × 2L → Z≥0 such that hC(A, B) = |A ⊕
B|, and let O = ∅. According to Definition 2 we define
the matching cluster distance dMC : RL ×RL → Z≥0 as

dMC(T1, T2) = dhC (σ(T1), σ(T2))
= dhC (σ∗(T1), σ∗(T2)). (4)

For example, we calculate the matching cluster
distance between trees in Fig. 1. We have the following
non-trivial clusters for T1: {a, b}, {c, d} and for T2:
{a, b, c}. Using the function hC we calculate the distances
between them: hC({a, b}, ∅) = 2, hC({a, b}, {a, b, c}) =
1; hC({c, d}, ∅) = 2, hC({c, d}, {a, b, c}) = 3.
The weight of a minimum-weight perfect matching in
a bipartite graph shown in Fig. 1 is equal to 3, so
dMC(T1, T2) = 3.

The MC distance can be computed in time
O(|L|2.5 log |L|) with the already mentioned weighted
matching algorithms (Gabow and Tarjan, 1989; Orlin and
Ahuja, 1992).

We show that the advantages of MS (Bogdanowicz
and Giaro, 2012) are retained for matching metrics on
rooted trees, e.g., for MC, and can be shortly summarized
as follows:

• MC takes into account not only the identity of
clusters, but also more subtle similarities allowing
enhanced diversification;

• the maximal distance in Rn for the RF metric is
only n − 2, while in the case of MC it is Θ(n2)
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(Theorem 6). A wider range of distance values than
that of RF is also observed for other phylogenetic
metrics, e.g., for triplet distance, but in this case the
interpretation of the distance is not so obvious;

• the changes corresponding to edges placed near large
clades are recognized as more significant than those
corresponding to edges placed closer to leaves;

• an important side effect of computing matching
distances is an injective mapping between internal
non-root vertices in both trees, where ||V (T1)| −
|V (T2)|| internal vertices of the “bigger” tree have
no pair. In the particular case of binary trees, the
mapping is bijective. Moreover, the mapping can
be regarded as a suggestion about similar clades in
both trees and can be helpful in understanding the
structural difference between the analyzed trees.

Methods for determining some kind of “tree
alignments” and numerical measures of trees similarity
were proposed, e.g., by Munzner et al. (2003) and Nye
et al. (2006); such an analysis was also adopted to
phylogenetic networks (Cardona et al., 2009). A similar
approach to the comparison of tree-like structures, but
not in phylogenetic context, can be found in the work of
Boorman and Olivier (1973).

4. Properties of the MC distance for rooted
phylogenetic trees

In this section we analyze in detail the properties of one
of the simplest metrics for rooted trees.

4.1. Conservation of ancestor–descendant relations.
An important byproduct of calculating dMC(T1, T2) is
a “tree alignment” described by a minimum-weight
matching and a corresponding pairing of internal nodes
from T1 and T2. As presented in Fig. 2, such
a minimum-cost mapping is not in general unique.
In this case we can create two matchings M1 =
{{si+1, ti}}i=1,...,n−3 ∪ {{s1, tn−2}} and M2 =
{{si, ti}}i=1,...,n−2 with the same minimal cost 2n − 4.
Nevertheless, it is always possible to obtain a mapping
that in some sense agrees with the ancestor–descendant
relations between the nodes in both trees (here it is the
matching M2). No analogy of this feature is known for
the MS distance of unrooted trees.

Theorem 1. Let T1, T2 ∈ RL, |V (T1)| ≤ |V (T2)|,
and denote non-root internal vertices of these trees V̇i =
V (Ti) \ (L ∪ {r(Ti)}) for i = 1, 2. There exists an injec-
tion f : V̇1 → V̇2 with the cost

∑
v∈V̇1

|c(v) ⊕ c(f(v))| +∑
u∈V̇2\f(V̇1)

|c(u)| = dMC(T1, T2) such that all internal
non-root vertices a, b ∈ V (T1) fulfill the following condi-
tions:

tn-2

tn-3

t1

t2
s1

sn-2

sn-3

s2

T1

a1 a2 a3 an-1an-2 an

T2

a2 a3 a4 anan-1 a1

M1 M2

tn-2

tn-3

t1

t2
s1

sn-2

sn-3

s2

T1

a1 a2 a3 an-1an-2 an

T2

a2 a3 a4 anan-1 a1

M1 M2

Fig. 2. Two rooted caterpillars such that the tree T2 was obta-
ined from T1 by placing the leaf a1 behind an and con-
necting it to the root. Mappings M1, M2 of their internal
vertices have equal costs.

1. If a ≤T1 b, then their related vertices in T2 fulfill
f(a) ≤T2 f(b) or they are ≤T2-incomparable.

2. If f(a) ≤T2 f(b), then a ≤T1 b or they are ≤T1-
incomparable.

In other words, there is always a minimum-cost
mapping f such that it is impossible to have two different
vertices a, b with contradictory relations a ≤T1 b and
f(b) ≤T2 f(a).

Proof. Let a ≤T1 b, a 
= b and b′ = f(b) ≤T2 a′ = f(a),
where f corresponds to an arbitrary pairing of clusters that
realizes dMC(T1, T2). Then A = c(a) � c(b) = B =
X ⊕ A and B′ = c(b′) � c(a′) = A′ = B′ ⊕ X ′. We
have |A ⊕ A′| + |B ⊕ B′| = |A ⊕ B′| + |B ⊕ A′| +
2|X ∩ X ′|; hence, after making modifications to f so
that f(a) := b′, f(b) := a′, the equality

∑
v |c(v) ⊕

c(f(v))| +
∑

u |c(u)| = dMC(T1, T2) still holds. But
|A||B′| + |B||A′| = |A||A′| + |B||B′| + |X ||X ′|,
so after the modification the value of the parameter∑

v |c(v)||c(f(v))| increases. Therefore at most O(|L|3)
described consequent operations are possible, after which
we obtain f that fulfills the first part of the theorem. The
second part follows directly from the first one. �

4.2. Structure of the MC metric space. We now
present some basic properties of MC and its relations
with the most popular phylogenetic metric, i.e., RF.
Some of the described properties are similar to MS, with
differences in the coefficients. Thus for the completeness
of the paper we only list them, skipping the proofs if
they are analogous to the discussion presented for the MS
distance by Bogdanowicz and Giaro (2012).

Theorem 2. Let T1 
= T2 ∈ RL. We have

1. dRF (T1, T2) ≤ dMC(T1, T2)
≤ 2(|L| − 1) dRF (T1, T2);

2. if T1, T2 ∈ RB
L , then

dRF (T1, T2) + 1 ≤ dMC(T1, T2)
≤ (|L| − 1)dRF (T1, T2).
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Proof. See Appendix. �
We list basic extreme cases of inequalities in

Theorem 2. First, observe that dMC(T1, T2) = 1 is
possible only when σ∗(T1) and σ∗(T2) differ by only one
pair of clusters c1 ∈ σ∗(T1), c2 ∈ σ∗(T2), c1 
= c2 and,
additionally, c1 and c2 differ by only one element of L, so
their vertices must be multifurcations (see Fig. 3). Hence,
we obtain the following result.

Corollary 1.

1. If T1 ∈ RB
L , then there is no T2 ∈ RL such that

dMC(T1, T2) = 1.

2. Let T1 ∈ RL, |L| = n. Then the number of trees T2 ∈
RL such that dMC(T1, T2) = 1 can be estimated as
O(n2) (see Fig. 4).

3. The equality dRF (T1, T2) = dMC(T1, T2) may hold
for arbitrary values of dRF (T1, T2) (see Fig. 4).

4. There exist T1, T2 ∈ RB
n , such that dRF (T1, T2) = 1

and dMC(T1, T2) = n − 1 (see Fig. 5).

5. If T1, T2 ∈ RB
n and dMC(T1, T2) = 2, then

dRF (T1, T2) = 1 and these trees differ by one ope-
ration that swaps two leaves neighboring to opposite
ends of an internal edge.

6. For a tree T1 ∈ RB
n , the number of trees T2 ∈ RB

n

such that dMC(T1, T2) = 2 may vary between 0 and
n − 1 (rooted caterpillar case).

T1 T2

xB EA D xB EA C

c c’

C D

T1 T2

xB EA D xB EA C

c c’

C D

Fig. 3. MC distance between the trees T1 and T2 equals 1.

a1 a2 a3 a4 a2k-1 a2k+1

T3

a2k a2k+2 a3k

v1 v2 vk

a1 a2 a3 a4 a2k-1 a2k+1

T3

a2k a2k+2 a3k

v1 v2 vk

Fig. 4. Tree T with 3k leaves and k2 trees at the MC distance 1.
Removing leaves a2k+1, . . . , a3k from the root and reat-
taching them to the appropriate internal vertices results
in a tree T ′ with dRF (T, T ′) = dMS(T, T ′) = k.

In summary, observe that the MC-metric space of
binary trees seems to be less “regular” than in the RF case,
where the number of the closest possible (i.e., distanced
by 1) points is always 2n − 4. However, there are no
“isolated regions” in the MC-metric space, since analysis

T1 T2

C B

c

aB C

c

a

T1 T2

C B

c

a C B

c'

aB C

c

a B C

c

a

Fig. 5. MC distance between the trees T1 and T2 equals |L|−1.

analogous to Theorem 5.2 of Bogdanowicz and Giaro
(2012) gives the following result.

Theorem 3. There are given two trees Ta, Tb ∈ RL.

1. There exists a sequence of trees Ta =
T1, T2, . . . , Tk−1, Tk = Tb, Ti ∈ RL for
i = 1, . . . , k such that dMC(Tj, Tj+1) ≤ 4,
where j = 1, . . . , k − 1.

2. If Ta, Tb ∈ RB
L , then the trees Ti are binary as well.

Proof. (Sketch) Note that any tree can be transformed into
a rooted caterpillar using a series of operations presented
in Fig. 6. Two caterpillars can then be connected by a
series of Operations 3. However, if Ta, Tb ∈ RB

L , then
Operation 4 is unnecessary. Trees after Operations 1 or 2
are at a distance of 4 or 3, respectively. Operations 3 and
4 create trees at a distance of 2. �

It is worth noting that “isolated regions” appear for
other metrics, e.g., for the triples distance (TT) and the
splitted nodal metric with L2 norm (SN). In both these
cases the star tree, i.e., Tn ∈ Rn with n + 1 vertices, is an
example of such an “isolated region” because the distance
between Tn and any other tree T ′ ∈ Rn \ {Tn} grows
with the number of taxa, i.e., dSN (T, T ′) ≥ √

2(n − 2)
and dTT (T, T ′) ≥ n − 2.

4.3. Small topological transformations and the MC-
space diameter. One of the main advantages of MS over
RF (Bogdanowicz and Giaro, 2012) is its insensitivity to
small changes in the tree topology. In the RF case, the
displacement of only one leaf may create an unrooted tree
distanced from the original one by as much as |L| − 3,
and it is the maximum possible distance in this metric.
Despite the minor change, these trees seem to be very
distant (in the RF metric). MS is not misleading in these
situations. We will see (Theorems 4 and 5) that conducting
a fixed number k = const of leaf displacements or edge
contractions may create a tree distanced by O(|L|), but the
MC-space diameter is Θ(|L|2) (see Theorem 6). Hence,
this fundamental advantage is maintained also in the MC
metric. An extreme example of this property is shown in
Fig. 2, where after a single modification the distance in RF
increases to the maximum possible value, whereas in MC
it reaches 2|L| − 4, which is far less than the maximum
value in MC (Θ(|L|2), Theorem 6).
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Fig. 6. Local modifications of subtrees which can connect every
pair of trees from RL.

Theorem 4. Let T ∈ Rn and let e be an internal edge of
T . Then dMC(T, Te) ≤ n − 1.

Proof. Note that Te has one cluster less than T . Let c ∈
σ∗(T ) \ σ∗(Te). By Lemma 1 we have dMC(T, Te) =
hC(c, O) = |c| ≤ n − 1. �

In our earlier work (Bogdanowicz and Giaro, 2012)
we studied the effects of attaching or removing a leaf on
the minimum-weight perfect matching in the MS case.
Here, for the MC distance we obtain the following results.

Theorem 5. Let T1, T2 ∈ RL, |L| = n, A � L and
|A| = n − 1. Then

dMC(T1, T2) ≤ dMC(T1|A, T2|A) + 2n − 3,

dMC(T1, T2) ≥ dMC(T1|A, T2|A) − n + 1.

Proof. See Appendix. �

Theorem 6. The maximal distance in the MC metric can
be characterized as

n2 − 4 − (n mod 2)
2

≤ max
T1,T2∈RB

n

dMC(T1, T2)

≤ max
T1,T2∈Rn

dMC(T1, T2)

≤ n2 − 2n.

Proof. For the lower bound, consider two binary rooted
caterpillars T1, T2 ∈ RB

n created from the same unrooted
caterpillar by rooting it in the middle of two most
distant edges. In this case there is only one pairing
fulfilling Theorem 1 and we obtain dMC(T1, T2) ≥
2

∑�n/2�−1
i=1 (i + 1) + 2

∑�n/2	−1
i=1 i ≥ (n2 − 4 − (n

mod 2))/2. Since |σ∗(T )| ≤ n − 2 for T ∈ Rn, we
immediately obtain the upper bound. �

The diameter of the space of n-leaf rooted trees in the
MC distance is greater than in the unrooted trees case for
the MS distance, which equals 3

8n2±O(n) (Bogdanowicz
and Giaro, 2012). In fact, using the method of clusters
pairing in the order appropriate to their non-decreasing
sizes we can strengthen the upper bound to the form

max
T1,T2∈Rn

dMC(T1, T2) ≤ 3
4
n2 + O(n).

However, we suspect that the diameter is even smaller:

Conjecture. The diameter in the MC-metric space can
be expressed as follows: maxT1,T2∈Rn dMC(T1, T2) =
1
2n2 ± O(n).

4.4. MS-component of the MC distance. The
discussed metrics (MS and MC) are defined on particular
types of phylogenetic trees, i.e., either unrooted or rooted.
However, there are cases in phylogenetic analysis where
the comparison of an unrooted tree with a rooted one is
necessary, e.g., when we compare gene trees with species
trees (Górecki and Eulenstein, 2012). In this subsection
we present an interesting relation between these two
matching metrics.

Theorem 7. There are given trees T1, T2 ∈ UB
L . Let

T ′
1, T

′
2 ∈ RB

L be trees obtained from T1 and T2, respec-
tively, as a result of a rooting operation. Then

dMC(T ′
1, T

′
2) ≥ dMS(T1, T2).

Proof. See Appendix. �

The above inequality provokes an interesting
interpretation of the distance dMC(T ′

1, T
′
2) for binary

rooted trees. The value consists of a component
dMS(T1, T2) that quantifies the difference between the
topologies, i.e., the unrooted equivalents, T1, T2, and a
component dMC(T ′

1, T
′
2) − dMS(T1, T2) quantifying the

additional difference related to the direction of a time
flow along edges introduced into the trees T ′

1, T ′
2 during

a rooting operation. The second component can have
big values, even close to the diameter, e.g., the same
unrooted binary caterpillars (at a distance 0 in MS) rooted
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in the opposite ends take the distance of the order of
∼ 1

2n2 in MC (see the proof of Theorem 6). On the
other hand, for given trees T1, T2 ∈ UB

L it is usually
possible to find a time flow, i.e., the location of the root
such that the component dMC(T ′

1, T
′
2) − dMS(T1, T2)

is small. Computer simulations using unrooted random
binary trees (each tree is equally likely to appear) indicate
that the value of ΔMC(T1, T2) = min dMC(T ′

1, T
′
2) −

dMS(T1, T2), where the minimum is taken over all
possible positions for introducing roots (on the edges
of T1 and T2), is usually very small (compared to the
expected value of the MC distance); see Table 1. For trees
with up to 8 leaves, the values are computed based on all
possible pairs T1, T2 ∈ UB

n . In the case of bigger trees,
the presented results (in each row) come from the analysis
of 10000 pairs of random trees.

Observe that Theorem 7 is no longer valid for
arbitrary phylogenetic trees. As a counterexample,
consider the trees in Fig. 7, where dMS(T1, T2) = 2 while
dMC(T ′

1, T
′
2) = 1.

b T1

a e

c

d

b T2

a
c

e

d

b

T1

a c d e b

T2

a ec d

b T1

a e

c

d

b T1

a e

c

d

b T2

a
c

e

d

b T2

a
c

e

d

b

T1

a c d eb

T'1

a c d e b

T2

a ec db

T'2

a ec d

Fig. 7. Example of trees having dMS(T1, T2) > dMC(T ′
1, T

′
2).

4.5. Distances of random trees. A reference point is
usually needed to interpret the level of dissimilarity of two
trees (based on the value of the distance between them in
a particular metric). In most cases the average distance
between random trees generated according to a particular
model can be used for such purposes.

Table 1. Values of the ΔMC(T1, T2) parameter.
# taxa Avg. Max. AvgT1,T2

min dMC(T ′
1, T

′
2)

4 0 0 3.360
5 0 0 5.971
6 0.032 1 9.105
7 0.054 1 12.822
8 0.029 2 16.922

10 0.058 2 26.570
20 0.333 4 97.205
30 0.691 4 198.785
40 0.965 5 325.445
50 1.173 5 474.145
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Fig. 8. Trees having dMS(T1, T2) = 6 for which
min dMC(T ′

1, T
′
2) taken over all the possible ro-

oted versions of T1 and T2 equals dMC(T ′′
1 , T ′′

2 ) = 7.

We investigate the asymptotic behavior of the
expected distance between two random binary trees in the
MC and MS metrics under one of the most popular models
of phylogenetic tree generation—the uniform model. In
this model all binary phylogenetic trees are equally likely.
This process is not an explicit model of evolution, but it is
biologically motivated as it arises from a random sample
of species from a large group of species generated by a
conditioned branching process (see Aldous, 1991; Blum
et al., 2006; McKenzie and Steel, 2000). Let S(T ) be
defined as

∑
c∈σ(T ) |c|, if T ∈ RB

L and
∑

s∈β(T ) min(s)
for T ∈ UB

L . In fact, S(T ) for a rooted tree T is an
equivalent to Sackin’s index Sind(T ) used to measure
the tree balance (Sackin, 1972; Shao and Sokal, 1990).
Particularly, for a tree T ∈ RB

n we have S(T ) =
Sind(T ) + n. We use a strong result (Theorem 8) given
by Blum et al. (2006).

Theorem 8. Let Tn be a tree chosen uniformly at random
from RB

n . Then a cumulative distribution function of the
random variable S(n)/n3/2 converges pointwise to a cu-
mulative distribution function of the Airy distribution (A)
and limn→∞ E[S(n)]/n3/2 =

√
π.

The following theorem solves the problem regarding
the asymptotic behavior of the expected distance in MS
stated by Bogdanowicz and Giaro (2012).

Theorem 9.

1. For rooted trees T1n , T2n chosen independently uni-
formly at random from RB

n their expected distance is
E[dMC(T1n , T2n)] = Θ(n3/2).

2. For unrooted trees T ′
1n

, T ′
2n

chosen independently
uniformly at random from UB

n their expected distan-
ce is E[dMS(T ′

1n
, T ′

2n
)] = Θ(n3/2).

Proof. Let T1, T2 be chosen independently uniformly
at random from RB

n , and let M be a pairing of their
clusters such that

∑
(A,B)∈M |A ⊕ B| = dMC(T1, T2).
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Then the unrooted trees T ′
1, T ′

2, created from T1 and
T2 by connecting a new leaf n + 1 to their roots,
are uniformly drawn from UB

n+1 (see Semple and
Steel, 2003, Proposition 2.2.3). We define a perfect
matching of their splits as M ′ = {(A|{1, . . . , n + 1} \
A, B|{1, . . . , n + 1} \ B) : (A, B) ∈ M ∨ A =
B = {1, . . . , n}} and another perfect matching M ′′

accomplishing dMS(T ′
1, T

′
2). Consequently,

|S(T ′
1) − S(T ′

2)|
≤

∑

(s1,s2)∈M ′′
|min(s1) − min(s2)|

≤
∑

(s1,s2)∈M ′′
hS(s1, s2) = dMS(T ′

1, T
′
2)

≤
∑

(s1,s2)∈M ′
hS(s1, s2) ≤ dMC(T1, T2)

≤
∑

(A,B)∈M

(|A| + |B|) = S(T1) + S(T2).

By Theorem 8, the proof of the upper bounds is completed
in both cases. It remains to prove that E[|S(T ′

1) −
S(T ′

2)|] = Ω(n3/2). Additionally, we have

S(T ′
1) ≤ S(T1). (5)

Consider an unrooted n-leaf binary tree T ∈ UB
L . We

introduce an orientation of the edges of T in the direction
of smaller partitions of splits (in this way at most one edge
does not receive any orientation). The input degree of each
node is 0 or 1. Two situations are possible:

Case 1. Exactly one edge {u1, u2} has been left
undirected, so T may be regarded as two binary trees
Tu1 and Tu2 , rooted in u1 and u2, respectively, where
|L(T1)| = |L(T2)| = n/2. In this case we say that T
is assigned to the split {L(Tu1), L(Tu2)} of the set L.

Case 2. All edges have been directed. Then there
exists one vertex u of indegree 0, and T may be
considered the sum of three binary trees Tu1 , Tu3 ,
Tu3 rooted in neighbors of u, i.e., u1, u2, u3,
respectively. We then say that T is assigned to the 3-split
{L(Tu1), L(Tu2), L(Tu3)} treated as an unordered triple.

Now let T be uniformly and randomly chosen
from UB

n . By (5) we have limn→∞ E[S(T )/n3/2] ≤√
π. Thus for sufficiently large values of n (such that

E[S(T )/n3/2] < 2), by Markov’s inequality we obtain

Pr(S(T ) ≤ 4n3/2) ≥ 1 − Pr(S(T )

≥ 2E[S(T )]) ≥ 1
2
. (6)

Let p > 0 be less than the probability that the random
variable of the Airy distribution A has the value greater
than 5 · 33/2. The randomly chosen tree T is assigned to
exactly one 2- or 3-split of L with the largest partition A �

L (|A| ≥ n/3). Let TA ∈ RB
A be the rooted subtree of T

corresponding to A. For sufficiently large n, the rooted
tree TA (where |A| ≥ n/3) fulfills S(TA)/|A|3/2 ≥
5 · 33/2 with a probability greater than p. Therefore,
S(TA) ≥ 5n3/2 and, finally,

Pr(S(T ) ≥ 5n3/2) ≥ p. (7)

Combining (6) with (7) we obtain that, for two
independently randomly drawn trees T ′

1 and T ′
2 with

probability at least p, one of them fulfills the condition (6)
and the other the condition (7), thus E[|S(T ′

1)−S(T ′
2)|] =

Ω(n3/2). �

Not only the maximum value, but also the expected
value between two random binary trees in the MC and
MS metrics grows faster than the diameter of the RF
distance, hence more subtle MC-dissimilarity evaluation
results in a greater range. Moreover, the expected value
is asymptotically smaller than the diameters of MC and
MS, while in the case of RF both these parameters grow
equally fast, i.e., as Θ(n) (Steel and Penny, 1993).

Another very popular model of phylogenetic tree
generation is the Yule model, where trees are constructed
iteratively: starting from three random taxa, new taxa
(chosen randomly) are added to a branch connected to a
leaf (chosen uniformly randomly as well) (McKenzie and
Steel, 2000). We observed that the distributions of the RF
distance between random trees (in both models: uniform
and Yule) are highly asymmetrical compared to the MC
metric (see Figs. 9 and 10).

Detailed statistical results (e.g., average distances,
standard deviation, quantiles) concerning the MC
distance computed on the basis of the analysis
of 10000 pairs of random trees (in both models)
having between 10 and 1000 leaves are available at
http://www.kaims.pl/~dambo/mcdist. The
MS and MC metrics, as well as many other distances, are
implemented in the freely available TreeCmp application
(Bogdanowicz et al., 2012).

The most important properties regarding the MC
distance for binary trees discussed in this section are
summarized in Table 2.

5. MC distance in supertree construction

Supertree methods allow constructing tress that combine
phylogenetic information represented by a set of smaller
trees with partially overlapped taxa. Such analyses play
an important role in phylogenetic research, e.g., they
allowed constructions of the first family-level phylogeny
of flowering plants (Davies et al., 2004) and the first
species-level phylogeny of nearly all extant mammal
species (Bininda-Emonds et al., 2007).

Let profile P be a tuple of rooted trees (T1, . . . , Tk).
For a given profile P , we define a supertree T ∗ ∈ RB

L∗ on

http://www.kaims.pl/~dambo/mcdist
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Fig. 9. Histograms of distances in the RF and MC metrics based on 10000 randomly generated pairs of binary trees with 50 leaves
according to the uniform model.
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Fig. 10. Histograms of distances in the RF and MC metrics based on 10000 randomly generated pairs of binary trees with 50 leaves
according to the Yule model.

Table 2. Comparison of selected properties of analyzed metrics for binary trees.
Property RF (unrooted) RF (rooted) MS MC

Minimal positive distance 1 1 2 2
Number of trees at the minimal po-
sitive distance from a given tree

2n − 6 2n − 4 0 ≤ x ≤ n − 1 0 ≤ x ≤ n − 1

Maximal distance n − 3 n − 2 3
8
n2 + O(n) n2−4−(n mod 2)

2
≤ x ≤ 3

4
n2 + O(n)

Distance of caterpillar trees con-
structed as in Fig. 2

n − 3 n − 2 n − 2 2n − 4

Average distance of random trees
(in the uniform model)

Θ(n) Θ(n) Θ(n3/2) Θ(n3/2)

P to be a binary rooted tree such that L∗ =
⋃k

i=1 L(Ti).
There are various methods and approaches to the problem
of finding the most suitable supertrees for a given profile
(for a comparison and a review, see, e.g., Brinkmeyer
et al., 2011; Bansal et al., 2010; Swenson et al., 2011;
Nguyen et al., 2012).

Here we are interested in methods based on distances
between trees that used clusters during the calculation
of the dissimilarity value. The classical approach that
belongs to the described group is the RF-supertree method
(Bansal et al., 2010). In a similar manner, we can
introduce a new procedure based on the MC distance
(MC-supertree method). Let us define the distance of a
tree T ∗ ∈ RB

L∗ to an arbitrary profile P = (T1, . . . , Tk),

L∗ =
⋃k

i=1 L(Ti) as follows:

d∗(T ∗, P ) =
k∑

i=1

d(T ∗
|L(Ti)

, Ti), (8)

where d can be an arbitrary metric defined for rooted
phylogenetic trees. In the remaining part of this section,
as d we consider the two metrics: RF and MC.

Now we present some preliminary experimental
results based on the biological data concerning the
properties of the MC-supertree method. We used a data
set of seabirds (121 taxa, the profile of 7 source trees;
see the work of Kennedy et al. (2002)) and evaluated
the topological accuracy (8) of a simple supertree search
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heuristic based on the two above mentioned metrics. For
each of the metrics, 7 tests were performed, during which
7 different binary trees on 121 taxa were chosen as starting
supertrees. Each of these trees was constructed based on a
particular source tree by adding missing taxa and solving
multifurcations (if there was such a need) randomly, i.e.,
the same starting supertree was used for both RF and MC
based tests having the same test number. The properties
of chosen starting supertrees are presented in Table 3.
Searching for a supertree was performed according to the
local search hill climbing technique as follows. In each
iteration all trees in the rooted Subtree-Prune-and-Regraft
(rSPR) neighborhood (Bordewich and Semple, 2005) of
the currently best tree were analyzed. A tree with the
lowest d∗ value to source profile was chosen as the best
tree in the next iteration. Ties were resolved arbitrarily.
The procedure ended if no better supertees could be found.

The properties of the best found supertrees are
presented in Table 4. The parsimony scores presented in
Tables 3 and 4 were calculated using the PAUP application
(Swofford, 2002) and the spurce Python package (Suri
and Warnow, 2010). The best RF-supertree is at the RF
distance of 44.5 and the MC distance of 194. The best
MC-supertree is at the RF distance of 50.5 and at the MC
distance of 154. Both these trees have similar parsimony
scores equal to 228 in the case of the RF-supertree
and 230 for the MC-supertree. We can observe that the
average distance (MC and also RF) of MC-supertrees
to source trees is lower than the average distance of
RF-supertrees. Moreover, MC-supertrees have a better,
i.e., lower), average parsimony score than RF-supertrees.
It seems that, on the average, searching using the MC
metric can give better results than that employing the RF
distance.

Table 3. Distances and parsimony scores of starting supertrees
used in the experiment. The column with the number of
taxa contains the size of the source tree that was used
to build the particular starting supertree.

Test # taxa RF MC Pars. Score

1 17 184.5 1309 852
2 14 183.5 1267 840
3 20 170.5 1170 822
4 30 167.5 1125 788
5 90 93.5 367 337
6 16 179.5 1286 847
7 30 171.5 1095 758

Avg. 164.36 1088.43 749.14

6. Conclusions

The RF distance has been the most popular phylogenetic
metric for years. Despite its incontrovertible advantages

(simplicity, effective computation) it has some
shortcomings, e.g., similarities between the parts of
compared trees are quantified binarily (i.e, clusters are
considered equal or not without any similarity evaluation).
Moreover, its distribution is highly concentrated around
the diameter. In this work and earlier (Bogdanowicz
and Giaro, 2012) we proposed a method for defining
phylogenetic distances based on any metric on clusters
or splits that generalizes the RF distance. The simplest
metrics (MS, MC) defined using that approach were
analyzed. The described metrics have many interesting
properties, e.g., small sensitivity to modifications being
the result of a bounded number of leaf relocation or edge
contraction, the average distance that grows slower than
the diameter.

Despite worse time complexity (compared to RF),
the MC metric can be still used in practical applications,
since the computation of the MC distance between
two random trees with 1000 leaves takes only about
2 s on a desktop computer with an Intel Core2 1.66
GHz processor, even using not very time-efficient Java
implementation.

In Section 5 we presented a proof-of-concept study
of the usefulness of the MC distance for constructing
supertrees. Based on the experiments it seems that the
MC-supertree method can be a promising approach and
might be an interesting complement for the set of known
supertree methods.

Finally, observe that metrics constructed according
to Definition 2 allow us to compare arbitrary subsets of
2L or Splits(L) (even not compatible, i.e., not forming a
tree) based on any metric h on these sets analogously to
hS in (3) and hC in (4). This fact provokes suggestions on
other potential areas of matching metrics applications in
phylogenetics, different than simple tree comparison.

Biological events such as coalescences of separate
species lines or gene transfer result in the increasing
popularity of describing the evolution by more general
and flexible structures than trees—phylogenetic networks.
These are directed acyclic graphs on the set of leaves
L corresponding to present-day species and various
restrictions imposed on the network structure. Recently,
methods of comparing phylogenetic networks through
introducing a structure of a metric space in a family of
networks (on a given leaf set L) have been proposed in
the literature. Some of them are based on generalizations
of known metrics for trees (such as RF or nodal
distances (Cardona et al., 2009a; 2009b). We believe that
it is a promising idea to define matching metrics for
phylogenetic networks in all models, where the network is
unambiguously described by the family of clusters related
to its internal nodes, e.g., for tree-child time consistent
networks (Cardona et al., 2009b).

Some phylogenetic reconstruction methods (e.g.,
Bayesian approach) generate large sets of high reliability
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Table 4. Properties of the best supertrees received in particular trials. The number of rSPRs operations describes the number of moves
performed from the particular starting tree after which no better supertree could be found.

Starting supertree
RF-supertree MC-supertree

RF MC Pars. Score # rSPRs RF MC Pars. score # rSPRs

1 80.5 718 394 83 72.5 183 253 123
2 88.5 787 411 76 54.5 155 237 119
3 75.5 686 353 79 68.5 182 261 106
4 94.5 744 456 57 73.5 209 265 100
5 44.5 194 228 25 60.5 168 245 31
6 104.5 900 481 63 50.5 154 230 116
7 77.5 575 370 68 71.5 180 252 102

Avg. 80.79 657.71 384.71 64.43 64.50 175.86 249.00 99.57

trees. This type of data can be post-processed by
clustering algorithms in order to identify subsets of
similar trees, describing alternative solutions. However,
an application of popular algorithms for clustering point
sets in R

n (e.g., k-means algorithm) is not obvious,
because there is no natural method of finding a “mass
center” or an “average tree” of a set of incompatible
trees forming a cluster. Stockham et al. (2002) proposed
an adaptation of the k-means algorithm, where trees are
compared using the RF distance and as the center of
a family of trees acts an appropriately chosen subset
of splits (not necessarily compatible) of the analyzed
trees. This approach can be in a natural manner applied
to the metrics constructed according to Lemma 2. The
verification of the effectiveness of this approach requires
further experimental research.
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Appendix

A1. Proof of Theorem 2

Proof.
1. The discussion is analogous to dRF (T1, T2) ≤
dMS(T1, T2) ≤ |L| dRF (T1, T2) for T1, T2 ∈ UL

described by Bogdanowicz and Giaro (2012). Note
that the complete bipartite graphs used for computing
dRF (T1, T2) and dMC(T1, T2) differ only in the weights
of the edges, and for clusters c1, c2 � L we have
hRF (c1, c2) ≤ hC(c1, c2) ≤ |L|hRF (c1, c2) ≤ 2(|L| −
1)hRF (c1, c2); similarly 1

2 = hRF (c, O) < hC(c, O) =
|c| ≤ 2(|L| − 1)hRF (c, O) for cluster c � L.

2. For the lower bound we use a similar result
concerning binary unrooted trees and the MS distance (see
Bogdanowicz and Giaro, 2012, Theorem 4.4). Let T ∈
RB

L′ be an arbitrary tree, where L ∩ L′ = ∅, |L′| = |L|.
Based on T1, T2 and T we construct two unrooted trees
T ′

1, T
′
2 ∈ UB

L∪L′ by connecting the roots of T1, T2 with
r(T ). We know that dRF (T ′

1, T
′
2) + 1 ≤ dMS(T ′

1, T
′
2).

Finally, it is easy to observe that dRF (T ′
1, T

′
2) =

dRF (T1, T2) and dMS(T ′
1, T

′
2) = dMC(T1, T2). For the

upper bound note that clusters c1, c2 of the same tree fulfill
the compatibility condition (c.c.), i.e., c1 ⊆ c2 or c2 ⊆ c1

or c1 ∩ c2 = ∅. Let A1, A2, . . . , AdRF (T1,T2) form the
set σ∗(T1) \ σ∗(T2) and |Ai| ≤ |Aj | for i < j. We

similarly sort the elements B1, B2, . . . , BdRF (T1,T2) of the

set σ∗(T2) \ σ∗(T1). We show that
∑dRF (T1,T2)

i=1 |Ai ⊕
Bi| ≤ (|L| − 1)dRF (T1, T2). If Ai 
= L \ Bi for all i,
then |Ai⊕Bi| < |L| and the result follows. Otherwise, let
i be the smallest index such that Ai = L \Bi and without
loss of generality we can assume that |Bi| ≥ |L|/2. We
consider two cases:

Case 1. i < dRF (T1, T2), then for j > i by (c.c.) Bi � Bj

and either Ai � Aj or Aj � Bi � Bj , so |Aj ⊕ Bj | ≤
|L| − 2. Since |Aj ⊕ Bj | ≤ |L| − 1 for j < i, the result
holds.

Case 2. i = dRF (T1, T2). Suppose that there exists
B ∈ σ∗(T2) such that Bi � B. Then B ∈ σ∗(T1),
but B is incompatible with Ai. Therefore, such B cannot
exist. Hence, L \ Bi = Ai ∈ σ∗(T2) and we have a
contradiction. �

A2. Proof of Theorem 5

Proof. Let L = A ∪ {x}. Consider the changes in the
set of non-trivial clusters after adding a leaf x to T1|A. A
cluster s ∈ σ∗(T1|A) transforms into s′ ∈ σ∗(T1), where
s′ = s or s′ = s∪{x} if s /∈ σ∗(T1). We call s and s′ cor-
responding clusters. Additionally, we consider the special
element O = ∅ as corresponding to itself. If x is attached
to the middle of an edge of T1|A, then one new cluster
snew ∈ σ∗(T1), which is not a corresponding cluster,
appears. The case of transformation of T2|A into T2 is
analogical. Thus, if s, t ⊆ A and s′, t′ ⊆ L are clusters
corresponding to s, t in T1 and T2, respectively, then
hC(s, t) ≤ hC(s′, t′) ≤ hC(s, t) + 1. Consider a pairing
{(si, ti) : i = 1, . . . , k}, where si ∈ σ∗(T1|A)∪{O}, ti ∈
σ∗(T2|A) ∪ {O}, k = maxi=1,2 |σ∗(Ti|A)| ≤ n − 3
and

∑k
i=1 hC(si, ti) = dMC(T1|A, T2|A). We create a

pairing that consists of pairs of corresponding elements
s′i ∈ σ∗(T1) ∪ {O} and t′i ∈ σ∗(T2) ∪ {O} and (if
necessary) a pair (snew , tnew) if both sets σ∗(T1) and
σ∗(T2) contain new clusters or (snew , O) alternatively
(O, tnew) if exactly one set of σ∗(T1), σ∗(T2) contains
a new cluster. Thus the first inequality follows.

Now consider a pairing M of elements of σ∗(T1) ∪
{O} with elements of σ∗(T2) ∪ {O} analogous to
a minimum-weight perfect matching defining the MC
distance between T1 and T2. We transform M into
a pairing M ′ between the sets σ∗(T1|A) ∪ {O} and
σ∗(T2|A) ∪ {O} by changing all elements in these pairs
to their corresponding elements where it is possible (i.e.,
in pairs without new clusters) and remove the other pairs
(i.e., containing new clusters). The following four cases
remain to be considered:
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Case 1. There are new clusters snew ∈ σ∗(T1), tnew ∈
σ∗(T2) and (snew , tnew) ∈ M . Then

dMC(T1, T2) =
∑

(s,t)∈M

hC(s, t)

≥
∑

(s,t)∈M ′
hC(s, t)

≥ dMC(T1|A, T2|A).

Case 2. There is no new cluster in σ∗(T1) nor in σ∗(T2).
Then dMC(T1, T2) ≥ dMC(T1|A, T2|A) as in the above
case.

Case 3. There are unpaired new clusters snew ∈ σ∗(T1),
tnew ∈ σ∗(T2) in M , i.e., (snew , x2), (x1, tnew) ∈ M .
Then we extend M ′ by a pair (x′

1, x
′
2), where x′

i is an
element that corresponds to xi; hence

dMC(T1, T2) =
∑

(s,t)∈M

hC(s, t)

≥
∑

(s,t)∈M ′
hC(s, t) − hC(x′

1, x
′
2)

≥ dMC(T1|A, T2|A) − n + 1.

Case 4. There is only one new cluster; assume that it is
snew ∈ σ∗(T1) and (snew, x) ∈ M . Then we extend M ′

by a pair (O, x′), where x′ is an element that corresponds
to x; hence

dMC(T1, T2) =
∑

(s,t)∈M

hC(s, t)

≥
∑

(s,t)∈M ′
hC(s, t) − hC(x′, O)

≥ dMC(T1|A, T2|A) − n + 1.

�

A3. Proof of Theorem 7

Proof. Consider T1, T2 ∈ UB
L and their rootings in

the middle of the edges e1, e2 with corresponding splits
A|B and C|D, respectively. Notice that for each e ∈
E(T1) \ {e1} there is exactly one corresponding cluster
in σ(T ′

1) \ {A, B, L} such that the equivalent of a cluster
X is a split X |L \ X . An analogous relation may be
introduced between clusters Y ∈ σ(T ′

2) \ {C, D, L} and
the splits Y |L\Y ∈ β(T2)\{C|D}. Moreover, |X⊕Y | ≥
hS(X |L \ X, Y |L \ Y ).

Consider a pairing M ′ between clusters of σ(T ′
1) \

{L} and σ(T ′
2) \ {L} that realizes the minimum-weight

perfect matching
∑

(c,c′)∈M ′ |c ⊕ c′| = dMC(T ′
1, T

′
2)

and fulfills the conditions from Theorem 1. Our aim
is to construct a perfect matching M of the splits

u11u01s01s11
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t10t00r00r10
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A B
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a b
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Fig. A1. Venn diagram of possible intersections of the sets
A, B, C, D, a, b, c, d in the proof of Theorem 7.

of β(T1) with the splits of β(T2) having the weight∑
(s,s′)∈M hS(s, s′) ≤ dMC(T ′

1, T
′
2). First, for each

pair (X1, X2) ∈ M ′ such that X1 /∈ {A, B} and
X2 /∈ {C, D} we add to M a pair consisting of the
corresponding splits (X1|L \X1, X2|L \X2). Depending
on the rest of M ′, i.e., pairs with clusters A, B, C, D in
M ′, only the following three situations are possible:

Case 1. Each of the clusters A, B is matched to some
cluster of {C, D}. We add a pair (A|B, C|D) to M , so
the proof is complete.

Case 2. Exactly one cluster of {A, B} is matched to
some of {C, D}, e.g., (A, C) ∈ M ′. Therefore we have
(B, Y ), (X, D) ∈ M ′, where X ∈ σ(T1), Y ∈ σ(T2).
In this situation we only need to add to M two pairs:
(A|B, Y |L \ Y ) and (X |L \ X, C|D).

Case 3. None of A, B is matched to any of {C, D}.
Since M ′ conserves the ancestor–descendant relations,
only the following two pairings are possible: m′ =
{(A, c), (a, D), (B, d), (b, C)} ⊆ M ′ or symmetric
variant {(A, d), (a, C), (B, c), (b, D)} ⊆ M ′, where a �
A, b � B, c � C and d � D. We consider the first
case, the second one is analogous. We now construct two
pairings of splits:

m1 = {(a|L \ a, c|L \ c), (b|L \ b, C|D),
(A|B, d|L \ d)},

m2 = {(a|L \ a, C|D), (b|L \ b, d|L \ d),
(A|B, c|L \ c)},

and two pairings of clusters:

m′
1 = {(a, c), (b, C), (B, d)},

m′
2 = {(a, D), (b, d), (A, c)}.

Note that, for i = 1, 2,
∑

(s,s′)∈mi

hS(s, s′) ≤
∑

(c,c′)∈m′
i

hC(c, c′).

Based on calculations of the total costs of pairings
m′, m′

1, m′
2 presented in Table A1 (see also the Venn
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Table A1. Computation of the total cost of the pairings m′, m′
1,

m′
2. The numbers in rows represent a contribution

of the cardinality of a particular set into the total
cost, e.g., 2 in row r00, column m′ means that
the summand 2|r00| appears in the cost of m′.
The columns Δm′

1 and Δm′
2 contain the difference

between the values m′
1 or m′

2 and m′, respectively.

Set Definition m′ m′
1 m′

2 Δm′
1 Δm′

2

r00 a ∩ c 2 1 1 -1 -1
r01 (a ∩ C) \ (a ∩ c) 3 2 2 -1 -1
r10 (A ∩ c) \ (a ∩ c) 1 2 0 1 -1
r11 (A ∩ C) \ (a ∪ c) 2 1 1 -1 -1
s00 a ∩ d 2 2 2 0 0
s01 (a ∩ D) \ (a ∩ d) 1 1 1 0 0
s10 (A ∩ d) \ (a ∩ d) 3 1 3 -2 0
s11 (A ∩ D) \ (a ∪ d) 2 0 2 -2 0
t00 b ∩ c 2 2 2 0 0
t01 (b ∩ C) \ (b ∩ c) 1 1 1 0 0
t10 (B ∩ c) \ (b ∩ c) 3 3 1 0 -2
t11 (B ∩ C) \ (b ∪ c) 2 2 0 0 -2
u00 b ∩ d 2 1 1 -1 -1
u01 (b ∩ D) \ (b ∩ d) 3 2 2 -1 -1
u10 (B ∩ d) \ (b ∩ d) 1 0 2 -1 1
u11 (B ∩ D) \ (b ∪ d) 2 1 1 -1 -1

diagram in Fig. A1), we obtain that at least one of the
two inequalities,

∑
(c,c′)∈m′

i
|c⊕c′| ≤ ∑

(c,c′)∈m′ |c⊕c′|,
i = 1, 2, is always valid, because the only positive value
(row r10) in column Δm′

1 is negative in column Δm′
2 and

vice versa (row u10). Therefore, we extend M by pairs of
splits of the least expensive of the two pairings m1 or m2.

�
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