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MINIMUM ENERGY CONTROL OF POSITIVE CONTINUOUS–TIME LINEAR
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The minimum energy control problem for positive continuous-time linear systems with bounded inputs is formulated and
solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the
problem is proposed and illustrated with a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever
in the positive orthant for all nonnegative inputs. An
overview of the state of the art in positive system theory is
given by Farina and Rinaldi (2000) as well as Kaczorek
(2001). A variety of models having positive behavior
can be found in engineering, economics, social sciences,
biology and medicine, etc.

Positive fractional linear systems were investigated
by Kaczorek (2008a; 2011b; 2011c; 2012). The stability
of fractional linear 1D discrete-time and continuous-time
systems was investigated by Busłowicz (2008), Dzieliński
and Sierociuk (2008a) as well as Kaczorek (2012), and
that of 2D fractional positive linear systems by Kaczorek
(2009). The notion of the practical stability of positive
fractional discrete-time linear systems was introduced
by Kaczorek (2008b). The minimum energy control
problem for standard linear systems was formulated
and solved by Klamka (1991; 1983; 1976; 2010;
1993; 1977), while for 2D linear systems with variable
coefficients by Kaczorek and Klamka (1986). The
controllability and minimum energy control problems of
fractional discrete-time linear systems were investigated
by Klamka (2010; 1993). The minimum energy control
of fractional positive continuous-time linear systems
was addressed by Kaczorek (2013a), and for descriptor
positive discrete-time linear systems by the same author
(Kaczorek, 2013b).

In this paper the minimum energy control problem

for positive continuous-time linear systems with bounded
inputs will be formulated and solved.

The paper is organized as follows. In Section 2
basic definitions and theorems of positive continuous-time
linear systems are recalled and necessary and sufficient
conditions for the reachability of positive systems are
given. The minimum energy control problem of positive
linear systems with bounded inputs is formulated and
solved in Section 3. Sufficient conditions for the existence
of a problem solution are established and a procedure for
computation of the optimal inputs and the minimum value
of the performance index are also presented. Concluding
remarks are given in Section 4.

The following notation will be used: R is the set of
real numbers, R

n×m is the set of n × m real matrices,
R

n×m
+ is the set of n × m matrices with nonnegative

entries and R
n
+ = R

n×1
+ , Mn is the set of n × n Metzler

matrices (real matrices with nonnegative off-diagonal
entries), In is the n × n identity matrix.

2. Reachability of positive continuous-time
linear systems

Consider the continuous-time linear system

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and input
vectors, respectively, and A ∈ R

n×n, B ∈ R
n×m.
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The solution of Eqn. (1) has the form

x(t) = eAtx0+
∫ t

0

eA(t−τ)Bu(τ) dτ, x(0) = x0. (2)

Definition 1. (Kaczorek, 2001) The system (1) is called
internally positive if and only if x(t) ∈ R

n
+, t ≥ 0, for

any initial conditions x0 ∈ R
n
+ and all inputs u(t) ∈ R

m
+ ,

t ≥ 0.

Theorem 1. (Kaczorek, 2001) The system (1) is internally
positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , (3)

where Mn is the set of n × n Metzler matrices.

Definition 2. The positive system (1) (or the positive pair
(A, B)) is called reachable in time t ∈ [0, tf ] if for any
given final state xf ∈ R

n
+ there exists an input u(t) ∈ R

m
+ ,

for t ∈ [0, tf ], that steers the state of the system from the
zero initial state x(0) = 0 to the state xf , i.e., x(tf ) = xf .

A real square matrix is called monomial if each of its
rows and each of its columns contains only one positive
entry and the remaining entries are zero.

Theorem 2. The positive system (1) is reachable in time
t ∈ [0, tf ] if and only if the matrix A ∈ Mn is diagonal
and the matrix B ∈ R

n×m
+ is monomial.

The proof is similar to that given by Kaczorek
(2013a).

3. Minimum energy control problem for
positive systems with bounded inputs

3.1. Problem formulation. Consider the positive
system (1) with A ∈ Mn and monomial B ∈ R

n×n
+ .

If the system is reachable in time t ∈ [0, tf ], then there
usually exist many different inputs u(t) ∈ R

n
+ that steer

the system state from x0 = 0 to xf ∈ R
n
+. Among these

inputs we are looking for an input u(t) ∈ R
n
+ satisfying

the condition

u(t) < U ∈ R
n
+ for t ∈ [0, tf ] (4)

that minimizes the performance index

I(u) =
∫ tf

0

uT (τ)Qu(τ) dτ, (5)

where Q ∈ R
n×n
+ is a symmetric positive-definite matrix

and Q−1 ∈ R
n×n
+ .

The minimum energy control problem for the
positive continuous-time linear systems (1) with bounded
inputs can be stated as follows. Given matrices A ∈ Mn,
B ∈ R

n×n
+ , U ∈ R

n
+ and Q ∈ R

n×n
+ of the performance

index (5), xf ∈ R
n
+ and tf > 0, find an input u(t) ∈ R

n
+

for t ∈ [0, tf ] satisfying (4) that steers the system state
vector from x0 = 0 to xf ∈ R

n
+ while minimizing the

performance index (5).

3.2. Problem solution. To solve the problem, we
define the matrix

W = W (tf , Q)

=
∫ tf

0

eA(tf−τ)BQ−1BT eAT (tf−τ) dτ.
(6)

From (6) and Theorem 2.2 it follows that the matrix
(6) is monomial if and only if the fractional positive
system (1) is reachable in time [0, tf ]. In this case we may
define the input

û(t) = Q−1BT eAT (tf−t)W−1xf for t ∈ [0, tf ].
(7)

Note that the input (7) satisfies the condition u(t) ∈
R

n
+ for t ∈ [0, tf ] if

Q−1 ∈ R
n×n
+ and W−1xf ∈ R

n
+. (8)

Theorem 3. Let the positive system (1) be reachable in
time [0, tf ] and let ū(t) ∈ R

n
+ for t ∈ [0, tf ] be an input

that steers the state of the positive system (1) from x0 =
0 to xf ∈ R

n
+ and satisfies the condition (4). Then the

input (7) also steers the system state from x0 = 0 to xf ∈
R

n
+ and minimizes the performance index (5), i.e., I(û) ≤

I(ū).
The minimal value of the performance index (5) is

equal to
I(û) = xT

f W−1xf . (9)

Proof. If the conditions (8) are met, then the input (7) is
well defined and û(t) ∈ R

n
+ for t ∈ [0, tf ]. We shall show

that the input steers the system state from x0 = 0 to xf ∈
R

n
+. Substitution of (7) into (2) for t = tf and x0 = 0

yields

x(tf )

=
∫ tf

0

eA(tf−τ)Bû(τ) dτ

=
∫ tf

0

eA(tf−τ)BQ−1BT eAT (tf−τ) dτ W−1xf

= xf

(10)

since (6) holds. By assumption, the inputs ū(t) and û(t),
t ∈ [0, tf ], steer the system state from x0 = 0 to xf ∈ R

n
+.

Hence

xf =
∫ tf

0

eA(tf−τ)Bū(τ) dτ

=
∫ tf

0

eA(tf−τ)Bû(τ)dτ (11a)

or ∫ tf

0

eA(tf−τ)B[ū(τ) − û(τ)] dτ = 0. (11b)
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By transposition of (11b) and postmultiplication by
W−1xf , we obtain

∫ tf

0

[ū(τ)− û(τ)]T BT eAT (tf−τ) dτ W−1xf = 0. (12)

Substitution of (7) into (12) yields

∫ tf

0

[ū(τ) − û(τ)]T BT eAT (tf−τ) dτ W−1xf

=
∫ tf

0

[ū(τ) − û(τ)]T Qû(τ) dτ = 0. (13)

Using (13), it is easy to verify that

∫ tf

0

ū(τ)T Qū(τ) dτ

=
∫ tf

0

û(τ)T Qû(τ) dτ

+
∫ tf

0

[ū(τ) − û(τ)]T Q[ū(τ) − û(τ)] dτ. (14)

From (14) it follows that I(û) < I(ū) since the
second term on the right-hand side of the inequality is
nonnegative.

To find the minimal value of the performance
index (5), we substitute (7) into (5) and obtain

I(û) =
∫ tf

0

ûT (τ)Qû(τ) dτ (15)

= xT
f W−1

∫ tf

0

eA(tf−τ)BQ−1BT eAT (tf−τ) dτ

× W−1xf (16)

= xT
f W−1xf

since (6) holds. �
From (7) we have

dû(t)
dt

= −EAT eAT (tf−t)F, (17a)

where

E = Q−1BT , F = W−1xf . (17b)

Using (17) we may find t ∈ [0, tf ] for which
û(t) ∈ R

n
+ reaches its maximal value. Note that if all the

eigenvalues of the matrix A have positive real parts, then
û(t) reaches its maximal value for t = 0, and if they have
negative real parts, then this value is attained for t = tf .

From the above we have the following procedure for
computation of the optimal inputs satisfying the condition
(4) that steer the state of the system from x0 = 0 to xf ∈
R

n
+ and minimize the performance index (5).

Procedure 1.
Step 1. Knowing A ∈ Mn, compute eAt.

Step 2. Using (6), compute the matrix W knowing the
matrices A, B, Q for some tf .

Step 3. Using (7) and (16), compute the input (7) and tf
satisfying the condition (4) for given U ∈ R

n
+ and xf ∈

R
n
+.

Step 4. Using (9), compute the minimal value of the
performance index.

Example 1. Consider the positive system (1) with
matrices

A =
[

a1 0
0 a2

]
, B =

[
0 b1

b2 0

]
,

ak > 0, bk > 0, k = 1, 2 (18)

and the performance index (5) with

Q =
[

q1 0
0 q2

]
, qk > 0, k = 1, 2. (19)

�
Compute the bounded input û(t) satisfying

û(t) =
[

û1(t)
û2(t)

]
<

[
U1

U2

]

for t ∈ [0, tf ] that steers the state of the system from
zero state to xf = [ xf1 xf2 ]T ∈ R

2
+ (T denotes the

transpose) and minimizes the performance index.

Using Procedure 1, we obtain the following.

Step 1. In this case, we have

eAt =
[

ea1t 0
0 ea2t

]
. (20)

Step 2. Using (18), (19) and (20), we obtain

W =
∫ tf

0

eA(tf−τ)BQ−1BT eAT (tf−τ) dτ

=
∫ tf

0

eAτBQ−1BT eAT τ dτ

=
∫ tf

0

[
b2
1q

−1
2 e2a1τ 0

0 b2
2q

−1
1 e2a2τ

]
dτ

=

[
b21q−1

2
2a1

(e2a1tf − 1) 0

0 b22q−1
1

2a2
(e2a2tf − 1)

]
.

(21)
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Step 3. Using (7), (18), (19) and (21), we obtain

û(t)

= Q−1BT eAT (tf−t)W−1xf

=
[

q−1
1 0
0 q−1

2

] [
0 b1

b2 0

]T

×
[

ea1(tf−t) 0
0 ea2(tf−t)

]

×

⎡
⎢⎢⎣

b2
1q

−1
2

2a1
(e2a1tf − 1) 0

0
b2
2q

−1
1

2a2
(e2a2tf − 1)

⎤
⎥⎥⎦

−1

×
[

xf1

xf2

]

=

⎡
⎢⎣

2a2

b2
ea2(tf−t)(e2a2tf − 1)−1xf2

2a1

b1
ea1(tf−t)(e2a1tf − 1)−1xf1

⎤
⎥⎦ .

(22)

The minimal value of tf satisfying the condition (4)
can be found from the inequality

⎡
⎢⎣

2a2

b2
ea2(tf−t)(e2a2tf − 1)−1xf2

2a1

b1
ea1(tf−t)(e2a1tf − 1)−1xf1

⎤
⎥⎦

<

[
U1

U2

]
for t ∈ [0, tf ]. (23)

From (23), we have

e2a2tf − 2a2xf2

b2U1
ea2tf − 1 > 0,

e2a1tf − 2a1xf1

b1U2
ea1tf − 1 > 0.

(24)

Solving the inequalities (24) with respect to tf , we
obtain

tf >
1
a2

ln

⎡
⎣a2xf2

b2U1
+

√(
a2xf2

b2U1

)2

+ 1

⎤
⎦ ,

tf >
1
a1

ln

⎡
⎣a1xf1

b1U2
+

√(
a1xf1

b1U2

)2

+ 1

⎤
⎦ (25a)

and

tf = max

{
1
a2

ln

⎡
⎣a2xf2

b2U1
+

√(
a2xf2

b2U1

)2

+ 1

⎤
⎦ ,

1
a1

ln

⎡
⎣a1xf1

b1U2
+

√(
a1xf1

b1U2

)2

+ 1

⎤
⎦

}
. (25b)

For example, for a1 = 2, a2 = 3, b1 = b2 = 1, U1 =
U2 = 1 and xf = [ 1 1 ]T , from (22) we obtain û1(t)
and û2(t) for t ∈ [0, 1] shown in Fig. 1.

Fig. 1. Values of optimal input at time t ∈ [0, 1].

Note that û1(t) and û2(t) reach their maximum
values for t = 0 since the eigenvalues a1, a2 of A are
positive.

From (24) for the same data we obtain

1
a2

ln

⎡
⎣a2xf2

b2U1
+

√(
a2xf2

b2U1

)2

+ 1

⎤
⎦

=
1
3

ln[3 +
√

10] = 0.6061,

1
a1

ln

⎡
⎣a1xf1

b1U2
+

√(
a1xf1

b1U2

)2

+ 1

⎤
⎦

=
1
2

ln[2 +
√

5] = 0.7218 (26a)

and

tf = max {0.6061, 0.7218} = 0.7218. (26b)

Step 4. The minimal value of the performance index (9) is
equal to

I(û)

= xT
f W−1xf = [ xf1 xf2 ]

×

⎡
⎢⎢⎣

b2
1q

−1
2

2a1
(e2a1tf − 1) 0

0
b2
2q

−1
1

2a2
(e2a2tf − 1)

⎤
⎥⎥⎦

−1

×
[

xf1

xf2

]

=
2a1q2

b2
1

(e2a1tf − 1)−1x2
f1

+
2a2q1

b2
2

(e2a2tf − 1)−1x2
f2.

(27)
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4. Concluding remarks

Necessary and sufficient conditions for the reachability of
positive continuous-time linear systems were established
(Theorem 2). The minimum energy control problem for
positive continuous-time linear systems with bounded
inputs was formulated and solved. Sufficient conditions
for the existence of a solution to the problem were
given (Theorem 3), and a procedure for computation
of optimal input satisfying the condition (4) and the
minimal value of the performance index was proposed.
The effectiveness of the procedure was demonstrated
on a numerical example. The presented method can be
extended to positive discrete-time linear systems as well
as fractional positive continuous-time and discrete-time
linear systems with bounded inputs.
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