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A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The
parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is
estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally,
the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved
and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of
their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that
the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation
error. The method is simple in implementation and robust to the correlated noise.
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1. Problem statement

1.1. System. The paper considers the problem of
identification of a scalar, discrete-time, asymptotically
stable nonlinear dynamic system shown in Fig. 1, and
described by the following equation (cf. Bai, 1998):

yk =
p∑

j=1

λjη(yk−j) +
n∑

i=0

γiμ(uk−i) + zk, (1)

where

μ(u) =
m∑

t=1

ctft(u),

η(y) =
q∑

l=1

dlgl(y).

(2)

The structure is well known in the literature (see, e.g., Giri
and Bai, 2010), and can be treated as a special case of the
additive NARMAX model (Chen and Billings, 1989).

The signals yk, uk and zk are the output, the input
and the noise, respectively. The system in Fig. 1 is
more general than the Hammerstein system often met in
the literature. The Hammerstein system is obtained when
the function η(·) is linear (see Appendix A). Also, it is

ku ky
kz

kw� ��

� �� kw'

kv

kv'

� i� i�0
n

� j� j�1
p

Fig. 1. Additive NARMAX system.

not equivalent to the Wiener–Hammerstein (sandwich)
system widely considered in the literature, where two
linear dynamic blocks surround one static nonlinearity.
In spite of many possibilities of applications in various
domains (Haber and Keviczky, 1999; Bai, 1998; Zhang
et al., 1996; Suykens et al., 1998; Sastry, 1999; Lu and
Hill, 2007), relatively little attention has been paid to this
structure in the literature.

1.2. Assumptions. The following assumptions are
made.

Assumption 1. The static nonlinear characteristics are of
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a given parametric form,

μ(u) =
m∑

t=1

ctft(u),

η (y) =
q∑

l=1

dlgl(y),

(3)

where f1(·),. . . ,fm(·) and g1(·),. . . ,gq(·) are a priori
known linearly independent basis functions such that

|ft(u)| ≤ pmax, (4)

|gl(y)| ≤ pmax, (5)

for some constant pmax.

Assumption 2. The linear dynamic blocks have finite
impulse responses, i.e.,

vk =
n∑

i=0

γiwk−i, (6)

v′k =
p∑

j=1

λjw
′
k−j , (7)

with known orders n and p.

Assumption 3. The input process {uk} is a sequence
of i.i.d. bounded random variables, i.e., there exists
(unknown) umax, such that |uk| < umax <∞.

Assumption 4. The output noise {zk} is a correlated
linear process. It can be written as

zk =
∞∑

i=0

ωiεk−i, (8)

where {εk} is some unknown zero-mean (Eεk = 0) and
bounded (|εk| < εmax < ∞) i.i.d. process, independent
of the input {uk}, and {ωi}∞i=0 (

∑∞
i=0 |ωi| < ∞) is an

unknown stable linear filter.

Assumption 5. The overall system is asymptotically
stable.

Assumption 6. Only the input {uk} and the output of the
whole system {yk} are accessible for measurements.

Let

Λ = (λ1, . . . , λp)
T ,

Γ = (γ0, . . . , γn)T ,

c = (c1, . . . , cm)T ,

d = (d1, . . . , dq)T ,

(9)

denote true (unknown) parameters of the system.
Obviously, the input-output description of the system,
given by (1) and (2) is not unique. For each pair of

constants α and β, the systems with parameters Λ, Γ,
c, d and βΛ, αΓ, c/α, d/β cannot be distinguished,
i.e., they are equivalent (see (1)-(2)). For the uniqueness
of the solution, the following technical assumptions are
introduced (see Bai, 1998):

(a) the matrices ΘΛd = ΛdT and ΘΓc = ΓcT are not both
zero;

(b) ||Λ||2 = 1 and ||Γ||2 = 1, where || · ||2 is the Euclidean
vector norm;

(c) first non-zero elements of Λ and Γ are positive.
Let

θ = (γ0c1, . . . , γ0cm, . . . , γnc1, . . . , γncm, (10)

λ1d1, . . . , λ1dq, . . . , λpd1, . . . , λpdq)T

= (θ1, . . . , θ(n+1)m, θ(n+1)m+1, . . . , θ(n+1)m+pq)T

be the vector of aggregated parameters (1) obtained
by inserting (2) to (1), and let φk be the respective
generalized input vector

φk (11)

= (f1(uk), . . . , f1(uk−n), . . . , f1(uk−1), . . . , (12)

fm(uk−n), g1(yk−1), . . . , gq(yk−1), . . . , g1(yk−p),

. . . , gq(yk−p))T .

Thanks to above notation, the description (1)–(2) can be
simplified to the form yk = φTk θ + zk, which means that
the system remains linear with respect to the parameters.
For k = 1, . . . , N , we obtain

YN = ΦNθ + ZN , (13)

where YN = (y1, . . . , yN )T , ΦN = (φ1, . . . , φN )T ,
and ZN = (z1, . . . , zN)T .

The purpose of identification is to recover the
parameters in Λ, Γ, c and d (given by (9)), using the
input-output measurements (uk, yk) (k = 1, ..., N ) of the
whole system.

1.3. Comments on the assumptions. The
representation (1) belongs to the class of the so-called
“equation-error” models, while in practical situations a
more complicated case of “output-error” models is often
met, i.e.,

⎧
⎨

⎩

yk =
∑p

j=1 λjη(yk−j) +
∑n
i=0 γiμ(uk−i),

yk = yk + δk,

with zero-mean disturbance δk. Since the resulting noise
zk in (1) results from nonlinear filtering of δk, it can be
of a relatively high order and may have a non-zero mean.
The first problem is omitted by making Assumption 7 in
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Section 5. The second one can be simply solved when the
constant function is appended to the basis f1(·),. . . ,fm(·).

To simplify the presentation, it was assumed that the
input process, the nonlinear characteristics and the noise
are bounded. In fact, since further analysis assumes only
finite fourth-order moments of all signals, the approach
can be simply generalized for Lipschitz nonlinearities
and most of popular finite-variance distributions of
excitations.

As regards the i.i.d. restriction imposed on the input
process, it can be weakened, for invertible processes, by
e.g., data pre-filtering and the use of specially designed
instrumental variables in parameter identification (see
Mzyk, 2013).

1.4. Organization of the paper. In Section 2, the
least squares based identification algorithm (see Bai,
1998) is presented for white disturbances. Then, the
reason of its asymptotic bias is shown for correlated
noise. Next, in Section 3, an asymptotically unbiased,
instrumental variables based estimate is proposed. The
idea originates from linear system theory (see, e.g., Wong
and Polak, 1967; Söderström and Stoica, 1983; Sagara and
Zhao, 1990; Zhao et al., 1991), where the instrumental
variables technique is used for identification of simple
one-element linear dynamic plants. The proposed method
is then compared with the least squares. In particular,
the consistency of the proposed estimate is shown, in
Section 4, even for correlated disturbances. The form
of the optimal instrumental variables is established in
Section 5, and the method of their approximate generation
is described in Section 6. Also, the asymptotic rate of
convergence of the estimate is analyzed.

2. Least squares and SVD approach

For comparison purposes with the instrumental variables
method proposed further, let us start from the presentation
of a two-stage algorithm based on the least-squares
estimation of the aggregated parameter vector and
decomposition of the obtained result with the use of
the SVD algorithm (see Bai, 1998; Kincaid and Cheney,
2002). The algorithm has the following steps.

The fundamental meaning for the algorithm has the
form of SVD representations of the theoretical matrices
ΘΓc = ΓcT and ΘΛd = ΛdT . Each matrix being the
product of two vectors has the rank equal to 1, and only
one singular value is non-zero, i.e.,

ΘΓc =
min(n,m)∑

i=1

σiμiν
T
i

and
σ1 �= 0, σ2 = · · · = σmin(n,m) = 0.

Algorithm 1. LS-SVD method.
Step 1. Compute the LS estimate

θ̂
(LS)
N = (ΦTNΦN )−1ΦTNYN (14)

of the aggregated parameter vector θ (see (10) and (13)),
and next construct (by the plug-in method) evaluations
Θ̂(LS)

Λd and Θ̂(LS)
Γc of the matrices ΘΛd = ΛdT and ΘΓc =

ΓcT , respectively (see the condition (a) above).

Step 2. Perform the SVD (Singular Value Decomposition,
see Appendix B) of the matrices Θ̂(LS)

Λd and Θ̂(LS)
Γc :

Θ̂(LS)
Λd =

min(p,q)∑

i=1

δiξ̂iζ̂
T
i ,

Θ̂(LS)
Γc =

min(n,m)∑

i=1

σiμ̂iν̂
T
i ,

(15)

and next compute the estimates of parameters of particular
blocks (see (9)),

Λ̂(LS)
N = sgn(ξ̂1[κξ1 ])ξ̂1

Γ̂(LS)
N = sgn(μ̂1[κμ1 ])μ̂1

ĉ
(LS)
N = sgn(μ̂1[κμ1 ])σ1ν̂1,

d̂
(LS)
N = sgn(ξ̂1[κξ1 ])δ1ζ̂1,

(16)

where x[k] denotes the k-th element of the vector x and
κx = min{k : x[k] �= 0}.

Thus

ΘΓc = σ1μ1ν
T
1 , (17)

where ‖μ1‖2 = ‖ν1‖2 = 1. The representation of ΘΓc

given by (17) is obviously unique. To obtain Γ, which
fulfills the condition (b), one can take Γ = μ1 or Γ =
−μ1. The condition (c) guarantees the uniqueness of Γ.
The remaining part of decomposition allows computing c.
The vectors Λ and d can be obtained from ΘΛd in a similar
way.

The singular value decomposition allows splitting
the aggregated matrices of parameters Θ̂(LS)

Γc and Θ̂(LS)
Λd

into products of two vectors (see (15)) and estimating
Γ̂(LS)
N ĉ

(LS)T
N and Λ̂(LS)

N d̂
(LS)T
N according to (16). It was

shown by Bai (1998) that

(μ̂1, σ1ν̂1) = arg min
c∈Rm,Γ∈Rn

‖Θ̂(LS)
Γc − ΓcT ‖2, (18)

and for the noise-free case (zk ≡ 0) the estimates (16)
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equal the true system parameters, i.e.,

Λ̂(LS)
N = Λ,

Γ̂(LS)
N = Γ,

ĉ
(LS)
N = c,

d̂
(LS)
N = d.

(19)

Moreover, if the noise {zk} is an i.i.d. process,
independent of the input {uk}, then

Λ̂(LS)
N → Λ,

Γ̂(LS)
N → Γ,

ĉ
(LS)
N → c,

d̂
(LS)
N → d,

(20)

with probability 1, as N → ∞.

Remark 1. For a less sophisticated linear ARMAX
model yk =

∑p
j=1 dλjyk−j +

∑n
i=0 cγiuk−i+ zk, where

c and d are scalar constants, the vector (10) reduces
to θ =

(
ΘT

Γc,Θ
T
Λd

)T
, with single column matrices

ΘΓc and ΘΛd. Consequently, the estimate (14) plays
the role of the standard least-squares method and the
SVD decomposition in (15) guarantees normalization, i.e.,
||Λ||2 = 1 and ||Γ||2 = 1.

By taking (13) and (14) into account, the estimation
error of the vector θ by the least squares can be expressed
as follows:

Δ(LS)
N = θ̂

(LS)
N − θ (21)

=
(
ΦTNΦN

)−1
ΦTNZN

=

(
1
N

N∑

k=1

φkφ
T
k

)−1(
1
N

N∑

k=1

φkzk

)
.

If {zk} is a zero-mean white noise with finite variance,
independent of {uk}, then all elements of the vector ZN
are independent of the elements of the matrix ΦN and
from the ergodicity of the noise and the process {φk}
get that Δ(LS)

N → 0 with probability 1, as N → ∞.
Nevertheless, if {zk} is correlated, i.e., Ezkzk+i �= 0
for some i �= 0, then the LS estimate (14) of θ is not
consistent because of the dependence between zk and the
values gl(yk−i) (l = 1, . . . , q and i = 1, . . . , p) included
in φk. Consequently, the estimates given by (16) are not
consistent, either.

3. Instrumental variables approach

As was shown by Hasiewicz and Mzyk (2009), for any
Hammerstein system, the bias can be reduced by the
instrumental variables method, known from linear system
theory. This result was generalized by Mzyk (2013) for

a correlated input. In this paper, a similar approach is
proposed for more general systems, including nonlinear
feedback.

Let us assume that we have given, or we are able
to generate, an additional matrix ΨN of instrumental
variables, which fulfills (even for correlated zk) the
following conditions (see Wong and Polak, 1967; Finigan
and Rowe, 1974; Ward, 1977; Hansen and Singleton,
1982; Söderström and Stoica, 1983; 2002; Kowalczuk and
Kozłowski, 2000; Hasiewicz and Mzyk, 2009):

(C1) dimΨN = dim ΦN , and the elements
of ΨN = (ψ1, ψ2, . . . , ψN )T , where ψk =
(ψk,1, ψk,2, . . . , ψk,m(n+1)+pq)T , are jointly bounded,
i.e., there exists 0 < ψmax < ∞ such that |ψk,j | ≤ ψmax

(k = 1, . . . , N and j = 1, . . . ,m(n + 1) + pq) and ψk,j
are ergodic, not necessarily zero-mean, processes;

(C2) there exists Plim( 1
NΨT

NΦN ) = Eψkφ
T
k and the limit

is not singular, i.e., det{EψkφTk } �= 0;

(C3) Plim( 1
NΨT

NZN ) = Eψkzk and Eψkzk =
cov(ψk, zk) = 0 (see Assumption 4).

Lemma 1. A necessary condition for the existence of the
instrumental variables matrix ΨN , which fulfills (C2) is
the asymptotic non-singularity of 1

NΦTNΦN .

Proof. For the proof, see Appendix A. �

Premultiplying (13) by ΨT
N , we get

ΨT
NYN = ΨT

NΦNθ + ΨT
NZN .

Taking into account the conditions (C1)–(C3), a natural
idea is to replace the LS estimate, given by (14) and
computed in Step 1 (see Section 2), with the instrumental
variables estimate

θ̂
(IV )
N = (ΨT

NΦN )−1ΨT
NYN . (22)

Step 2 is analogous, i.e., the SVD decomposition is
made for the estimates Θ̂(IV )

Λd and Θ̂(IV )
Γc of matrices ΘΛd

and ΘΓc, obtained on the basis of θ̂(IV )
N .

4. Limit properties

For the algorithm (22) the estimation error of the
aggregated parameter vector θ has the form

Δ(IV )
N = θ̂

(IV )
N − θ (23)

=
(
ΨT
NΦN

)−1
ΨT
NZN

=

(
1
N

N∑

k=1

ψkφ
T
k

)−1(
1
N

N∑

k=1

ψkzk

)
.
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Theorem 1. Under (C1)–(C3), the estimate (22) con-
verges in probability to the true parameters of the system,
independently of the autocorrelation of the noise, i.e.,

Plim
N→∞

Δ(IV )
N = 0. (24)

Proof. For the proof, see Appendix A. �

Theorem 2. The estimation error Δ(IV )
N converges to

zero with the asymptotic rateO(1/
√
N) in probability, for

each strategy of instrumental variable generation, which
guarantees the fulfillment of (C1)–(C3).

Proof. For the proof, see Appendix A. �

5. Optimal instrumental variables

Theorem 2 gives a universal guaranteed asymptotic rate
of convergence of the estimate (22). Nevertheless, for a
moderate number of measurements, the error depends on
particular instruments used in a given application. In this
section, a optimal form of instruments is established for
the special case of NARMAX systems, which fulfills the
following assumption concerning η() and {λj}pj=1.

Assumption 7. The nonlinear characteristic η() is a
Lipschitz function, i.e.,

|η(y(1)) − η(y(2))| ≤ r|y(1) − y(2)|, (25)

and
η(0) = 0. (26)

Moreover, the constant r > 0 is such that

α = r

p∑

j=1

|λj | < 1. (27)

Let us consider the following conditional processes
(cf. (2)):

Gl,k � E{gl(yk) | {uk−i}∞i=0}, (28)

where l = 1, 2, . . . , q, and write

ξl � gl(y) −Gl.

We have
gl(yk) = Gl,k + ξl,k,

and the signals

ξl,k = gl(yk) −Gl,k, (29)

for l = 1, 2, . . . , q and k = 1, 2, . . . , N , will be
interpreted as the “noise”. Equation (1) can now be
presented as follows:

yk =
p∑

j=1

λjη(yk−j) +
n∑

i=0

γiμ(uk−i) + zk (30)

= Ak

(
{yk−j}pj=1

)
+Bk ({uk−i}ni=1)

+ Ck (uk) + zk,

where

Ak

(
{yk−j}pj=1

)
=

p∑

j=1

λjη(yk−j),

Bk ({uk−i}ni=1) =
n∑

i=1

γiμ(uk−i),

Ck (uk) = γ0μ(uk).

The random variables Ak, Bk and zk are independent of
the input uk (see Assumptions 1–6). For a fixed uk = u,
we get Ck (u) = γ0μ(u). The expectation in (28) has the
following interpretation:

Gl,k = E
{
gl(Ck (uk) +Ak

(
{yk−j}pj=1

)
(31)

+Bk ({uk−i}ni=1) + zk) | {ui}ki=−∞
}

,

and cannot be computed explicitly. However, as will
be shown further, the relation between Gl,k and the
characteristics μ(·), η(·) is not needed. The most
significant are the properties below.

(P1) The “disturbances” {ξl,k}Nk=1 given by (29) are
independent of the input process {uk} and are all ergodic.

The mutual independence of {ξl,k}Nk=1 and
{uk}∞k=−∞ is a direct consequence of the definition
(28). On the basis of Assumptions 3–5, the output
{yk}Nk=1 of the system is bounded and ergodic.
Owing to Assumption 1, concerning the nonlinear
characteristics, the processes {gl (yk)}Nk=1 and {Gl,k}Nk=1
(l = 1, 2, . . . , q) are also bounded and ergodic.
Consequently, the “noises” {ξl,k}Nk=1 (l = 1, 2, . . . , q), as
the sums of ergodic processes, are ergodic too (see (29)).

(P2) The processes {ξl,k} are zero-mean.
By the definition (29) of ξl,k , we have

Eξl,k = Egl(yk) − EGl,k

= E{u}k
j=−∞

E
{
gl(yk) | {u}ki=−∞

}

− E{u}k
j=−∞

E
{
gl(yk) | {u}ki=−∞

}
= 0.

(P3) If the instrumental variables ψk,j are generated by
the nonlinear filtering

ψk,j = Hj({ui}ki=−∞), (32)

where the transformations Hj(·) (j = 1, 2, . . . ,m(n +
1) + pq) guarantee the ergodicity of {ψk,j}, then all
products ψk1,jξl,k2 (j = 1, 2, . . . ,m(n + 1) + pq, l =
1, 2, . . . , q) are zero-mean, i.e., Eψk1,jξl,k2 = 0.

Owing to (P1) and (P2), we have

E [ψk1,jξl,k2 ] = E
[
Hj({ui}k1i=−∞)ξl,k2

]

= EHj({ui}k1i=−∞)Eξl,k2 = 0.
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(P4) If the measurement noise zk and the instrumental
variables ψk,j are bounded (i.e., Assumption 4 and the
condition (C1) are fulfilled), i.e., |zk| < zmax < ∞ and
|ψk,j | = |Hj (uk)| < ψmax <∞ (see 3), then

1
N

N∑

k=1

ψkzk → Eψkzk, (33)

with probability 1, as N → ∞ (cf. the condition (C3)).
The product sk,j = ψk,jzk of stationary and bounded

signals ψk,j and zk is also stationary, with finite variance.
To prove (33) making use of Lemma B.1 by Söderström
and Stoica (1989), it must be shown that rsk,j

(τ) → 0, as
|τ | → ∞. Let us notice that the autocovariance function
of zk (Ezk = 0),

rz (τ) = E [(zk − Ez) (zk+τ − Ez)] = Ezkzk+τ , (34)

as the output of linear filter excited by a white noise has
the property that

rz (τ) → 0, (35)

as |τ | → ∞. Hence, the processes ψk,j =
Hj

({ui}ki=−∞
)

are ergodic (see (P3)), and independent
of zk (see Assumption 4). Thus

rsk,j
(τ) = E [(sk,j − Esk,j) (sk+τ,j − Esk,j)] (36)

= E [ψk,jψk+τ,jzkzk+τ ] = crz(τ),

where c = (Eψk,j)
2 is a finite constant, 0 ≤ c < ∞.

Consequently,
rsk,j

(τ) → 0, (37)

as |τ | → ∞, and

1
N

N∑

k=1

sk,j → Esk,j , (38)

with probability 1, as N → ∞.

(P5a) For the NARMAX system with the characteristic
η() as in Assumption 7 and the order of autoregression
p = 1 (see Eqn. (1)), it holds that

1
N

N∑

k=1

ψkφ
T
k → Eψkφ

T
k , (39)

with probability 1 as N → ∞, where ψk is given by (32);
compare the condition (C2).

For p = 1 (for clarity of presentation, let also λ1 =
1) the system is described by

yk = η (yk−1) +
n∑

i=0

γiμ (uk−i) + zk, (40)

and the nonlinearity η(), according to Assumption 7,
fulfills the condition

|η (y)| ≤ a |y| , (41)

where 0 < a < 1. Introducing the symbol

δk =
n∑

i=0

γiμ (uk−i) + zk, (42)

we get
yk = η (yk−1) + δk. (43)

Since the input {uk} is an i.i.d. sequence, independent of
{zk}, and the noise {zk} has the property that rz (τ) → 0,
as |τ | → ∞ (see (35)). There holds rδ (τ) → 0 as |τ | →
∞. Equation (43) can be written in the following form:

yk = δk + η {δk−1 + η [δk−2 + η (δk−3 + . . . )]} . (44)

Let us introduce the coefficients ck defined, for k =
1, 2, . . . , N , as

ck =
η (yk)
yk

, (45)

with 0/0 treated as 0. Owing to (41), we have

|ck| ≤ a < 1, (46)

and using ck Eqn. (44) can be rewritten as follows:

yk = δk + ck−1

(
δk−1 + ck−2

(
δk−2

+ ck−3 (δk−3 + . . . )
))

,

i.e.,

yk =
∞∑

i=0

ck,iδk−i,

where ck,0 � 1, and ck,i = ck−1ck−2 . . . , ck−i. From
(46) we conclude that

|ck,i| < ai. (47)

Since for 0 < a < 1 the sum
∑∞

i=0 a
i is finite, from

(47) we get
∑∞

i=0 |ck,i| < ∞, and from (42) we simply
conclude that for |τ | → ∞ we have ry (τ) → 0
and rgl(yk) (τ) → 0, where the processes gl(yk) (l =
1, . . . , q) are elements of the vector φk. Thus, for the
system with the nonlinearity η(·) as in (41), the processes
{yk} and {gl(yk)} (l = 1, . . . , q) fulfill the assumption
of the ergodic law of large numbers, and the property (39)
holds.

(P5b) Under Assumption 7, the convergence (39) takes
place also for the system (1) with p ≥ 1.

For any number sequence {xk}, let us define the
norm

‖{xk}‖ = lim
K→∞

sup
k>K

|xk| , (48)

and let us present Eqn. (1) in the form

yk =
p∑

j=1

λjη(yk−j) + δk, (49)
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where δk is given by (42). The proof of the property
(P5b) (for p > 1) is based of the following theorem (see
Kudrewicz, 1976, p. 53).

Theorem 3. Let {y(1)
k } and {y(2)

k } be two different output

sequences of the system (1) (see also (49)), and {δ(1)k },

{δ(2)k } be respective aggregated inputs (see (42)). If (25),
(26) and (27) are fulfilled, then

‖{δ(1)k − δ
(2)
k }‖

1 + α
≤ ‖{y(1)

k − y
(2)
k }‖ ≤ ‖{δ(1)k − δ

(2)
k }‖

1 − α
,

(50)
where the norm ‖·‖ is defined in (48).

From (50) and under the conditions (25)–(27), the
steady state of the system (1) depends only on the steady
state of the input {δk}. The special case of (50) is δ(2)k ≡
0, in which limK→∞ supk>K

∣∣∣y(2)
k

∣∣∣ = 0, and

1
1 + α

‖{δ(1)k }‖ ≤ ‖{y(1)
k }‖ ≤ 1

1 − α
‖{δ(1)k }‖.

The impulse response of the system tends to zero, as k →
∞, and for an i.i.d. input the autocorrelation function of
the output {yk} is such that

ry(τ) → 0 as |τ | → ∞.

Moreover, on the basis of (1)–(4), since the process {yk}
is bounded, it has finite moments of any orders and the
ergodic theorems hold (see (Söderström and Stoica, 1989)
Definition B.2, Lemma B.1, B.2). In consequence, the
convergence (39) holds.

The properties (P5a) and (P5b) (see (39), (12) and
(32)) can be rewritten for particular elements of ψk and
φk in the following way:

1
N

N∑

k=1

ψk1,jgl(yk2) → Eψk1,jgl(yk2),

with probability 1 as N → ∞.
Under the property thatE [ψk1,jξl,k2 ] = 0 (see (P3)),

for instrumental variables generated according to (32),
there obviously holds that

E [ψk1,jgl(yk2)] = E [ψk1,jGl,k2 ] .

Writing (cf. (12))

Φ#
N = (φ#

1 , φ
#
2 , . . . , φ

#
N )T , (51)

φ#
k � (f1(uk), . . . , fm(uk), . . .

f1(uk−n), . . . , fm(uk−n),
G1,k−1, . . . , Gq,k−1, . . . ,

G1,k−p, . . . , Gq,k−p)T ,

where Gl,k � E{gl(yk) | {ui}ki=−∞} (see (28)), and
making use of the ergodicity of the processes {ψk,j}
(j = 1, . . . ,m(n + 1) + pq), {ft(uk)} (t = 1, . . . ,m)
and {Gl,k} (l = 1, . . . , q) (see (32) and Assumption 3),
we get

1
N

ΨT
NΦ#

N =
1
N

N∑

k=1

ψkφ
#T
k → Eψkφ

#T
k with p. 1,

and, using (39), we get

1
N

ΨT
NΦN =

1
N

N∑

k=1

ψkφ
T
k → Eψkφ

T
k with p. 1,

for the instruments as in (32).
Directly from the definitions (28) and (51), we

conclude that E [ψk1,jgl(yk2)] = E [ψk1,jGl,k2 ] and

Eψkφ
#T
k = Eψkφ

T
k .

Thus, for any choice of instrumental variables matrix ΨN ,
which fulfills the property (P3) (see (32)), the following
equivalence takes place asymptotically with probability 1,
as N → ∞:

1
N

ΨT
NΦ#

N =
1
N

ΨT
NΦN . (52)

The estimation error (i.e., the difference between the
estimate and the true value of parameters) has the form

Δ(IV )
N = θ̂

(IV )
N − θ =

(
1
N

ΨT
NΦN

)−1( 1
N

ΨT
NZN

)
.

Introducing

ΓN �
(

1
N

ΨT
NΦN

)−1 1√
N

ΨT
N ,

Z∗
N �

1√
N
ZN

zmax
,

where zmax is an upper bound of the absolute value of the
noise (see Assumption 4), we obtain that

Δ(IV )
N = zmaxΓNZ∗

N , (53)

with the Euclidean norm of Z∗
N ,

‖Z∗
N‖ =

√√√√
N∑

k=1

(
1√
N
zk

zmax

)2

=

√√√√ 1
N

N∑

k=1

(
zk
zmax

)2

≤ 1.

Let the quality of the instrumental variables be
evaluated on the basis of the following criterion (see, e.g.,
Wong and Polak, 1967)

Q (ΨN) = max
‖Z∗

N‖≤1

∥∥∥Δ(IV )
N (ΨN)

∥∥∥
2

, (54)

where ‖·‖ denotes the Euclidean norm, and Δ(IV )
N (ΨN)

is the estimation error obtained for the instrumental
variables ΨN .
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Theorem 4. If Assumptions 1–7 and the condition (32)
hold, then the criterion Q (ΨN ) given by (54) attains a
minimum for the choice

Ψ#
N = Φ#

N , (55)

i.e., for each ΨN ,

lim
N→∞

Q(Ψ#
N ) ≤ lim

N→∞
Q(ΨN) with prob. 1.

Proof. For the proof, see Appendix A. �

Obviously, instrumental variables given by (55)
fulfill the postulates (C1)–(C3).

6. Nonparametric generation of
instrumental variables

The optimal matrix of instruments Ψ#
N cannot be

computed analytically, because of the lack of prior
knowledge of the system (the probability density
functions of excitations and the values of parameters are
unknown). Estimation of Ψ#

N is also difficult, because
the elements Gl,k depend on an infinite number of
measurements of the input process. Therefore, the only
choice is the following FIR approximation:

Ψ(r)#
N = (ψ(r)#

1 , ψ
(r)#
2 , . . . , ψ

(r)#
N )T ,

ψ
(r)#
k � (f1(uk), . . . , fm(uk), . . . ,

f1(uk−n), . . . , fm(uk−n),

G
(r)
1,k−1, . . . , G

(r)
q,k−1, . . . ,

G
(r)
1,k−p, . . . , G

(r)
q,k−p)

T ,

where r is a cut-off level in (28), i.e.,

G
(r)
l,k = E{gl(yk) | {uk−i}ri=0}. (56)

It is based on the intuition that the approximate value
Ψ(r)#
N becomes better, i.e.,

Ψ(r)#
N

∼= Ψ#
N

when r is increasing (this question is treated as open). The
simplest realization of the algorithm (i.e., for r = 0) has
the form

ΨN = Ψ(0)#
N ,

ψ
(0)#
k � (f1(uk), . . . , fm(uk), . . . ,

f1(uk−n), . . . , fm(uk−n),
R1(uk−1), . . . , Rq(uk−1), . . . ,

R1(uk−p), . . . , Rq(uk−p))T ,

where

Rl(u) = G
(0)
l (u) = E{gl(yk)} | uk = u}. (57)

All elements of ψ(0)#
k (white noises) fulfill (P3).

After introducing

xl,k = gl(yk),

the regression functions in (57) can be written as

Rl(u) = E {xl,k | uk = u} .

Both uk and yk can be measured, and xl,k = gl(yk)
can be computed, because the functions gl() are known
a priori. Thus the most natural method for generation of
Ψ(r)#
N is the kernel method. A traditional estimate of the

regression function Rl(u) computed on the basis of M
pairs {(ui, xl,i)}Mi=1 has the form (see, e.g., Greblicki and
Pawlak, 2008)

R̂l,M (u) =
1
M

∑M
i=1 xl,iK

(
u−ui

h(M)

)

1
M

∑M
i=1K

(
u−ui

h(M)

) , (58)

where K is a kernel function, and h is the bandwidth
parameter.

Further deliberations will be based on the following
two theorems (see Greblicki and Pawlak, 2008).

Theorem 5. If h(M) → 0 and Mh(M) → ∞ as
M → ∞, and K(v) is one of exp(− |v|), exp(−v2), or
(1 + |v|1+δ)−1, then

1
M

∑M
i=1 yiK

(
u−ui

h(M)

)

1
M

∑M
i=1K

(
u−ui

h(M)

) → E{yi | ui = u} (59)

in probability as M → ∞, provided that {(ui, yi)}Mi=1 is
an i.i.d. sequence.

Theorem 6. If both the regression E{yi | ui = u}
and the input probability density function ϑ(u) have finite
second order derivatives, then for h(M) = O(M− 1

5 ) the
asymptotic rate of convergence isO(M− 2

5 ) in probability.

To apply the above theorems, let us additionally
make the following assumption.

Assumption 8. The functions g1(y),. . . ,gq(y),
f1(u),. . . ,fm(u) and the input probability density ϑ(u)
have finite second order derivatives for each u ∈
(−umax, umax) and each y ∈ (−ymax, ymax).

In our problem, the process {xl,i} appearing in
the numerator of (58) is correlated. Let us decompose
the sums in the numerator and denominator in (58) for

r =
⌊
M

1
χ(M)

⌋
partial sums, where χ(M) is such that

χ(M) → ∞ and r → ∞, as M → ∞ (e.g., χ(M) =
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√

logM ), i.e.,

L({(ui, xl,i)}Mi=1) (60)

� 1
M

M∑

i=1

xl,iK

(
u− ui
h(M)

)
=

1
r

r∑

t=1

st,

W ({ui}Mi=1) � 1
M

M∑

i=1

K

(
u− ui
h(M)

)
=

1
r

r∑

t=1

wt,

with

st =
1

M/r

∑

{i:0<ir+t≤M}
xl,ir+tK

(
u− uir+t
h(M)

)
, (61)

wt =
1

M/r

∑

{i:0<ir+t≤M}
K

(
u− uir+t
h(M)

)
.

The components of the sum (60) have the time
distance r and become uncorrelated as r → ∞. This fact
is a simple consequence of the property that rx(τ) → 0,
as |τ | → ∞. Moreover, the components in (61) are i.i.d.
Each of the partial sums {st} has the same probability
density, but uses a different subset of measurements. All
of them include M = M/r data.

For simplicity, let us write

st =
1
M

∑

{i:0<ir+t≤M}
xl,ir+tK

(
u− uir+t

H(M)

)
, (62)

wt =
1
M

∑

{i:0<ir+t≤M}
K

(
u− uir+t

H(M)

)
,

where H(M) � h(M). Let h(M) = cMα, where −1 <
α < 0. Then

H(M) = cMα = c
(
M

α
) 1

1− 1
χ(M) = O(M

α
), (63)

and as M → ∞, we get

H(M) → 0 and MH(M) → ∞. (64)

From (62)–(64) and Theorem 5, as r → ∞, we get

Plim
M→∞

(
st
wt

)
=

PlimM→∞ (st)
PlimM→∞ (wt)

=
a(u)
b(u)

= Rl(u),

for each t = 1, 2, . . . , r, and since

R̂l,M (u) =
L({(ui, xl,i)}Mi=1

W ({ui}Mi=1)
=

1
r

∑r
t=1 st

1
r

∑r
t=1 wt

we obtain

Plim
M→∞

(
R̂l,M (u)

)
= Rl(u). (65)

Under Assumption 8, from the property (63) and
Theorem 6 we conclude that for h(M) = cM− 1

5 the rate
of convergence of (58) is O(M− 2

5 ) in probability.

7. Three-stage identification

Taking into account the conclusions from Section 6,
in particular the form of optimal instruments Ψ∗

N ,
the following combined parametric-nonparametric
identification procedure is proposed in the paper (see
Mzyk, 2007; 2009).

Stage 1. (Nonparametric) Using M + max(n, p)
measurements {(ui, yi)}Mi=1−max(n,p), generate the
empirical matrix of instruments

Ψ̂∗
N,M = (ψ̂∗

1,M , ψ̂
∗
2,M , . . . , ψ̂

∗
N,M )T ,

where

ψ̂∗
k,M = (f1(uk), . . . , fm(uk), . . . , (66)

f1(uk−n), . . . . . . , fm(uk−n),

R̂1,M (uk−1), . . . , R̂q,M (uk−1), . . . ,

R̂1,M (uk−p), . . . , R̂q,M (uk−p))T ,

and

R̂l,M (u) =
M∑

i=1

gl(yi)K(
u− ui
h(M)

)/
M∑

i=1

K(
u− ui
h(M)

).

Stage 2. (Parametric) Estimate the aggregated parameter
vector (10)

θ = (γ0c1, . . . , γocm, . . . , γnc1, . . . , γncm,

λ1d1, . . . , λ1dq, . . . , λpd1, . . . , λpdq)T

by the instrumental variables method

θ̂
∗(IV )
N,M =

(
Ψ̂∗T
N,MΦN

)−1

Ψ̂∗T
N,MYN , (67)

where
YN = (y1, y2, . . . , yN )T ,

ΦN = (φ1, φ2, . . . , φN )T ,

φk = (f1(uk), . . . , fm(uk), . . . ,
f1(uk−n), . . . , fm(uk−n),
g1(yk−1), . . . , gq(yk−1), . . . ,

g1(yk−p), . . . , gq(yk−p))T ,

(see (12)), and next, using θ̂∗(IV )
N,M , construct the estimates

Θ̂(IV )
λd and Θ̂(IV )

γc of the matrices Θλd = ΛdT and Θγc =
ΓcT .

Stage 3. (Decomposition) Compute the SVD of
the matrices Θ̂(IV )

λd and Θ̂(IV )
γc , i.e., Θ̂(IV )

γc =∑min(n,m)
i=1 σiμ̂iν̂

T
i , Θ̂(IV )

λd =
∑min(p,q)
i=1 δiξ̂iζ̂

T
i to obtain

the estimates of the parameters (elements of the impulse
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responses of the linear dynamic blocks and the parameters
of static nonlinear characteristics)

Λ̂N = sgn(ξ̂1[κξ1 ])ξ̂1, Γ̂N = sgn(μ̂1[κμ1 ])μ̂1,
(68)

ĉN = sgn(μ̂1[κμ1 ])σ1ν̂1, d̂N = sgn(ξ̂1[κξ1 ])δ1ζ̂1,

where x[k] denotes the k-th element of the vector x, and
κx = min{k : x[k] �= 0}.

Under the condition (65), the following theorem
holds.

Theorem 7. For the NARMAX system with the charac-
teristic η(y) as in Assumption 7 we have

θ̂
∗(IV )
N,M → θ in probability

as M → ∞ and N → ∞, provided that h(M) fulfills the
assumptions of Theorem 5.

Proof. For the proof, see Appendix A. �

8. Example

8.1. Simulation. The simulated system was a special
case of the model (1), commonly known in the literature as
a Lur’e system (see Fig. 2), and often met in applications
(see Hill and Chong, 1989; Hill and Mareels, 1990;
Suykens et al., 1998; Lu and Hill, 2007).

� ��

kz
ku ky� i� i�0

n kv

Fig. 2. Lur’e system.

In this case, the static block μ(·) is linear, i.e.,
μ(u) = u, and both linear dynamic blocks {γi} and {λj}
have the same impulse responses. Thus, in the computer
experiment we set

n = 3,

γ0 = 0, γ1 = 1, γ2 = 1,

p = 2,

λj = γj , j = 1, 2,

and the nonlinear feedback

η(y) =
1
4
|y|

was applied. Since, for the case considered,

r =
1
4

,
p∑

j=1

λj = 2,

α = r

p∑

j=1

λj =
1
2
< 1,

the simulated system is stable (see (27)) and can be
described by the following nonlinear difference equation:

yk = uk−1 + uk−2 +
1
4
|yk−1| + 1

4
|yk−2| + zk.

The system was excited by a uniformly distributed
random sequence

uk ∼ U [−1, 1] ,

and disturbed by the colored noise

zk =
1
2
zk−1 + εk,

where εk ∼ U [−1, 1].

8.2. Identification. The linear model of μ(·) was
assumed,

μ(u) = c1u+ c2,

i.e.,

f1(u) = u, f2(u) = 1, m = 2,

and a two-segment piecewise linear model of η(·),

η(y) = d1y · 1(y) + d2y · 1(−y),
i.e.,

g1(y) = y · 1(y), g2(y) = y · 1(−y), q = 2,

where

1(x) =
{

1, if x ≥ 0,
0, otherwise.

The system with the true vectors of parameters

Λtrue = (1, 1)T ,

Γtrue = (0, 1, 1)T ,

ctrue = (1, 0)T ,

dtrue =
(

1
4
,−1

4

)T
,

was normalized to the following equivalent version (see
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the condition (b) in Section 1.2):

Λ =

(√
2

2
,

√
2

2

)T
,

Γ =

(
0,

√
2

2
,

√
2

2

)T
,

c = (
√

2, 0)T ,

d =

(√
2

4
,−

√
2

4

)T
.

The aggregated vector of mixed products of
parameters θ and identified matrices ΘΛd and ΘΓc are as
follows:

θ =
(

0, 0, 1, 0, 1, 0,
1
4
,−1

4
,
1
4
,−1

4

)T
,

ΘΛd =

[ 1
4 − 1

4

1
4 − 1

4

]
,

ΘΓc =

⎡

⎣
0 0
1 0
1 0

⎤

⎦ .

The estimates (14) and (22) were compared, with

φk = (uk, 1, uk−1, 1, uk−2, 1, yk−11(yk−1),
yk−11(−yk−1), yk−21(yk−2),

yk−21(−yk−2))
T ,

ψ̂∗
k,M =

(
uk, 1, uk−1, 1, uk−2, 1, R̂1,M (uk−2),

R̂2,M (uk−2), R̂1,M (uk−3), R̂2,M (uk−3)
)T

,

where

R̂l,M (u) =
1
M

∑M
i=1 gl(yi+1)K

(
u−ui

h(M)

)

1
M

∑M
i=1K

(
u−ui

h(M)

) .

The mean normalized errors of both subsystems,

MNEΓ =
‖Γ̂N − Γ‖2

‖Γ‖2

,

MNE d =
‖d̂N − d‖2

‖d‖2

,

were computed and averaged over ten re-runs, and for
various numbers of measurements. Figures 3 and 4 show
that, contrary to the least-squares method, the algorithm
is free of an asymptotic bias (i.e., as N → ∞) and
converges to true system parameters. The experiment

was also repeated for various variances of the noise εk.
The results for N = 100, shown in Fig. 5, confirm a
linear increase of the estimation errors, which is typical
in ‘linear in the parameters’ system identification. The
results confirm the usability of the proposed scheme.
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Fig. 3. Estimation error of the nonlinear static block.
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Fig. 4. Estimation error of the linear dynamic block.
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Fig. 5. Estimation error vs. variance of the noise, for N = 100
(instrumental variables method).

9. Summary

The advantages of the approach and the contribution
of the paper can be summarized as follows. The
structure of the system considered is more general than
Hammerstein systems and Lur’e systems. Moreover,
nonlinear characteristics of static blocks do not have to be
of a polynomial form, which is commonly assumed in the
literature. Also excitations can have arbitrary correlation
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properties. The method, as a whole, is computationally
simple, and standard numerical LS/IV procedures (e.g.,
LU and Cholesky decompositions) can be applied at
the main stage of the routine. The consistency of the
proposed estimate is proved, even for correlated noise
and with correlation between the noise and the input
caused by structural feedback. Full versions of the
proofs of theorems are included. Good cooperation
between parametric and nonparametric methods is shown.
The problem of suboptimal generation of instrumental
variables is solved by application of nonparametric
(kernel) methods. Also the scope of applicability of the
instrumental variables technique is extended for nonlinear
systems with feedback.

Obviously, the algorithm proposed in the paper has
some drawbacks. The most significant is the fact that the
class is limited to the ‘linear in the parameters’ additive
NARMAX models, and neither input cross-terms nor
lagged noise terms are admitted in the difference equation
describing the system. The consistency of the estimate
with intuitive approximation Ψ(r)

N of ΨN was not proved
formally. This issue is treated as open. Moreover, for
technical reasons (SVD method), only FIR linear blocks
are acceptable. It was also assumed that the input is
an i.i.d. sequence. Nevertheless, recent results (see,
e.g., Mzyk, 2013) show that the instrumental variables
approach can be useful for reducing the bias in the
correlated input case.

The presented method can help in identification
of more complicated, large-scale interconnected systems
(see Fig. 6), and to design the decomposition/coordination
algorithms (see, e.g., Findeisen et al., 1980), for nonlinear
dynamic models, consisting of n blocks described by

1u

1y

nuiu

()1F

()nF
()iF

H

ny
iy
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nx
ix
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i	

n	

1


i


n


Fig. 6. System with an arbitrary structure.

unknown functionals:

Fi ({ui}, {xi}) , i = 1, 2, . . . , n,

where only external inputs ui and outputs yi of the system
can be measured. The interactions xi are hidden, but
the structure of connections is known and coded in the
zero-one matrix H , i.e.,

xi = Hi · (y1y2, . . . , yn)T + δi,

where Hi denotes the i-th row of H and δi is a random
disturbance. In the simplest case of static linear system
(see Hasiewicz, 1989), the single block is described as
follows:

yi = (ai, bi) (xi, ui)
T + ξi (i = 1, 2, . . . , n),

where ai and bi are unknown parameters and ξi is
a random output noise. In a more general case of
nonlinear and dynamic system, the single block Fi()
can be represented (approximated) by, e.g., two channels
of Hammerstein models (see Fig. 7), resembling the
Narmax/Lur’e system, considered in this paper.
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Fig. 7. Model of a single element in a complex system.
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Söderström, T. and Stoica, P. (1983). Instrumental Vari-
able Methods for System Identification, Vol. 161,
Springer-Verlag, Berlin.
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Appendix A

Proofs of theorems and lemmas

A1. Hammerstein system as a special case of a NAR-
MAX system

Lemma A1. The additive NARMAX system with the lin-
ear function η(yk), i.e., of the form η(yk) = dyk, is equiv-
alent to the Hammerstein system.

Proof. The NARMAX system description

yk =
p∑

j=1

ajη(yk−j) +
n∑

i=0

biμ(uk−i) + vk,
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for η(yk) = dyk and the ‘input’

xk �
n∑

i=0

biμ(uk−i) + vk, (A1)

resembles the difference equation of the AR linear model

yk =
p∑

j=1

ajdyk−j + xk,

which can be presented equivalently as (Hannan and
Deistler, 1988)

yk =
∞∑

l=0

rlxk−l. (A2)

Inserting (A1) to (A2) leads to

yk =
∞∑

l=0

rl

(
n∑

i=0

biμ(uk−i−l) + vk−l

)
,

and further

yk =
∞∑

q=0

γqμ(uk−q) + zk, (A3)

where zk =
∑∞

l=0 rlvk−l, γq =
∑∞
l=0

∑n
i=0 rlbiδ(l+ i−

q), and δ() is a discrete impulse. Equation (A3) represents
a Hammerstein system with an infinite impulse response.

�

A2. Necessary condition for the 3-stage algorithm

Lemma A2. If det(BTA) �= 0 for given matricesA,B ∈
R
α×β with finite elements, then det(ATA) �= 0.

Proof. Let det(ATA) = 0, i.e., rank(ATA) < β. From
the obvious property that

rank(ATA) = rank(A)

one can conclude that there exists the non-zero vector ξ ∈
R
β , such that Aξ = 0. Premultiplying this equation by

BT we get BTAξ = 0, and hence det(BTA) = 0. Thus,
for A = 1√

N
ΦN and B = 1√

N
ΨN , a necessary condition

for 1
NΨT

NΦN to be of full rank is det( 1
NΦTNΦN ) �= 0, i.e.,

a persistent excitation of {φk}. �

A3. Proof of Theorem 1

Proof. From the Slutzky theorem (cf. the work of Chow
and Teicher (2003) and Appendix B) we have

Plim
N→∞

(Δ(IV )
N )

=
(

Plim
N→∞

(
1
N

ΨT
NΦN

))−1

Plim
N→∞

(
1
N

ΨT
NZN

)
,

and directly from the conditions (C2) and (C3), we get,

Plim
N→∞

(
Δ(IV )
N

)
= 0. (A4)

�

A4. Proof of Theorem 2

Proof. Let us define the scalar random variable

ξN = ‖Δ(IV )
N ‖ = ‖θ̂(IV )

N − θ‖,
where ‖·‖ denotes any vector norm. It must be shown that

P

{
rN

ξN
aN

> ε

}
→ 0 as N → ∞,

for each ε > 0, each rN → 0 and aN = 1/
√
N . To prove

that ξN = O(1/
√
N) in probability, it suffices to show

that ξN = O(1/N) in the mean square sense. Introducing

AN =
1
N

ΨT
NΦN =

1
N

N∑

k=1

ψkφ
T
k ,

BN =
1
N

ΨT
NZN =

1
N

N∑

k=1

ψkzk,

we obtain that
Δ(IV )
N = A−1

N BN . (A5)

Therefore, under Assumptions 1–6, the system output yk
is bounded, i.e., |yk| < ymax < ∞. Moreover, under the
condition (C1), we have

∣∣∣Ai,jN
∣∣∣ ≤ ψmaxpmax <∞,

for j = 1, 2, . . . ,m(n+ 1), and
∣∣∣Ai,jN

∣∣∣ ≤ ψmaxpmax <∞,

for j = m(n+1)+1, . . . ,m(n+1)+pq, so each element
of AN is bounded.

Similarly, one can show the boundedness of the
elements of the vector BN . The norm of the error error
Δ(IV )
N given by (A5) can be evaluated as follows:

ξN = ‖Δ(IV )
N ‖ = ‖

(
1
N

ΨT
NΦN

)−1( 1
N

ΨT
NZN

)
‖

≤ ‖
(

1
N

ΨT
NΦN

)−1

‖‖ 1
N

ΨT
NZN‖

≤ c‖ 1
N

ΨT
NZN‖ = c‖ 1

N

N∑

k=1

ψkzk‖,

where c is some positive constant. Obviously, one can find
α ≥ 0 such that

c‖ 1
N

N∑

k=1

ψkzk‖ ≤ αc

dimψk∑

i=1

(
1
N

|
N∑

k=1

ψk,izk|
)

,
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and hence

ξ2N = ‖Δ(IV )
N ‖2

≤ α2c2

[
dimψk∑

i=1

(
1
N

|
N∑

k=1

ψk,izk|
)]2

≤ α2c2 dimψk

dimψk∑

i=1

(
1
N

|
N∑

k=1

ψk,izk|
)2

= α2c2 dimψk

dimψk∑

i=1

1
N2

(
N∑

k=1

ψk,izk

)2

.

Moreover, for uncorrelated processes{ψk} and {zk}
(see the condition (C3)) we have that

Eξ2N

≤ α2c2 dimψk

dimψk∑

i=1

1
N2

E

(
N∑

k=1

ψk,izk

)2

= α2c2 dimψk

dimψk∑

i=1

1
N2

E

[
N∑

k1=1

N∑

k2=1

ψk1,iψk2,izk1zk2

]

≤ α2c2 dimψk

dimψk∑

i=1

1
N2

×
N∑

k1=1

N∑

k2=1

|E [ψk1,iψk2,i]| |E [zk1zk2 ]|

≤ α2c2 (dimψk)
2 ψ

2
max

N
[|rz(0)|

+2
N∑

τ=1

(
1 − τ

N

)
|rz(τ)|

]

≤ C

N

∞∑

τ=0

|rz(τ)| ,

where

rz(τ) = var ε
∞∑

i=0

ωiωi+τ ,

C = 2α2c2 (dimψk)
2
ψ2

max.

Since
∣∣∣∣∣var ε

∞∑

τ=0

∞∑

i=0

ωiωi+τ

∣∣∣∣∣

≤ var ε
∞∑

τ=0

∞∑

i=0

|ωi| |ωi+τ |

≤ var ε
∞∑

i=0

|ωi|
∞∑

i=0

|ωi+τ | <∞,

we have

Eξ2N ≤ D
1
N

,

where

D = Cvar ε

∣∣∣∣∣

∞∑

τ=0

∞∑

i=0

ωiωi+τ

∣∣∣∣∣ .

�

A5. Proof of Theorem 4

Proof. To simplify the presentation, let zmax = 1. From
(53) we get

‖Δ(IV )
N (ΨN )‖2 = Δ(IV )T

N (ΨN)Δ(IV )
N (ΨN )

= Z∗T
N ΓTNΓNZ∗

N ,

and the maximum value of the cumulated error is

Q(ΨN) = max
‖Z∗

N‖≤1

(
Δ(IV )T
N (ΨN)Δ(IV )

N (ΨN )
)

= max
‖Z∗

N‖≤1

〈
Z∗
N ,Γ

T
NΓNZ∗

N

〉

= ‖ΓN‖2 = λmax

(
ΓTNΓN

)
,

where ‖·‖ is the spectral matrix norm induced by the
Euclidean vector norm, and λmax(·) denotes the largest
eigenvalue of a matrix. Since (see Wong and Polak, 1967;
Rao, 1973)

λmax

(
ΓTNΓN

)
= λmax

(
ΓNΓTN

)
,

from the definition of ΓN we obtain that

max
‖Z∗

N‖≤1

(
Δ(IV )T
N (ΨN)Δ(IV )

N (ΨN )
)

= max
‖ζ‖≤1

〈
ζ,ΓNΓTNζ

〉

= max
‖ζ‖≤1

〈
ζ,

(
1
N

ΨT
NΦN

)−1

× 1
N

ΨT
NΨN

(
1
N

ΦTNΨN

)−1

ζ

〉
.

On the basis of (52), we get

max
‖Z∗

N‖≤1

(
Δ(IV )T
N (ΨN )Δ(IV )

N (ΨN)
)

= max
‖ζ‖≤1

〈
ζ,

(
1
N

ΨT
NΦ#

N

)−1 1
N

ΨT
NΨN

(
1
N

Φ#T
N ΨN

)−1

ζ

〉
,

with probability 1, as N → ∞, where ΦN and Φ#
N are

given by (12) and (51), respectively. Using Lemma B1 for
M1 = 1√

N
Φ#
N and M2 = 1√

N
ΨN , we get

ζTΓNΓTNζ ≥ ζT
(

1
N

Φ#T
N Φ#

N

)−1

ζ,
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for each vector ζ, and consequently

Q (ΨN ) = max
‖ζ‖≤1

(
ζTΓNΓTNζ

)

≥ max
‖ζ‖≤1

(
ζT
(

1
N

Φ#T
N Φ#

N

)−1

ζ

)
.

For ΨN = Φ#
N , we have

max
‖ζ‖≤1

(
ζTΓNΓTNζ

)
= max

‖ζ‖≤1

(
ζT
(

1
N

Φ#T
N Φ#

N

)−1

ζ

)
,

and the criterion Q (ΨN ) attains a minimum. The choice
ΨN = Φ#

N is thus asymptotically optimal. �

A6. Proof of Theorem 7

Proof. The estimation error (67) can be decomposed as
follows

Δ(IV )
N,M = θ̂

∗(IV )
N,M − θ = θ̂

∗(IV )
N,M − θ̂

∗(IV )
N + θ̂

∗(IV )
N − θ,

where θ̂∗(IV )
N =

(
Ψ∗T
N ΦN

)−1 Ψ∗T
N YN , and Ψ∗

N is defined
by (55) and (51). From the triangle inequality, for each
norm ‖·‖ we have

‖Δ(IV )
N,M‖ ≤ ‖θ̂∗(IV )

N,M − θ̂
∗(IV )
N ‖ + ‖θ̂∗(IV )

N − θ‖. (A6)

On the basis of Theorem 1,

‖θ̂∗(IV )
N − θ‖ → 0 in probability,

as N → ∞. To prove 7, let us analyze the component
‖θ̂∗(IV )
N,M − θ̂

∗(IV )
N ‖ in (A6) to show that, for fixed N , it

tends to zero in probability as M → ∞.
Write

εN � 1∥∥ 1
NΨ∗T

N ΦN
∥∥ (N – fixed).

From (65) we have that
∥∥∥∥

(
1
N

Ψ̂∗T
N,MΦN

)
−
(

1
N

Ψ∗T
N ΦN

)∥∥∥∥→ 0

in probability as M → ∞, and particularly

lim
M→∞

P

{∥∥∥∥
1
N

Ψ̂∗T
N,MΦN − 1

N
Ψ∗T
N ΦN

∥∥∥∥ < εN

}
= 1.

Introducing

rM �

∥∥∥
(

1
N Ψ̂∗T

N,MΦN
)
− (

1
NΨ∗T

N ΦN
)∥∥∥

εN

(
εN −

∥∥∥
(

1
N Ψ̂∗T

N,MΦN
)
− (

1
NΨ∗T

N ΦN
)∥∥∥
)

and using the Banach theorem (see Kudrewicz, 1976,
Theorem 5.8.), we get

lim
M→∞

P

{∥∥∥

(
Ψ̂∗T
N,MΦN
N

)−1

−
(

Ψ∗T
N ΦN
N

)−1 ∥∥∥ ≤ rM

}
= 1.

Since rM → 0 in probability as M → ∞, there holds
∥∥∥θ̂∗(IV )
N,M − θ̂

∗(IV )
N

∥∥∥→ 0 in probability,

as M → ∞, for each N . �

Appendix B

Technical lemmas, theorems and definitions

B1. SVD decomposition

Theorem B1. (Kincaid and Cheney, 2002) For each A ∈
R
m,n there exist the unitary matrices U ∈ R

m,m and V ∈
R
n,n, such that

UTAV = Σ = diag(σ1, . . . , σl), (B1)

where l = min(m,n), and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

σr+1 = · · · = σl = 0,

where r = rank(A).
The numbersσ1, . . . , σl are called the singular values

of the matrixA. Solving (B1) with respect toA, we obtain

A = UΣV T =
r∑

i=1

uiσiv
T
i =

r∑

i=1

σiuiv
T
i , (B2)

where ui and vi denote the i-th columns of U and V ,
respectively.

B2. Factorization theorem

Theorem B2. (Rao, 1973) Each positive definite matrix
M can be shown in the form M = PPT , where P (a root
of M ) is nonsingular.

B3. Technical lemma

Lemma B1. (Wong and Polak, 1967) Let M1 and M2 be
two matrices with the same dimensions. If

(
MT

1 M1

)−1
,(

MT
1 M2

)−1
and

(
MT

2 M1

)−1
exist, then

DN =
(
MT

2 M1

)−1
MT

2 M2

(
MT

1 M2

)−1 − (
MT

1 M1

)−1

is nonnegative definite, i.e., for each ζ

ζTDNζ ≥ 0.
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B4. Slutzky theorem

Theorem B3. (Roe, 1973) If Plimk→∞κk = κ
# and

the function g(·) is continuous, then Plimk→∞g(κk) =
g(κ#).

B5. Chebyshev’s inequality

Lemma B2. (Chow and Teicher, 2003, p. 106) For each
constant c, each random variableX and each ε > 0, there
holds P {|X − c| > ε} ≤ 1

ε2E (X − c)2. In particular,
for c = EX , P {|X − EX | > ε} ≤ 1

ε2 varX .

B6. Persistent excitation

Definition B1. A stationary random process {αk} is
strongly persistently exciting of orders n × m (denote
SPE(n,m)) if the matrix

Rκ(n,m) = E

⎡

⎣
κk

:
κk−n+1

⎤

⎦

⎡

⎣
κk

:
κk−n+1

⎤

⎦
T

,

where κk =
[
αk α2

k . . . αmk
]T

, is of full rank.

Lemma B3. (Stoica and Söderström, 1982) The i.i.d.
process {αk} is SPE(n,m) for each n and m.

Lemma B4. (Stoica and Söderström, 1982) Let xk =
H(q−1)uk, H(q−1) be an asymptotically stable linear fil-
ter, and {uk} be a random sequence with finite variance.
If the frequency function of {uk} is strictly positive in at
least m + 1 distinct points, then {xk} is SPE(n,m) for
each n.

B7. Modified triangle inequality

Lemma B5. (Chow and Teicher, 2003) If X and Y are
k-dimensional random vectors, then P [‖X + Y ‖ ≥ ε] ≤
P [‖X‖ ≥ ε/2]+P [‖Y ‖ ≥ ε/2] for each vector norm ‖·‖
and each ε > 0.

Received: 6 December 2012
Revised: 29 April 2013


	Problem statement
	System
	Assumptions
	Comments on the assumptions
	Organization of the paper

	Least squares and SVD approach
	Instrumental variables approach
	Limit properties
	Optimal instrumental variables
	Nonparametric generation of instrumental variables
	Three-stage identification
	Example
	Simulation
	Identification

	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




