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This paper is concerned with observer design for nonlinear systems that are modeled by T–S fuzzy systems containing
parametric and nonparametric uncertainties. Unlike most Sugeno models, the proposed method contains nonlinear functions
in the consequent part of the fuzzy IF-THEN rules. This will allow modeling a wider class of systems with smaller modeling
errors. The consequent part of each rule contains a linear part plus a nonlinear term, which has an incremental quadratic
constraint. This constraint relaxes the conservativeness introduced by other regular constraints for nonlinearities such as the
Lipschitz conditions. To further reduce the conservativeness, a nonlinear injection term is added to the observer dynamics.
Simulation examples show the effectiveness of the proposed method compared with the existing techniques reported in
well-established journals.
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1. Introduction

Observer and observer-based controller design for
uncertain Sugeno systems has been widely addressed by
many researchers over the last decades (Tseng et al., 2009;
Yoneyama, 2009; Xu et al., 2012; Ichalal et al., 2012).
Sugeno systems are popular for their local linear form,
which allows one to use powerful existing tools (e.g.,
Linear Matrix Inequality (LMI)) for analysis and design
of these systems. When uncertainties exist in the model,
the observer-based controller design for Takagi–Sugeno
(T–S) systems becomes harder as the problem results
in Bilinear Matrix Inequalities (BMIs) instead of LMIs.
Some researchers have tried to overcome this problem;
examples of such works are reported by Asemani and
Majd (2013), Chadli and Guerra (2012), as well as Dong
et al. (2010; 2011).

As the complexity of the system increases, the
number of rules in the fuzzy model and hence the
number and dimensions of LMIs (used for stability
analysis) increase and become harder to solve. Many
works in the literature are devoted to decreasing the
conservativeness of these LMIs in order to apply them to
a wider class of systems (Guerra et al., 2012; Abdelmalek
et al., 2007; Bernal and Hušek, 2005). Another possible
solution is to use nonlinear local subsystems for the T–S

model. Although it seems that this method increases the
complexity of the fuzzy model, it decreases the number of
rules and at the same time increases the model accuracy.
The key idea of using nonlinear terms in the subsystems
is to employ some kind of nonlinearity, which is less
complicated than the nonlinearities of the main system.

A very simple form of these nonlinear T–S models
is used by Rajesh and Kaimal (2007). The authors used
linear form for the consequence part plus a sinusoidal
term. A more advanced work is performed by Dong et al.
(2010; 2011), who employed sector-bounded functions in
the subsystems. Tanaka et al. (2009a; 2009b) proposed
a T–S model with polynomial subsystems. For stability
analysis, they used the Sum Of Squares (SOS) approach.
This was the first use of the SOS instead of the LMI
in fuzzy systems analysis. Sala and Arino (2009) as
well as Sala (2009) represented a similar form of the
Sugeno model and used the Taylor series expansion of
the system for construction of the polynomial subsystems.
The authors state that the nonlinear consequent part in the
T–S model not only reduces the number of rules, but also
reduces the conservativeness in the controller design.

In this paper, a similar form of Dong’s model is
employed. In other words, every subsystem in the
Sugeno model contains a linear plus a nonlinear term
in the consequent part of the fuzzy IF-THEN rules.
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However, unlike in the previous works, this nonlinear
term is not assumed to be Lipschitz, which is a mild
condition but results in conservative designs. Instead, in
this paper, the incremental Quadratic Constraint (δQC) is
adopted (Açikmese and Corless, 2011). This constraint is
less conservative compared with the Lipschitz condition.
Hence, it can encompass a larger class of nonlinearities.
In addition, for the first time, a nonlinear injection term is
added to the fuzzy observer that provides more degrees of
freedom to the design procedure. For further reduction in
conservativeness, Fuzzy Lyapunov Functions (FLFs) are
employed.

The FLF is one of the three classes of Lyapunov
functions that are used to analyze T–S systems. The
other two classes are the traditional quadratic Lyapunov
functions and piecewise Lyapunov functions, which are
usually more conservative than the FLF. A complete
review of recent Lyapunov functions for discrete fuzzy
systems is presented by Guerra et al. (2009). The
FLF, as a non-quadratic Lyapunov function, has been of
increasing interest in recent years. In this case, quadratic
Lyapunov functions share the same membership functions
with the T–S fuzzy model. For continuous-time systems,
it is more difficult to obtain LMI conditions using the
FLF, compared with discrete-time systems, because the
stability conditions depend on the time derivative of the
membership functions, which are usually handled with
very conservative bounds.

Other approaches have been also investigated. Rhee
and Won (2006) proposed a method which does not
depend on the derivative of the membership functions.
Mozelli et al. (2009) derived LMI conditions for state
feedback controller design by adding some slack matrices.
Results of Guerra and Bernal (2012), as well as Guerra
et al. (2012), overcome the aforementioned deficiency
by providing local asymptotic conditions at the price of
computationally demanding LMIs. In this paper, the FLF
is used based on the work by Faria et al. (2012).

The reminder of the paper is organized as follows. In
Section 2, a nonlinear Sugeno model and an incremental
quadratic constraint are introduced. Section 3 provides
the problem of observer design for nonlinear T–S systems
along with analytical results. Numerical examples are
given in Section 4 to show effectiveness of the proposed
method. Section 5 concludes the paper.

2. Problem statement

Consider the class of nonlinear systems described by

ẋ(t) = fa(x(t)) + fb(x(t))ϕ
(
x(t), u(t), t

)

+ g(x(t))u(t),

y(t) = fya(x(t)) + fyb(x(t))ϕ
(
x(t), u(t), t

)
,

(1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control
input, y(t) ∈ R

ny is the measurable output, fn(x(t)) :

n∈{a, b, ya, yb} and g(x(t)) ∈ R
(nx×nu) are nonlinear

functions, and ϕ
(
x(t), u(t), t

) ∈ R
(nx×nϕ) is a vector of

nonlinear functions.

2.1. Incremental quadratic constraint. Suppose that
the following relation exists:

ϕ
(
x(t), u(t), t

)
= φ

(
s(t), q(t)

)
,

q(t) = Cqx(t) +Dqϕ
(
x(t), u(t), t

)
,

(2)

where q ∈ R
nq and Cq and Dq are constant matrices

with proper dimensions and s(t) =
(
t, u(t), y(t)

)
. For

simplicity, in the rest of this paper, s(t) and q(t) are
shown with s and q, respectively. Note that the term
Dq is included to treat systems where the nonlinear
term depends on the derivative of a state variable.
Characterization of the nonlinear element φ(s, q) is based
on a set of symmetric matrices M, which is referred to as
incremental multiplier matrices (Açikmese and Corless,
2011). Specifically, for all M ∈ M the following
incremental quadratic constraint holds:
(

q2 − q1
φ(s, q2) − φ(s, q1)

)T

M

(
q2 − q1

φ(s, q2) − φ(s, q1)

)
≥ 0.

(3)
Defining v := Cqx, we have

φ
(
s, v +Dqϕ

(
x(t), u(t), t

))
= ψ(s, v),

ϕ
(
x(t), u(t), t

)
= ψ

(
s, Cqx(t)

)
.

(4)

The implicit description of ϕ arises in many
situations, for instance, when the nonlinear term depends
on ẋ. As an example, consider the following plant
(Açikmese and Corless, 2011):

ẋ1 = x2,

ẋ2 = 0.5 sin(x1 + ẋ2).

Letting ϕ = sin(x1 + ẋ2) yields ẋ1 = x2, ẋ2 = 0.5ϕ.
Now, let q = x1 + ẋ2 to obtain ϕ = φ(q) = sin(q) with
q = Cqx + Dqϕ, where Cq = [1, 0] and Dq = 0.5.
For each v = Cqx, there exists a unique solution for
ϕ = sin(v + 0.5ϕ), which can be denoted by ϕ =
ψ(v). In general, obtaining a δQC characterization for a
nonlinearity is easier by using the function φ, rather than
ψ when Dq = 0 (i.e., when ϕ is implicitly defined). In
some cases, the only way to obtain ψ is via numerical
methods, where φ may readily be shown to satisfy δQC.

Note that ψ(s, v) satisfies the incremental quadratic
constraint. That is,

(
δv

δψ

)T

N

(
δv

δψ

)
≥ 0, (5)

where

N =
(
I Dq

0 I

)T

M

(
I Dq

0 I

)
. (6)
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2.2. Nonlinear Sugeno model. The system (1) can be
represented by a T–S fuzzy system with local nonlinear
models and uncertainties as follows:

Plant Rule i :
if z1(t) is μi1(z), . . . , and zp(t) is μip(z) then:

ẋ(t) = (Ai + ΔAi)x(t)

+ (Gxi + ΔGxi)ϕ
(
x(t), u(t), t

)

+ (Bi + ΔBi)u(t) +D1iν(t),
y(t) = (Ci + ΔCi)x(t)

+ (Gyi + ΔGyi)ϕ
(
x(t), u(t), t

)

+D2iν(t),

(7)

where Ai ∈ R
(nx×nx), Bi ∈ R

(nx×nu), Ci ∈ R
(ny×nx),

Gxi ∈ R
(nx×nϕ), Gyi ∈ R

(ny×nϕ), D1i ∈ R
(nx×nν), and

D2i ∈ R
(ny×nν) (i = 1, . . . , r) are constant matrices, in

which r is the number of rules, nx is the number of states,
nu is the number of inputs, ny is the number of outputs,
nϕ is the number of nonlinear functions in the vector ϕ,
and nν is the dimension of ν. Moreover, z1(t), . . . , zp(t)
are the premise variables, the μij ’s denote the fuzzy sets,
and ν(t) is a band-limited white noise.

The uncertainties are defined as

ΔAi := M1iF1N1,

ΔBi := M1iF2N2,

ΔGxi := M1iF3N3,

ΔCi := M2iF4N1,

ΔGyi := M2iF5N3,

(8)

whereFT
i Fi<1 (i = 1, . . . , 5), in whichFi ∈ R

(nF ×nF ).
In this case, the whole fuzzy system can be represented as

ẋ(t) =
r∑

i=1

ωi(z)
[
(Ai + ΔAi)x(t) + (Bi + ΔBi)u(t)

+ (Gxi + ΔGxi)ϕ(x(t), u(t), t) +D1iν(t)
]
,

y(t) =
r∑

i=1

ωi(z)
[
(Ci + ΔCi)(x(t))

+ (Gyi + ΔGyi)ϕ(x(t), u(t), t) +D2iν(t)
]
,
(9)

where

ωi(z) =
hi(z)∑r

k=1 hk(z)
,

hi(z) = Πp
j=1μij(z).

(10)

3. Observer design

The observer used in this paper is as follows:

Observer Rule i :
if z1(t) is μi1(z), . . . , and zp(t) is μip(z) then:

˙̂x(t) = Aix̂(t) +Gxiϕ̂
(
x̂(t), u(t), t

)
+Biu(t)

+ Li

[
ŷ(t) − y(t)

]
,

ŷ(t) = Cix̂(t) +Gyiϕ̂
(
x̂(t), u(t), t

)
,

ϕ̂
(
x̂(t), u(t), t

)
= ψ

(
s, Cqx̂(t) + Ln[ŷ(t) − y(t)]

)
.

(11)
Unlike other Sugeno observers, here the nonlinear
injection term Ln[ŷ(t) − y(t)] is used for better
estimation of ϕ(x(t), u(t), t), which in turn provides
better estimation for all states of the system. For the
system (7) and the observer (11), the following error
dynamic can be stated:

ė(t)

=
r∑

i=1

r∑

j=1

ωij(z)
[
(Ai + LiCj)e(t)

+ (Gxi + LiGyj)δϕ(t) − [
(ΔAi + LiΔCj)x(t)

+ ΔBiu(t) + (ΔGxi + LiΔGyj)ϕ
(
x(t), u(t), t

)

+ (D1i + LiD2j)ν(t)
]]
,

(12)
where

e(t) = x̂(t) − x(t),

δϕ(t) = ϕ̂
(
x̂(t), u(t), t

) − ϕ
(
x(t), u(t), t

)
,

ωij(z) = ωi(z)ωj(z).

(13)

When there is no uncertainty in the model, from
(11) it follows that ŷ(t) − y(t) =

∑r
i=1 ωi(z)

(
Cie(t) +

Gyiδϕ(t)
)
. Hence, by defining two variables v1 and v2 as

v1 := Cqx(t),

v2 := Cqx̂(t) + Ln

[ r∑

i=1

ωi(z)
(
Cie(t) +Gyiδϕ(t)

)]
,

(14)
and based on (5), it follows that

(
e(t)
δϕ(t)

)T

ΦTMΦ
(
e(t)
δϕ(t)

)
≥ 0, (15)

where

Φ :=
r∑

i=1

ωi(z)
(
Cq + LnCi Dq + LnGxi

0 I

)
. (16)

In order to analyze the system using LMIs, it is
assumed that matrix M has the following form:

M =
(
X 0
0 −Y

)
, (17)

where X ∈ R
(nq×nq), Y ∈ R

(nϕ×nϕ), X=XT >0, and
Y =Y T>0. Then, by defining Cz :=

∑r
i=1 ωi(z)Ci and
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using the same definition for Gyz ,

ΦTMΦ

=
(

(Cq + LnCz)T

(Dq + LnGyz)T

)
X

(
Cq + LnCz Dq + LnGyz

)

−
(

0
I

)
Y

(
0 I

)
.

(18)

3.1. Observer analysis. In this section, the conditions
for the asymptotic convergence of the observer states
in (11) to the system states in (7) will be given. The
following lemmas are used in this paper.

Lemma 1. (Tuan et al., 2001) If

Mii < 0, 1 < i < r,

1
r − 1

Mii +
1
2
(Mij +Mji) < 0, 1 < i �= j < r,

(19)
then

r∑

i=1

r∑

j=1

αiαjMij < 0, (20)

where 0 ≤ αi ≤ 1 and
∑r

i=1 αi = 1.

Lemma 2. (Boyd et al., 1994) For any positive defi-
nite matrix Π with appropriate dimensions, the following
property holds:

XTY + Y TX ≤ XT ΠX + Y T Π−1Y. (21)

In the following theorem, sufficient conditions for the
stability of the error dynamic (12) will be given.

Theorem 1. Assume |ω̇i(z)|< κi for known positive
real numbers κi, where ω̇i(z) is the derivative of ωi(z)
with respect to time. The error dynamic (12) is asymptoti-
cally stable and with an H∞ performance bound γ > 0 if
there exist matrices P1ρ = PT

1ρ > 0, P2ρ = PT
2ρ > 0

(1 ≤ ρ ≤ r), X, Y, X1 = XT
1 , X2 = XT

2 , Rn,
Si, SLi (1 ≤ i ≤ 6), and a scalar η > 0 such
that P1ρ, P2ρ, X1, X2, S1, S2, S3, S4 ∈ R

nx×nx , X ∈
R

nq×nq , Y ∈ R
nϕ×nϕ , S5 ∈ R

nϕ×nx , S6 ∈ R
nu×nx ,

SLi ∈ R
nx×ny , Rn ∈ R

nq×ny , and

P2ρ +X2 − P2ξ ≥ 0, ∀ρ ∈ 1, . . . , r − ξ,

P1ρ +X1 − P1ξ ≥ 0, ∀ρ ∈ 1, . . . , r − ξ,

Ξii < 0, 1 < i < r,

1
r − 1

Ξii +
1
2
(Ξij + Ξji) < 0, 1 < i �= j < r,

(22)
where ξ is an arbitrary value in 1, . . . , r and

Ξij =
(Rij ΨT

Ψ −X
)
,

Ψ =
(
XCq +RnCi 01 XDq +RnGyi 02

)
,

(23)

in which 01 and 02 are zero vectors with dimensions
nx × (nx + 2nF ) and nx × (2nx + nϕ + nu + 4nF ),
respectively, and

Rij =

⎛

⎜
⎝

Rij
11 ∗ ∗
...

. . . ∗
Rij

14,1 · · · Rij
14,14

⎞

⎟
⎠ , (24)

where (
A ∗
B C

)
:=

(
A BT

B C

)

and

Rij
1,1 = E1 − S3Ai − SLiCj − (S3Ai + SLiCj)T + I,

Rij
2,1 = (

√
3S3M1i +

√
2SLiM2j)T ,

Rij
3,1 = P1i − ηS3Ai − ηSLiCj + ST

3 ,

Rij
5,1 = −GT

xiS
T
3 − (SLiGyj)T ,

Rij
14,1 = −DT

1iS
T
3 − (SLiD2j)T , Rij

2,2 = −I,
Rij

3,3 = η(S3 + ST
3 ),

Rij
4,3 = (η

√
3S3M1i + η

√
2SLiM2j)T , Rij

4,4 = −I,
Rij

5,3 = −ηGT
xiS

T
3 − η(SLiGyj)T ,

Rij
14,3 = −ηDT

1iS
T
3 − η(SLiD2j)T , Rij

5,5 = −Y,
Rij

6,6 = E2 − S1Ai −AT
i S

T
1 + 8NT

1 N1,

Rij
7,6 =

√
3MT

1iS
T
1 , Rij

8,6 = P2i + ST
1 − S2Ai,

Rij
10,6 = −S5Ai −GT

xiS
T
1 , Rij

7,7 = −I,
Rij

12,6 = −BT
i S

T
1 − S6Ai, Rij

14,6 = −DT
1iS

T
1 ,

Rij
8,8 = S2 + ST

2 , Rij
9,8 =

√
3MT

1iS
T
2 , Rij

9,9 = −I,
Rij

10,8 = S5 −GT
xiS

T
2 ,

Rij
12,8 = −BT

i S
T
2 + S6, Rij

14,8 = −DT
1iS

T
2 ,

Rij
10,10 = −S5Gxi −GT

xiS
T
5 + 8NT

3 N3,

Rij
11,10 =

√
3MT

1iS
T
5 , Rij

11,11 = −I,
Rij

12,10 = −BT
i S

T
5 − S6Gxi, Rij

14,10 = −DT
1iS

T
5 ,

Rij
12,12 = −S6Bi −BT

i S
T
6 + 6NT

2 N2,

Rij
13,12 =

√
3MT

1iS
T
6 , Rij

13,13 = −I,
Rij

14,12 = −DT
1iS

T
6 , Rij

14,14 = −γI,
(25)

and

E1 = ±κξX1 +
r∑

ρ=1
ρ�=ξ

κρ(P1ρ +X1 − P1ξ),

E2 = ±κξX2 +
r∑

ρ=1
ρ�=ξ

κρ(P2ρ +X2 − P2ξ).
(26)



Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent 715

Then, the observer gains are

Li = S−1
3 SLi, Ln = X−1Rn. (27)

The ± sign means that the LMIs must be checked for both
positive and negative signs. Note that parameters η and
κi should be given in advance and LMIs can be solved to
find the best value for γ.

Proof. Let us define the following fuzzy Lyapunov
function:

V (t) :=
r∑

i=1

ωi(z)
[
eT (t)P1ie(t)+ xT (t)P2ix(t)

]
. (28)

Its time derivative is

V̇ (t) = xT (t)
[ r∑

i=1

ω̇i(z)P2i

]
x(t)

+ 2xT (t)
[ r∑

i=1

ωi(z)P2i

]
ẋ(t)

+ eT (t)
[ r∑

i=1

ω̇i(z)P1i

]
e(t)

+ 2eT (t)
[ r∑

i=1

ωi(z)P1i

]
ė(t).

(29)

In order to make the LMI representation possible,
two zero terms are added to (29), which results in

V̇ (t) = xT (t)
[ r∑

i=1

ω̇i(z)P2i

]
x(t)

+ 2xT (t)
[ r∑

i=1

ωi(z)P2i

]
ẋ(t)

+ eT (t)
[ r∑

i=1

ω̇i(z)P1i

]
e(t)

+ 2eT (t)
[ r∑

i=1

ωi(z)P1i

]
ė(t)

+ 2
[
xT (t)S1 + ẋT (t)S2

+ ϕ(x(t), u(t), t)TS5 + uT (t)S6

]
Sx1

+ 2
[
eT (t)S3 + ėT (t)S4

]
Se1,

(30)

where

Sx1 = ẋ(t) −
[ r∑

i=1

ωi(z)
{
(Ai + ΔAi)x(t)

+ (Gxi + ΔGxi)ϕ(x(t), u(t), t)

+ (Bi + ΔBi)u(t) +D1iν(t)
}]
,

Se1 = ė(t) −
[ r∑

i=1

r∑

j=1

ωij(z)
{[

(Ai + LiCj)e(t)

+ (Gxi + LiGyj)δϕ(t)
] − [

(ΔAi + LiΔCj)x(t)
+ (ΔGxi + LiΔGyj)ϕ(x(t), u(t), t)

+ ΔBiu(t) + (D1i + LiD2j)ν(t)
]}]

.

(31)
Using Lemma 2, (8) and (30), V̇ (t) becomes

V̇ (t) ≤ xT (t)
[ r∑

i=1

ω̇i(z)P2i

]
x(t)

+ 2xT (t)
[ r∑

i=1

ωi(z)P2i

]
ẋ(t)

+ eT (t)
[ r∑

i=1

ω̇i(z)P1i|
]
e(t)

+ 2eT (t)
[ r∑

i=1

ωi(z)P1i

]
ė(t)

+ 2
[
xT (t)S1 + ẋT (t)S2

+ ϕT (x(t), u(t), t)S5 + uT (t)S6

]
Sx2

+ 2
[
eT (t)S3 + ėT (t)S4

]
Se2

+
r∑

i=1

r∑

j=1

ωij(z)
[
3xT (t)S1M1iM

T
1iS

T
1 x(t)

+ 3ẋT (t)S2M1iM
T
1iS

T
2 ẋ(t)

+ 3uT (t)S6M1iM
T
1iS

T
6 u(t)

+ 3ϕ(x(t), u(t), t)TS5M1iM
T
1iS

T
5 ϕ(x(t), u(t), t)

+ eT (t)S3(3M1iM
T
1i + 2LiM2jM

T
2jL

T
i )ST

3 e(t)

+ ėT (t)S4(3M1iM
T
1i + 2LiM2jM

T
2jL

T
i )ST

4 ė(t)

+ 8xT (t)NT
1 N1x(t) + 6uT (t)NT

2 N2u(t))

+ 8ϕ(x(t), u(t), t)TNT
3 N3ϕ(x(t), u(t), t)

]
,

(32)
where

Sx2 = ẋ(t) −
[ r∑

i=1

ωi(z)
[
Aix(t) +Gxiϕ(x(t), u(t), t)

+Biu(t) +D1iν(t)
]]
,

Se2 = ė(t) −
[ r∑

i=1

r∑

j=1

ωij(z)
[(

(Ai + LiCj)e(t)

+ (Gxi + LiGyj)δϕ(t)
)

− (D1i + LiD2j)ν(t)
]]
.

(33)
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Then V̇ (t) ≤ ∑r
i=1

∑r
j=1 ωijK

T R̄ijK , where

K =
[
e(t) ė(t) δϕ(t)x(t) ẋ(t)ϕ(x(t), u(t), t)u(t) ν(t)

]T

R̄ij =

⎛

⎜
⎝

R̄ij
11 ∗ ∗
...

. . . ∗
R̄ij

81 · · · R̄ij
88,

⎞

⎟
⎠

(34)
in which

R̄ij
11 =

∑r
ρ=1 ω̇ρ(z)P1ρ − S3(Ai + LiCj)

− (Ai + LiCj)TST
3

+ S3(3M1iM
T
1i + 2LiM2jM

T
2jL

T
i )ST

3 ,

R̄ij
21 = P1i − S4(Ai + LiCj) + ST

3 ,

R̄ij
31 = −(Gxi + LiGyj)TST

3 ,

R̄ij
81 = −(D1i+ LiD2j)TST

3 ,

R̄ij
22 = S4 + ST

4 + S4(3M1iM
T
1i + 2LiM2jM

T
2jL

T
i )TS4,

R̄ij
32 = −(Gxi + LiGyj)TST

4 ,

R̄ij
82 = −(D1i+ LiD2j)TST

4 ,

R̄ij
44 =

∑r
ρ=1 ω̇ρ(z)P2ρ − S1Ai −AT

i S
T
1

+ 8NT
1 N1 + 3S1M1iM

T
1iS

T
1 ,

R̄ij
54 = P2i + ST

1 − S2Ai, R̄ij
64 = −S5Ai −GT

xiS
T
1 ,

R̄ij
74 = −BT

i S
T
1 − S6Ai, R̄ij

84 = −DT
1iS

T
1 ,

R̄ij
55 = S2 + ST

2 + 3S2M1iM
T
1iS

T
2 ,

R̄ij
65 = S5 −GT

xiS
T
2 ,

R̄ij
75 = −BT

i S
T
2 + S6, R̄ij

85 = −DT
1iS

T
2 ,

R̄ij
66 = −S5Gxi −GT

xiS
T
5 + 8NT

3 N3 + 3S5M1iM
T
1iS

T
5 ,

R̄ij
76 = −BT

i S
T
5 − S6Gxi, R̄ij

86 = −DT
1iS

T
5 ,

R̄ij
77 = −S6Bi −BT

i S
T
6 + 6NT

2 N2 + 3S6M1iM
T
1iS6,

R̄ij
87 = −DT

1iS
T
6 .

(35)
The other terms in R̄ij are equal to zero. Based on

(10), we get

ω̇ξ = −
r∑

ρ=1,ρ�=ξ

ω̇ρ(z), (36)

and hence

r∑

ρ=1

ω̇ρ(z)P1ρ

= ω̇ξX1 +
r∑

ρ=1,ρ�=ξ

ω̇ρ(z)[P1ρ +X1 − P1ξ]. (37)

Moreover, based on (22),

ω̇ρ(z)[P1ρ +X1 − P1ξ] ≤ κρ[P1ρ +X1 − P1ξ]. (38)

By defining S4 := ηS3 and S3Li := SLi and using
the Schur complement lemma (Boyd et al., 1994) on the
diagonal elements of R̄ij , and based on (26), (37) and
(38), we have

V̇ (t) + eT (t)e(t) − γνT (t)ν(t)

≤
r∑

i=1

r∑

j=1

ωijK̄
T R̃ijK̄, (39)

where R̃ij is equal to Rij defined in (24) except that
R̃ij

5,5 = 0. Moreover, K̄ is the same as K with augmented
terms equal to one in order to have proper dimensions.

Adding the term
( e(t)
δϕ(t)

)T
ΦTMΦ

( e(t)
δϕ(t)

)
to both the

sides of (39), introducing Rn = XLn and using Schur
complements on the right-hand side of the resulting
inequality and based on the Schur complement of (18),
we have

r∑

i=1

r∑

j=1

ωij(K̄T R̃ijK̄) +
(
e(t)
δϕ(t)

)T

ΦTMΦ
(
e(t)
δϕ(t)

)

=
r∑

i=1

r∑

j=1

ωijK̄
T ΞijK̄, (40)

in which Ξij is defined in (23). Then, from Lemma 1 and
(22), we get

V̇ (t) + eT (t)e(t) − γνT (t)ν(t)

+
(
e(t)
δϕ(t)

)T

ΦTMΦ
(
e(t)
δϕ(t)

)
< 0,

(41)
which, based on (15), guarantees that the error dynamic is
asymptotically stable with an H∞ performance bound γ.
That is,

eT (t)e(t) < γνT (t)ν(t). (42)

�

Remark 1. One of the main drawbacks of using the
FLF for continuous-time systems is the existence of a
derivative of the membership functions, which can be
written as follows (Manai and Benrejeb, 2011):

ω̇i(z) =
∂ωi

∂z(t)
· ∂z(t)
∂x(t)

· dx(t)
dt

. (43)

This derivative, if it exists at all, is usually hard to
calculate. However, it can be assumed that it is limited by
a bound (κi), which is used here. For the existence of a
bound on ∂ωi/∂z(t), it is assumed that the membership
functions are continuous. In addition, ∂z(t)/∂x(t) is
known a priori. However, in general, it is hard to find a
limit on ẋ(t). Nevertheless, when ẋ(t) increases from its
bounds, it means that x(t) has also been increased from
its predefined bounds. Hence, the first derivative must
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approach to zero, which results in ω̇i(z) → 0. For more
detail, the reader may refer to the work of Guerra and
Bernal (2012).

Remark 2. It is also possible to assume the multiplier
matrix M with the following form:

M =
(

0 X
XT −Y

)
. (44)

In this case, the equality in (18) changes to

ΦTMΦ =
(

ΥT
11X

−1Υ11 ΥT
11

Υ11 Υ22 + ΥT
22 − Y

)
, (45)

where
Υ11 = XCq +RnCz,

Υ22 = XDq +RnGyz.
(46)

Hence, it is possible to use Theorem 1 with the following
changes:

Rij
5,1 = Rij

5,1 + (XCq +RnCi),

Rij
1,5 = Rij

1,5 + (XCq +RnCi)T ,

Rij
5,5 = Rij

5,5 + (XDq +RnGyi)T + (XDq +RnGyi),

Ψ =
(
XCq +RnCi 0 0 0

)
.

(47)
In order to further enlarge the class of nonlinearities,

the matrix M can have the following forms as well:

M = T T

(
0 X
XT −Y

)
T,

M = T T

(
X 0
0 −Y

)
T, (48)

where

T =
(
T11 T12

T21 T22

)
. (49)

In this case, T22 + T21Dq should be nonsingular. Then,
it is possible to formulate the problem using LMIs.
However, in order to use Theorem 1, Ln cannot be
selected arbitrarily. This means that there are fewer
degrees of freedom for the LMI solver. To solve this
problem, an extra term should be added to the observer
(Açikmese and Corless, 2011).

Remark 3. One essential point in Theorem 1 is
the injection term Ln

(
ŷ(t) − y(t)

)
in ϕ̂

(
x̂(t), u(t), t

)
in

(11). It should be mentioned that, if the nonlinearity
ϕ
(
x(t), u(t), t

)
is Lipschitz (instead of incremental

quadratic), then Ln cannot be introduced. This case is
shown in the following theorem.

Theorem 2. Assume that |ω̇i(z)|<κi for known positive
real numbers κi. The error dynamic (12) is asymptoti-
cally stable and with an H∞ performance bound γ > 0 if

ϕ
(
x(t), u(t), t

)
satisfies the Lipschitz condition

eT (t)ΓT θΛΓe(t)

− δϕT
(
x(t), u(t), t

)
Λδϕ

(
x(t), u(t), t

) ≥ 0,
(50)

where θ is the Lipschitz constant and Γ is a constant
matrix with proper dimensions and there exist matrices
P1i = PT

1i > 0, P2i = PT
2i > 0 (1 ≤ i ≤ r), X1, X2,

Si, SLi (1 ≤ i ≤ 6), Λ = diag [λ1, . . . , λs] and a scalar
η > 0 such that

P2ρ +X2 − P2ξ ≥ 0, ∀ρ ∈ [1, . . . , r] − ξ,

P1ρ +X1 − P1ξ ≥ 0, ∀ρ ∈ [1, . . . , r] − ξ,

Rii < 0, 1 < i < r,

1
r − 1

Rii +
1
2
(Rij + Rji) < 0, 1 < i �= j < r,

(51)
where Rij is defined in (24) with the following changes:

Rij
1,1 = Rij

1,1 + ΓT θΛΓ,

Rij
5,5 = −Λ.

(52)

Then, the observer gains are

Li = S−1
3 SLi. (53)

Proof. The proof is similar to that of Theorem 1. The
only difference is adding (50), instead of (15), to both the
sides of (39). Moreover, the nonlinear injection term is no
longer defined here and hence (23) changes to Ξij = Rij .

�

Remark 4. It should be noted that a common case
for nonlinear T–S observers, which is considered in the
literature, is a T–S model with Lipschitz nonlinearities
along with a traditional Luenberger observer (Theorem 2).
On the other hand, in this paper, the nonlinearity is of the
δQC type, which encompasses a wider class of systems
(Theorem 1). Moreover, by introducing a nonlinear
injection term to the observer, better state estimates can
be achieved. In the following section, it will be shown
through simulations that Theorem 2 cannot be used for
some systems, while Theorem 1 is a more general case
and can be applied to a wider class of systems with almost
no extra computation time.

4. Simulation examples

Example 1. In this example, the performance of
two theorems in this paper is compared. Consider the
system shown in Fig. 1, which represents a Translational
Oscillator with an eccentric Rotational Actuator (TORA)
system (Lee, 2004; Karagiannis et al., 2005). The
nonlinear coupling between the rotational motion of the
actuator and the translational motion of the oscillator
provides a mechanism for control. Let x1 and x2 denote
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the translational position and velocity of the cart, and x3

and x4 denote the angular position and velocity of the
rotational mass, respectively. Then, the system dynamics
can be described as (Tanaka and Wang, 2001)

ẋ =

⎛

⎜
⎜
⎜
⎜⎜
⎝

x2

−x1 + εx2
4 sinx3

1 − ε2 cos2 x3
x4

ε cosx3(x1 − εx2
4 sinx3)

1 − ε2 cos2 x3

⎞

⎟
⎟
⎟
⎟⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
−ε cosx3

1 − ε2 cos2 x3
0
1

1 − ε2 cos2 x3

⎞

⎟
⎟
⎟
⎟
⎟
⎠
u+ d1,

y =
(
x1 x2

)T + d2,

(54)

where

d1 =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0
1

1 − ε2 cos2 x3
0

−ε cosx3

1 − ε2 cos2 x3

⎞

⎟
⎟
⎟
⎟⎟
⎠
ν(t),

d2 =
(

0.1
0.2

)
ν(t), ε = 0.05,

(55)

in which ν(t) represents band-limited white noise with
power of 0.001. This system can be modeled as follows:

A1 =

⎛

⎜
⎜
⎝

0 1 0 0
−1

1−ε2 0 0 0
0 0 0 1
ε

1−ε2 0 0 0

⎞

⎟
⎟
⎠ ,

A2 =

⎛

⎜
⎜
⎝

0 1 0 0
−1

1−ε2 0 0 0
0 0 0 1
−ε

1−ε2 0 0 0

⎞

⎟
⎟
⎠ ,

A3 =

⎛

⎜
⎜
⎝

0 1 0 0
−1 0 0 −aε
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ ,

A4 =

⎛

⎜
⎜
⎝

0 1 0 0
−1 0 0 aε
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ ,

BT
1 =

(
0

−ε
1 − ε2

0
1

1 − ε2

)
,

BT
2 = BT

4 =
(
0 0 0 1

)
,

BT
3 =

(
0

ε

1 − ε2
0

1
1 − ε2

)
,

Gx1 = Gx3 =
(
0 0 0 1

)T
,

Gx2 = −Gx4 =
(
0 ε 0 0

)T
,

C =
(

1 0 0 0
0 0 1 0

)
,

ϕ(x) = x2
4 + ax4, a = 4.

(56)

Also x4 ∈ [−a a]. To introduce uncertainty in the
model, ε is equal to 0.01. Note that the system is stabilized
first and then an observer is designed for the stable system.
The state feedback gains for the stabilizer are

K1 =
(−0.2000 −5.9282 −0.3682 0.6357

)
,

K2 =
(−0.2443 −6.3255 −0.4499 0.7859

)
,

K3 =
(−0.3245 −7.3220 −0.5987 1.0194

)
,

K4 =
(−0.2278 −5.7132 −0.4192 0.7102

)
.
(57)

Fig. 1. TORA system.

The following gains are obtained for the observer
based on Theorem 1:

L1 =

⎛

⎜
⎜
⎝

−5.42 2.71
−11.96 0.94
3.09 −1.53
2.02 −0.95

⎞

⎟
⎟
⎠ ,

L2 =

⎛

⎜⎜
⎝

−5.57 2.81
−13.53 2.06
3.44 −1.79
2.45 −1.31

⎞

⎟⎟
⎠ ,

L3 =

⎛

⎜
⎜
⎝

−5.46 2.77
−12.27 1.66
3.14 −1.70
2.03 −1.23

⎞

⎟
⎟
⎠ ,

L4 =

⎛

⎜
⎜
⎝

−5.47 2.76
−12.40 1.56
3.20 −1.69
2.14 −1.18

⎞

⎟
⎟
⎠ ,

Ln =
(
0.5825 −1.0597

)
,

(58)
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Fig. 2. States (solid lines) and their estimaties (dotted lines) of
the TORA system based on Theorem 1.
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Fig. 3. Estimation errors of the TORA system based on Theo-
rems 1 (top) and 2 (botom).

and the observer gains using Theorem 2 are

L1 =

⎛

⎜
⎜
⎝

−5.56 2.83
−13.69 2.43
3.51 −1.90
2.57 −1.42

⎞

⎟
⎟
⎠ ,

L2 =

⎛

⎜
⎜
⎝

−5.72 2.90
−15.35 3.12
3.88 −2.05
3.01 −1.64

⎞

⎟
⎟
⎠ ,

L3 =

⎛

⎜
⎜
⎝

−5.63 2.87
−14.39 2.78
3.65 −1.97
2.67 −1.57

⎞

⎟
⎟
⎠ ,

L4 =

⎛

⎜⎜
⎝

−5.68 2.88
−15.01 2.97
3.84 −2.03
2.95 −1.62

⎞

⎟⎟
⎠ .

(59)

Comparing the gains, it is obvious that they are
almost the same. Figure 2 shows the states and their

estimates based on Theorem 1 and Fig. 3 shows the
estimation errors of the two methods. It should be noted
that using the δQC property instead of the Lipschitz
condition neither alters the number of LMI variables, nor
changes the size of LMIs. However, in order to add
the nonlinear injection term to the observer, one extra
variable is added and rows of LMIs are augmented by the
dimension of X , which is equal to one in this example.
Hence, it is clear that the computational burden will not
increase much. �

Although in the above example the performance of
two methods is similar, there are cases where Theorem 2
fails to find any answer. This is considered in the next
example.

Example 2. In this example, the importance of
the nonlinear injection term and the δQC condition is
demonstrated. It will be shown that for some systems
no answer can be obtained without the nonlinear injection
term. In other words, Theorem 2 fails to provide a solution
for some classes of systems. Consider the system (7) with
the following parameters:

A1 =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A2 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ ,

Gx1 = Gx2 =
(
0 1 0

)T
, Γ =

(
0 0 1

)

B1 = B2 =
(
0 0 1

)T
, C =

(
1 0 0
0 1 0

)
,

D11 = D12 =
(
0.1 0.1 0.1

)T
,

D2 =
(
0.1 0.2

)T
Cq =

(
0 0 1

)
, Dq = 0,

M1 =
(
0.01 0.005 0.003

)
,

M2 =
(
0.003 0.006

)
,

N1 =
(
0.1 0.002 0

)
,

N2 = 0.1, N3 = 0.002,
(60)

where ν(t) is band-limited white noise with the power of
0.001 and ϕ(x(t), u(t), t) is a nonlinear function of x3.
Clearly, q = x3 in (2).

Suppose this nonlinearity satisfies the Lipschitz
condition (50) as well as the incremental quadratic (δQC)
condition (15) with a matrix multiplier of the form (17),
where Y = −(1/θ)X and θ = 0.8. Using Theorem 1
and employing the YALMIP toolbox (Löfberg, 2004), the
following gains are obtained:

L1 =

⎛

⎝
−5.51 0.57
−2.98 −0.67
−0.02 −0.74

⎞

⎠ ,

L2 =

⎛

⎝
−6.58 1.33
−4.05 0.08
−1.35 −0.39

⎞

⎠ ,

Ln =
(
0.78 −1.12

)
,

(61)
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Fig. 4. State trajectory resulting from Theorems 1 (solid) and 2
(dashed).
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and the observer gains resulting from Theorem 2 are

L1 =

⎛

⎝
−50.61 22.70
−46.05 19.17
−26.63 11.13

⎞

⎠ ,

L2 =

⎛

⎝
−51.45 23.15
−47.63 19.97
−28.48 11.56

⎞

⎠ .

(62)

In order to show the performance of these two
methods, the observed states are used in the controller
loop. In this case, in order to better observe the
performance of different methods, the controller gains
are selected such that the states are not damped quickly.
The state feedback controller gains are selected as Ki =(
30 20 30

)
, i = 1, 2. Simulation results are

presented in Figs. 4 and 5. As these figures show,
Theorem 1 provides better state estimates by faster
convergence to the desired values.

Next, the vital role of the nonlinear injection term
and hence the role of the δQC condition (compared with
the Lipschitz condition) are shown by changing θ in the
system model. Figure 6 shows the H∞ performance
bound γ versus changes in θ. It can be observed that
by increasing θ from 0.1 to 0.9 the value of γ increases

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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2

2.5
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3.5

γ

θ
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Fig. 6. H∞ performance bound γ resulting from Theorems 1
(solid) and 2 (dashed) for different values of θ.

from 0.08 to 0.12 for Theorem 1 and from 0.1 to 3.5 for
Theorem 2, respectively. Based on (42), higher values
for γ can yield higher estimation errors and hence worse
performance for the observer. For θ ≥ 1, Theorem 2
does not yield any feasible solution while Theorem 1 still
provides good performances.

As a special case, consider ϕ(x(t), u(t), t) = x3|x3|,
x3 ∈ [−3 3], which is Lipschitz as well as incremental
quadratic (δQC) with a matrix multiplier of the form (17)
and (44), respectively, with

Ma =
(
X 0
0 − 1

θX

)
, Mb =

(
0 X
X − 2

θX

)
. (63)

In this case θ = 2, so Theorem 2 has no solution. Using
Theorem 1, the following gains are obtained for Ma:

L1 =

⎛

⎝
−7.96 2.20
310.71 −158.54
186.25 −94.20

⎞

⎠ ,

L2 =

⎛

⎝
−7.92 2.19
309.77 −158.54
184.16 −94.01

⎞

⎠ ,

Ln =
(
0.33 −0.63

)
.

(64)

Also, using Remark 2, the following gains are obtained
for Mb:

L1 =

⎛

⎝
−21.15 10.05
−24.27 11.61
−5.82 2.42

⎞

⎠ ,

L2 =

⎛

⎝
−17.61 8.27
−19.81 9.35
−6.88 2.91

⎞

⎠ ,

Ln =
(
2.58 −2.13

)
.

(65)

To show the effectiveness of modeling a system
using a nonlinear Sugeno model, the results are also
compared with a traditional Sugeno model with linear
local subsystems. Note that in this case the system model
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ple 2.

and hence the observer have the following four rules:

A1 =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A2 =

⎛

⎝
0 1 0
0 0 4
0 0 0

⎞

⎠ ,

A3 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , A4 =

⎛

⎝
0 1 0
0 0 4
1 0 0

⎞

⎠ .

(66)

Here x3 is one of the premise variables but it is not
measured directly and must be estimated. The observer
gains based on the method proposed by Faria et al. (2012)
are

L1 =

⎛

⎝
−22.06 9.59
−14.54 5.14
2.23 −1.87

⎞

⎠ ,

L2 =

⎛

⎝
−17.31 6.92
−2.46 −1.52
2.23 −1.63

⎞

⎠ ,

L3 =

⎛

⎝
−15.82 6.18
−3.77 −0.81
0.78 −1.61

⎞

⎠ ,

L4 =

⎛

⎝
−15.53 5.56
−0.79 −3.33
1.27 −1.81

⎞

⎠ .

(67)

The state variables of the system and their estimates
with gains using the multiplier M1 and a Sugeno model
with linear rules are shown in Fig. 7. The observation
errors of all the three methods are shown in Fig.8.

Simulation results show that the nonlinear Sugeno
model simplifies the design. In other words, by reducing
the number of rules in the model by two, the number
of LMI variables is reduced by six. Although two
variables are added for the nonlinear term and the
nonlinear injection term, the number of rules considerably
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Fig. 8. Estimation error of Example 2, using multiplier Ma

(up), Mb (middle) and linear Sugeno (down).

reduced. Moreover, by omitting unmeasured premise
variables, the number of LMIs to be solved is drastically
reduced. In addition, due to a better modeling of the
system, a better performance of the observer can be
achieved. Furthermore, the nonlinear Sugeno model with
an incrementally quadratic constraint on the nonlinear
term will result in less conservative design in contrast to
the Lipschitz constraint. In other words, the proposed
method encompasses a larger class of systems. Moreover,
the performance of the observer can be improved by
selecting a proper form for the multiplier matrix. �

5. Conclusion

In this paper, a Sugeno system with a nonlinear
consequent part was considered to reduce the number
of rules in the model. In addition, a novel observer
was designed for these systems. In the Sugeno model,
the consequent part was assumed to have an incremental
quadratic nonlinearity. This property was compared with
the well-known Lipschitz nonlinearity, which dominates
in the literature. In simulation examples, it was shown
that this property can reduce the conservativeness of the
observer design. The observer-based controller design for
such systems using a similar nonlinear injection term will
be considered in future works.
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