
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 4, 731–747
DOI: 10.2478/amcs-2013-0055

A VERIFIED METHOD FOR SOLVING PIECEWISE SMOOTH INITIAL VALUE
PROBLEMS

EKATERINA AUER ∗, STEFAN KIEL ∗, ANDREAS RAUH ∗∗

∗ Department of Computer Science and Applied Cognitive Science
University of Duisburg–Essen, 47048 Duisburg, Germany

e-mail: {auer,kiel}@inf.uni-due.de

∗∗Chair of Mechatronics
University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany

e-mail: andreas.rauh@uni-rostock.de

In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task
of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem.
Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more
useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide
a short overview of possibilities to formulate non-smooth problems and point out connections between the traditional
non-smooth theory and interval analysis. Moreover, we summarize already existing verified methods for solving initial
value problems with non-smooth (in fact, even not absolutely continuous) right-hand sides and propose a way of handling
a certain practically relevant subclass of such systems. We implement the approach for the solver VALENCIA-IVP by
introducing into it a specialized template for enclosing the first-order derivatives of non-smooth functions. We demonstrate
the applicability of our technique using a mechanical system model with friction and hysteresis. We conclude the paper by
giving a perspective on future research directions in this area.

Keywords: interval methods, non-smooth systems, initial value problems.

1. Introduction

A large number of applications from the theory of
automatic control, mechanics, or electrical engineering
are represented by mathematical models that depend
on discontinuous or non-differentiable functions. Such
situations occur, for example, when engineers describe
systems with friction, take into account saturation effects
in quantities of interest or simply express naturally arising
conditions such as non-positivity of variables (Patton
et al., 2012; Myśliński, 2012; Barboteu et al., 2013). The
task becomes especially complicated if non-smooth Initial
Value Problems (IVPs) are considered. Here, even the
definition of the solution might depend on the application
at hand. Solving such problems is often additionally
impeded by uncertainty in parameters. Besides, the
solution might be sensitive to numerical errors. One
possibility to deal with these difficulties is the use of
verified methods both at the modeling and simulation
stages.

Verified methods (Moore, 1966) provide a guarantee
that results obtained on a computer are consistent
with the formal model developed for the real-life
system considered. The application of existing interval
methods to real-life scenarios is challenging since they
might provide overly conservative enclosures of exact
solutions1. Even in the case of jump discontinuities,
where the solution is not differentiable at just several
switching points, the accuracy after encountering such
a point might be poor and, consequently, the resulting
enclosures might be too wide (Rihm, 1992). This is
probably the reason for the relatively little attention
non-smooth problems have received in the last decades
whereas the verified solution of smooth IVPs has been
extensively explored (Lohner, 1988; Nedialkov, 2002;
Eble, 2007; Rauh and Auer, 2011).

Verified works on this topic can be roughly divided
into two groups according to the description of the

1Exact in a predefined sense.

{auer,kiel}@inf.uni-due.de
andreas.rauh@uni-rostock.de

732 E. Auer et al.

discontinuous system in question. The first group
assumes that the system is given in terms of analytical
expressions (see the work of Rihm (1992) and the
references therein). The second group assumes that the
system is represented by a graph containing different
Ordinary Differential Equations (ODEs) as vertices and
logical conditions for jumps as edges (Rauh et al., 2006;
Eggers et al., 2009; Nedialkov and von Mohrenschildt,
2002). Additionally, a lot of research has been done on
generalizing the notion of the derivative for non-smooth
functions in the area of verified optimization. The goal
was to allow using more efficient derivative-type methods
also for the practically highly relevant class of non-smooth
cost functions. Here, concepts such as slope intervals,
the generalized gradient, and the slant derivative were
developed and compared with each other, at least, for
non-smooth Lipschitz problems (see the works of Kearfott
(1996), Munoz and Kearfott (2004) or Schnurr (2007) and
the references therein).

In traditional theory, there exist many possibilities
to formulate a non-smooth problem. However, the
community concentrating on this approach to handling
such systems is in general not aware of interval-based
or similar methods for solving differential equations with
convex and closed set-valued right-hand sides. Therefore,
it is interesting not only to establish equivalences and
connections between different concepts, but also to point
out which of the cases can be covered by interval analysis.

In this paper, we identify important types of
non-smooth applications along with their corresponding
problem and solution definitions in Section 2. After
that, we provide an overview of existing techniques for
the calculation of verified enclosures of solutions to
non-smooth IVPs and point out possible application areas
for them in Section 3. Next, we focus our discussion
on a special case in which the switching points are
known a priori in a certain sense. For this situation,
we describe a simple method to solve non-smooth IVPs
using basically the same techniques as in the smooth
case. Here, we combine a generalized derivative definition
with the algorithm of the verified solver VALENCIA-
IVP2 (Rauh and Auer, 2011) to obtain enclosures of the
solutions for non-smooth systems given algorithmically,
that is, as a certain piece of code. In Section 4, the
problem we consider is stated, its solution defined, a
suitable derivative definition introduced. Moreover, we
show that the guarantee of correctness is preserved inside
the changed algorithm of VALENCIA-IVP. Finally, we
demonstrate the applicability of the method using a
mechanical system with friction and hysteresis (Rauh
et al., 2011) in Section 5. The results are compared with
those from the cited paper. Conclusions and an outlook on

2 VALidation of state ENClosures using Interval Arithmetic for Ini-
tial Value Problems.

our future work are given in Section 6.

2. Problem formulations

In this section, we summarize types of non-smooth
problems arising in practice. After that, we describe
possible problem formulations and appropriate solution
definitions from the point of view of the traditional
theory. Where applicable, we provide interval-based
reformulations.

2.1. Non-smoothness in practice. Non-smooth or
discontinuous IVPs arise naturally in many practical
applications (Kunze, 2000; Acary and Brogliato, 2008).
In mechanics, they describe, e.g., systems with friction,
with impacts, with piecewise contact laws or with
hysteresis; in electrical engineering, electrical circuits
with (ideal) diodes; in control engineering, sliding
or switching control systems as well as a number
of optimal control laws; in biology, systems with
instantaneous switches or with hysteresis. Besides,
non-smooth representations are useful in economics,
hydraulic circuits, material science, and many other areas.
The mathematical formalisms and solution methods for
the problems in different fields might be very similar. As
an illustration, consider the mathematical system given by
Magnus and Popp (2005, p. 43):

mẍ + h · sign(x) = 0, (1)

with h = const and sign(·) the sign function, which
can be interpreted as a nonlinear sliding pendulum
(mechanics) or a relay oscillator (electrical engineering).
Another example is that the complementarity condition
between the current across an ideal diode and its voltage
(electrical circuits) is similar to the relation between
the contact force and the distance between the system
and an obstacle in unilateral mechanics (Acary and
Brogliato, 2008). The two characteristics in question
should be non-negative and orthogonal to each other in
the geometrical sense. That is, one characteristic can only
be positive if the other is equal to zero, which can be
described by a multivalued function.

What is often overlooked or neglected is the fact
that non-smoothness might arise in every research area
relying on numerical computations when scientists try to
ensure numerical stability in their programs. From the
point of view of implementation, non-smoothness can be
caused simply by the presence of IF-THEN-ELSE or
SWITCH statements on variables in a program code. This
kind of discontinuity is not as obvious as that arising
in, for example, systems with impacts since it is often
hidden in the code. Although floating-point based IVP
solvers might be rather accurate in treating such problems
as smooth ones, there is no guarantee of correctness for

A verified method for solving piecewise smooth initial value problems 733

the obtained results. Since verified IVP solvers rely on
derivatives in their algorithms, they would encounter a
conceptual problem immediately in this situation.

Depending on the application area and the
background of researchers, non-smooth systems can
be formally represented in two general ways: as a kind
of an automaton or, mathematically, in the form of
differential and/or algebraic expressions. In this paper,
we will focus on the mathematical representation mainly.
However, we will also touch upon automaton-based
verified methods where appropriate.

The automaton group assumes that the system is
represented by a kind of graph containing different ODEs
as vertices and logical conditions for jumps as edges.
The modeling formalisms can be roughly divided into
those based on hybrid automata, hybrid bond graphs and
hybrid discrete event system specification (Lunze and
Lamnabhi-Lagarrigue, 2009; Kofman, 2004). Note that
floating-point based numerical algorithms are used in the
mentioned references.

In the case of the mathematical representation,
researchers assume that the system is given in terms of
analytical expressions, e.g.,

ẋ(t) = f(t, x(t)), x(t0) = x0, (2)

with a possibly discontinuous function f . Discontinuities
might be expressed in different ways, e.g., as jumps
depending on zeros of a certain switching function
(cf. Section 2.2). A very common formalism to describe
and understand such systems in the traditional theory
is that of Differential Inclusions (DIs) (Filippov, 1988;
Acary and Brogliato, 2008; Orlov, 2004),

ẋ(t) ∈ F (t, x(t)), t ∈ [t0, tend], x(t0) = x0, (3)

where F is a set-valued map R × R
n �→ S(Rn) with

S(Rn) being a set of subsets of R
n. Geometrically,

F might represent convex (or non-convex) bounded (or
unbounded) sets. A requirement is that the inclusion in
(3) be satisfied almost everywhere on [t0, tend]. Different
applications dictate different requirements for the solution
x(t), e.g., for it to be absolutely continuous. Equally,
the map F might be defined differently according to the
application at hand, and so require a different kind of
analysis in each case. Note that if F maps to the set
of intervals IR

n and can be expressed as a sufficiently
(at least once) continuously differentiable function with
interval parameters, the task is related to a continuous IVP
in its interval formulation. This situation was extensively
explored, for example, by Lohner (1988), Nedialkov
(2002) and Eble (2007). The numerical algorithms in
these works provide an enclosure guaranteed to contain
the exact solution. For example, the problem

ẋ ∈ [−1, 1], x(0) = 0,

can be associated with the interval analysis formulation

ẋ = c, c = [−1, 1], x(0) = 0,

so that the smooth solution x(t) lies inside x(t) =
[−1, 1]t (in Section 2.3.2, a further example of the relation
between these two concepts is given).

In addition to bounded/unbounded DIs, formalisms
such as linear complementarity systems, evolution
variational inequalities, and piecewise continuous
representations are common. As stated by Acary and
Brogliato (2008), introducing large general classes of
descriptions is useful only in a limited way, and narrow
classes have to be defined to obtain accurate results. An
important direction of research should be “the study of
the relationships between the existing formalisms, like
possible equivalences”. In this paper, we shall focus on
convex closed DIs and point out where an interval-based
reformulation of the problem description is possible.

In the following, we summarize several types
of problem descriptions without the claim of being
exhaustive. The general goal of such descriptions (or
problem models) is to reformulate the problem (2) in a
way which allows proving the existence (and in some
cases the uniqueness) of the solution. In each of
the subsections below, we cover the following topics:
problem formulation, solution definition, existence (and
uniqueness) of the solution, relationship between the
solution(s) of the concept considered and the original IVP,
connections to interval analysis, and application areas.

2.2. ODEs with discontinuities. The following
type of problems is usually denoted as ODEs with
discontinuities:

ẋ(t) = f(t, x(t)) =
{

f1(t, x(t)), g(t, x(t)) < 0,
f2(t, x(t)), g(t, x(t)) > 0,

(4)

with x(t0) = x0, where f1(t, x), f2(t, x), and g(t, x) are
smooth. Points x∗ such that g(t, x∗) = 0 for some t are
called switching points. Both f1 and f2 are considered
to be bounded in x∗, that is, we examine only jump
discontinuities on the right-hand side. Such systems are
a special case of the so-called Filippov systems (Filippov,
1988) described in more detail in Section 2.3.1. This
situation is well-explored theoretically (Mannshardt,
1978; Stewart, 1990), in particular, under the presence
of bounded additive uncertainty (Orlov, 2004) and in the
interval case (Rihm, 1993). The main tool here is to
compute the left and right derivatives of g according to

ġ1(t, x) :=
∂g

∂t
+

∂g

∂x
f1(t, x), (5)

ġ2(t, x) :=
∂g

∂t
+

∂g

∂x
f2(t, x). (6)

734 E. Auer et al.

If the transversality condition holds, i.e., there exists
a G > 0 such that ġ1(t, x) ≥ G and ġ2(t, x) ≥ G, then
the solution crosses over the switching surface {(t, x) :
g(t, x) = 0} from the area G1 = {g(t, x) < 0} to the
area G2 = {g(t, x) > 0}. If there is a G < 0 such that
ġ1(t, x) ≤ G and ġ2(t, x) ≤ G, then the solution crosses
over the switching surface in the opposite direction (from
G2 to G1). If ġ1(t, x) < 0 and ġ2(t, x) > 0, then
the solutions in G1 and G2 run away from the switching
surface and the solution of (4) is not unique. This situation
is not interesting from the practical point of view, since
the motion along the switching surface “is unstable and
does not occur in real systems” Filippov (1988, p. 52).
The points (t, x) where this happens are called end points.
If ġ1(t, x) > 0 and ġ2(t, x) < 0, then the solutions
in G1 and G2 both run into the switching surface and
the solution to (4) has to stay there. Solution definitions
allowing sliding along such switching surfaces are given,
e.g., by Filippov (1988); see also Section 2.3.1. Rihm
(1993; 1998) gives a verified algorithm for the problem (4)
(cf. Section 3.2), where the solution is defined as shown
below.

Definition 1. A continuous function x(t) : I ⊂
[t0, tend] �→ R

n is a solution to (4) if the zeros of
the switching function g(t, x(t)) are isolated, ẋ(t) =
f(t, x(t)) everywhere except possibly on the set of all
zeros of the switching function, and the initial condition
x(t0) = x0 holds.

This definition coincides with the so-called
Carathéodory or classical definition except for the
fact that the latter do not require the zeros to be
isolated (Filippov, 1988). Carathéodory studied the
systems (2) whose right-hand sides were defined and
continuous in x for almost all t, measurable in t and
bounded for all x. He defined the solution to such a
system as an absolutely continuous function.

Note that Definition 1 does not cover sliding
solutions where ġ1(t, x) > 0, ġ2(t, x) < 0 and the
zeros of the switching function are not isolated. To take
into account such situations, Rihm resorts to the concept
of Filippov’s DIs described in more detail in the next
subsection. The approach is to define a solution for which
the DI (3) holds except possibly on a set of isolated points.
Here, the set-valued F is supposed to coincide with f1 in
the area G1, f2 in the area G2, and is allowed to contain
sets of higher cardinality at the switching surfaces where
g(t, x(t)) = 0.

This problem and solution formulation are useful for
mechanical systems with friction and hysteresis as well as
in non-smooth control tasks.

2.3. Differential inclusions. The concept of a DI is
described by the relation (3). Depending on the chosen F
and the definition of the solution, different DI types can

be specified. A detailed description of DIs and similar (or
equivalent) concepts is to be found in the work of Acary
and Brogliato (2008). The concept can be also used to
model the behavior of systems on switching surfaces. In
this subsection, we summarize briefly the ideas necessary
for the further understanding of the material in this paper.

2.3.1. Filippov’s inclusions. The assumption of
absolute continuity of the solution to (3) implies that only
the solution’s derivative may contain jumps. The intention
behind Filippov’s inclusions is to formulate the problem
in such a way as to ensure the existence of solutions and
their compliance with solutions to IVPs with continuous
right-hand sides (in the areas G1 and G2 for the problem
formulation (4)). In the work of Filippov (1988), one
of the possibilities to define a solution on the switching
surface is introduced as follows.

Definition 2. (Simplest convex definition) For each
(t, x), x a point of discontinuity, F (t, x) is the smallest
convex closed set containing all the limit values of the
function f(t, x∗) where t is fixed, (t, x∗) is not a point
of discontinuity, and x∗ → x.

For the problem (4), this definition can be reduced to

F (t, x) = {αf1(t, x)+ (1−α)f2(t, x) | α ∈ [0, 1]} (7)

for (t, x) on the switching surface. The solution to (2)
is then the solution to (3) with F defined as above. In
this definition, the map F (·) is upper semicontinuous,
and there always exists an absolute continuous solution
to (3) (Acary and Brogliato, 2008). As pointed out there,
this model does not reflect to the full extent the behavior
on the switching surfaces.

The remaining two definitions of the DI and the
solution by Filippov (1988) concern a special class of
control-motivated equations and are beyond the scope of
this paper.

2.3.2. Lipschitzian DI. Consider an autonomous DI
with F depending only on the states x ∈ R

n.

Definition 3. A DI of the form (3) is called Lipschitzian if
the sets F (x) are closed and convex and the map F (x) is
Lipschitz, i.e.,

F (x1) ⊂ F (x2) + l||x1 − x2|| · {y | ||y|| ≤ 1} (8)

for all x1, x2 ∈ R
n and l a positive constant (Acary and

Brogliato, 2008).

Each function x(t) satisfying (3) almost everywhere
with the mapping F defined as above is a solution of
(3). Each absolutely continuous function x(t) for which
(2) holds is a solution of the Lipschitzian DI. Vice versa,
there always exists a solution of the DI which is also the
solution of (2).

A verified method for solving piecewise smooth initial value problems 735

Note that in the interval setting, that is, if the sets
F (x) for each x are (or can be enclosed by) axis-parallel
interval vectors, the first condition in Definition 3 always
holds and the second one can be replaced by the interval
Lipschitz condition

F (x1) − F (x2) ⊂ L(x1 − x2), L ∈ IR
n . (9)

The solution to the interval problem

ẋ(t) = F (x(t)), x(0) = x0 (10)

can then be interpreted in the sense usual for interval
analysis (see, e.g., Lohner, 1988) as a set-valued map
satisfying the equation above. If F is (at least)
differentiable3, such a function can be computed using
methods of interval analysis. If it is only Lipschitzian,
the method proposed in Section 4 can be used.

The connections between the solutions to (2), to (3),
and to (10) can be illustrated using an example inspired
by Acary and Brogliato (2008). Let the problem be given
as

ẋ(t) = x(t)u(t), x(0) = x0, (11)

where u(t) is an unknown smooth function taking
all its values in the interval [−1, 1]. The first
possibility is to solve the IVP itself according to

x(t) = x0 exp
(t∫

0

u(s) ds
)
,

that is, if x(0) = 0, then x(t) = 0 is the problem
solution. By considering the corresponding DI according
to Definition 3,

ẋ(t) ∈ [−x(t), x(t)], x(0) = 0 , (12)

we obtain the same solution x(t) = 0. However, the
function

x(t) =
{

0, 0 ≤ t ≤ 2,
t2, t ≥ 2,

(13)

which fails to be absolutely continuous, is also a solution
of the DI above. Finally, if we consider the interval
problem

ẋ(t) = x(t) · [−1, 1], x(0) = x0, (14)

the exact solution is the set-valued function x(t) =
x0 exp ([−1, 1]t) and therefore x(t) = 0 for x0 = 0.

Lipschitzian DIs cover a smaller class of problems
than Filippov’s DIs. It is shown by Smirnov (2002) that
there exists a solution to a Lipschitzian DI with x(0) =
x0 on R

+ for any x0. In addition, if the one-sided
Lipschitz condition is fulfilled, then the solution is unique.
Application areas for such types of DIs are usually control
and systems theories.

3In general, better enclosures can be obtained if the right-hand side
is differentiable up to higher orders.

2.4. Further concepts. Many more types of
problem descriptions for non-smooth systems can be
encountered in the literature. In the works of
Acary and Brogliato (2008) or Bernardo et al. (2007),
the following are mentioned: Moreau’s sweeping
process, unilateral DIs, evolution variational inequalities,
differential variational inequalities, projected dynamical
systems, dynamical complementarity systems, switched
systems, and impulsive differential equations. They
emerged mainly out of the needs of certain applications,
so that some of them are equivalent (or at least
interconnected) theoretically. Traditional approaches
for handling them come from the areas of convex
analysis, non-smooth analysis, complementarity theory,
or the theory of variational inequalities. Some of the
concepts can be simplified by allowing the convex sets
considered to be intervals (or by enclosing them in
intervals). Then we can replace them with interval
initial value (or boundary) problems for ODEs or
Differential-Algebraic Equations (DAEs) as well as
interval inequalities in some of the cases, similarly to
the example in Section 2.3.2. IVPs for ODEs were
covered rather extensively from the verified point of
view (Nedialkov, 2002; Eble, 2007; Makino, 1998). There
are also several works on interval IVPs for DAEs (Rauh
et al., 2009). Certain complementarity problems can
be solved by verified optimization methods (Hansen and
Walster, 2004; Kearfott, 1996; Jaulin et al., 2001). Note
that this substitution does not mean that the solution set
would be exactly the same as for non-interval problem
formulations, because, strictly speaking, we change the
model. However, the interval solution might provide
enough information about the behavior of the technical
system considered.

The number of problems that can be reformulated
directly from the point of view of interval analysis
is relatively limited. To study the equivalences and
precise connections of the above mentioned concepts to
interval analysis remains a large and interesting topic
for future research. Our focus in this paper will be
to consider in detail the class of problems described
in Sections 2.2 and 2.3. However, some of the
other mentioned concepts can also be covered since
they are related: consider Example 2.43 for evolution
variational inequalities of Acary and Brogliato (2008) as
an illustration of such a correlation. There, the dynamics
of a system with the Coloumb and viscous friction is
modeled initially by the inclusion

mq̈(t) + cq̇(t) + kq(t) ∈ −∂ϕ(q̇(t))
= −μ · sign(q̇) (15)

with ϕ(q̇) = μ|q̇|, m, c, k, μ positive coefficients, and the

736 E. Auer et al.

set-valued sign function

sign(x) =

⎧⎨
⎩

−1, x < 0,
[−1, 1] , x = 0,
1, x > 0.

(16)

The DI above is then reformulated as a variational
inequality and an evolution variational inequality. In
Section 4 of this paper, we will suggest a method to solve
the following interval formulation of this problem:

{
ẋ1 = x2,

ẋ2 = − μ

m
· sign(x2) − c

m
x2 − k

m
x1,

(17)

with the sign function defined in the same way as above
and x1 = q, x2 = q̇. Here, the solution is understood
as a function tube (x1(t) x2(t))T containing a/the exact
solution to the problem in the sense of Definitions 1 and
2. We restrict our discussion to interval enclosures at
discrete time points {tk = tk−1 + hk | k = 1, . . . , n},
where tn = tend, hk the stepsize. The corresponding
(continuous) tube is usually obtained using the Taylor
expansion with suitable interval Taylor coefficients and
the enclosure of the error term (Lohner, 1988, p. 45). In
our case, this is not possible in general, since the solution
is potentially non-differentiable. However, we can enclose
the solution at points t �= tk using the mean value theorem
with the derivative definition given in Section 4.1. We
will focus on absolutely continuous solutions, i.e., those
without jumps in the states.

In traditional theory, there are two general
research directions for describing non-smooth
systems. Some researchers choose to focus
on qualitative analytical characteristics such as
(non-smooth) Lyapunov exponents, Conley’s index,
the Kolmogorov–Arnold–Moser theory, or Melnikov’s
theory (Kunze, 2000; Bernardo et al., 2007). Another
group of researchers is explicitly interested in devising
accurate numerical algorithms for characterizing the
solutions (Stewart, 1990; Mannshardt, 1978; Acary
and Brogliato, 2008). Direct numerical simulation
methods (time-stepping or event-driven) can (or should)
be supplemented by the so-called path-following ones
in order to accurately compute bifurcation points and
unstable invariant sets (Bernardo et al., 2007). In
Section 4 of this paper, we suggest a verified numerical
approach for a certain subclass of non-smooth systems,
that is, the computed enclosure is proved to contain a true
solution to the original problem.

3. Overview of the existing verified methods
for non-smooth IVPs

As pointed out before, interval methods (Moore, 1966)
offer a natural way of taking into account bounded,

purely epistemic uncertainty. Additionally, in the case
of smooth dynamics, they provide a guarantee that the
resulting numerical enclosure contains the exact solution
to the system model considered. Their main drawback is
possible overestimation, that is, conservative enclosures
which are too wide to give any information about
the system’s behavior. Note that overestimation is an
inherent feature of interval arithmetic. Geometrically
speaking, it arises from the fact that sets which are not
axis-parallel must be enclosed by axis-parallel interval
boxes. A set-theoretic reason is that intervals contain no
information on the dependency of variables, so that, for
example, the expression x − x is treated in the same way
as x−y in interval arithmetic. To deal with this drawback,
further kinds of set-valued arithmetics were developed
based on, for instance, affine forms (de Figueiredo and
Stolfi, 2004) or Taylor models (Makino, 1998). This
class of methods is called verified4 since they assert
the correspondence between the computed result and
the solution to the chosen formal model. Presently
(to our knowledge), there exist verified algorithms for
non-smooth systems based only on interval analysis.
More advanced affine or Taylor model methods require,
in general, differentiability up to higher orders, making it
challenging to account for non-smoothness. In the verified
case, the methods fall into two categories based on either
mathematical or automaton description again.

We open the section with a brief overview of
the main notions of interval analysis. After that, we
outline the method proposed by Rihm (1992) and an
automaton-based technique of Rauh et al. (2011). We
mention further approaches (some of them only partially
verified) in Section 3.4. This survey is not supposed to
be exhaustive; we outline several characteristic verified
approaches to finding solutions to (2).

3.1. Basics on interval analysis. An interval x =
[x, x], where x ∈ R, x ∈ R are the lower and upper
bounds, respectively, is defined as

x = {x ∈ R | x ≤ x ≤ x}. (18)

For any operation ◦ = {+,−, ·, /} and intervals x, y, the
corresponding interval operation can be defined as

x ◦ y

= [min{x ◦ y, x ◦ y, x ◦ y, x ◦ y}, (19)

max{x ◦ y, x ◦ y, x ◦ y, x ◦ y}].
It can be shown that the result of an interval operation is
also an interval. Every possible combination x ◦ y with
x ∈ x and y ∈ y lies inside this interval. (For division of
intervals, usually 0 /∈ y is assumed.)

4Here, the term refers to result verification and not code or formal
verification.

A verified method for solving piecewise smooth initial value problems 737

If a real function f is given, then its range over
an interval x from its domain is defined as the set
f(x) := {f(x) | x ∈ x}. The natural interval
extension of f is obtained by replacing all constants,
variables, and operations in its analytical expression by
the corresponding (point) interval constants, variables,
and operations. The natural interval extension of a
function encloses its range over the same interval. Other
kinds of interval extensions (evaluations) are possible,
e.g., mean value forms based on the mean value theorem.
Here, the range is enclosed in the manner

f(x) ⊆ f(x0) + f ′(x)(x − x0) , (20)

where x0 is the reference point. This kind of interval
extension produces better enclosures of the range than
the natural interval extension if the diameter of x
tends to zero (Alefeld and Herzberger, 1983, p. 28).
Many complex verified algorithms, such as those for
optimization or solution of IVPs, make use of this
property for obtaining tighter function range enclosures,
which either speeds the algorithm up or leads to tighter
enclosures of the solution.

To be able to work with these definitions on a
computer using a finite precision arithmetic, the concept
of machine intervals is necessary. They are represented
by floating point numbers for the lower and upper bounds.
To obtain the corresponding machine interval for the real
interval x, the lower bound is rounded down to the largest
representable machine number equal to or less than x, and
the upper bound is rounded up to the smallest machine
number equal to or greater than x (outward rounding).
The real interval operations are also rounded outward.
These notions can be extended to define interval vectors
x ∈ R

n and matrices X ∈ R
n×m.

A common technique for obtaining rough enclosures
of the solution to (smooth) IVPs is based on transforming
the problem into an equivalent integral equation and
applying a certain fixed point theorem to it (e.g.,
Banach’s). If the assumptions of the theorem used can
be checked on a computer, then the enclosure of the
solution obtained by an interval equivalent of the Picard
iteration is certain to contain the exact solution (see, e.g.,
Lohner, 1988; Eble, 2007).

There is a number of software libraries implementing
this theory in different programming languages such as
C++ or FORTRAN and computer algebra packages such
as MAPLE or MATLAB.

3.2. Rihm’s method. The goal is to find an enclosure
of the exact solution of (4) specified in Definition 1.
Note that the solution is supposed to be an absolutely
continuous function that runs through the switching point
at t∗ (the point where the solution x(t) intersects the
switching surface {g(t, x(t)) = 0}). First, we describe

the method for the case when t∗ satisfies the transversality
conditions and can therefore be uniquely continued from
G1 to G2.

Let t∗ ∈ [t−, t+] be an enclosure of the current
switching point obtained, e.g., using a variant of the
verified Newton method (Moore, 1966). If x− denoting
the enclosure of the exact solution x(t−) in the area of
smoothness G1 is given5, then the goal is to compute an
enclosure of the solution at t+, which is situated to the
right of the switching point t∗. Rihm (1992) proposes the
following approach.

With the abbreviations x∗ := x(t∗), f− :=
f1(t−, x(t−)), f+ := f2(t∗, x∗), h− := t∗ − t−, h+ :=
t+ − t∗, we obtain the two formulas below by applying
the Euler method with the exact local errors z− ∈ z− and
z+ ∈ z+:

x∗ = x(t−) + h− · f− + z−, (21)

x(t+) = x∗ + h+ · f+ + z+ . (22)

Note that if we denote by s the width of the interval
[t−, t+], s = t+ − t−, then the following relations hold
for the unknown stepsizes h−, h+:

h− + h+ = s, h− = s − h+, h+ ∈ [0, s].

Substituting (21) for x∗ in Eqn. (22) and using the
relations above, we obtain an enclosure x+ of the exact
solution x(t+) as

x(t+) = x(t−) + h+(f+ − f−) + sf− + z− + z+

∈ x− + sf− + [0, s](f+ − f−) + z− + z+

=: x+,

where x∗ := x− +[0, s]f− +z− and f− := f1(t−, x−),
f+ := f2([t−, t+], x∗) are interval evaluations of the
smooth functions f1 and f2. In particular, the width of
x+ depends on how big the gap

∣∣f+ − f−∣∣ between f1

and f2 is.
The algorithm can be extended (Rihm, 1993) to

cover the solutions in the sense of Definition 2 if the
corresponding condition for sliding holds. We consider
DIs (3) with the right-hand sides of the form (7), where

α(t, x) :=
ġ2(t, x)

ġ2(t, x) − ġ1(t, x)
∈ [0, 1] (23)

is a continuous function. The function

f0 := α(t, x)f1(t, x) + (1 − α(t, x))f2(t, x) (24)

is also continuous, that is, there exists at least one
classical solution to ẋ = f0(t, x), x(t∗) = x∗ which
is also a solution to (3). Under the assumption that

5Or obtained by a smooth IVP method.

738 E. Auer et al.

Table 1. Summary of different verified methods for non-smooth IVPs: R (Rihm, 1993), RS (Rauh et al., 2011), NM (Nedialkov
and von Mohrenschildt, 2002), H (Henzinger et al., 2000), I (Ishii, 2010), MC (Mahmoud and Chen, 2008), EE (Eggers
et al., 2009), and RA (Ratschan, 2012). Our method from Section 4 is denoted by A. The letters m and a denote mathematical
and automaton-based representations, respectively, + and − indicate the availability or absence of a feature, respectively, o
shows that a property does not apply, p stands for piecewise continuous, h and l stand for high and low, respectively.

Method
Property R RS NM H I MC EE RA A

representation m a a a a m a a m
conditions for f p p p p p Lipschitz p p p∗∗
conditions for fi Cq Cq Lipschitz∗ /Cq C1∗ Lipschitz o Cq C C1

use of transversality conditions + − + − − − − − −
analytical solution − − +/− +/− − − − − −
continuousness of solution + p p p p + o o +
consideration of sliding solutions + − − − − − − − −
use of verified IVPS + + + + + o + + +
analytic/verified constraint prop. − − − + + − + + −
verified equation solvers + − + − + + + − −
formal model checkers o − o − o o + + o
verified solution enclosure + + + + + − − − +
user involvement l h l l l l l l l

∗ fi should be chosen in such a way as for the IVP to have an analytical solution if no verified integration is used (e.g., linear).
∗∗ fi should be representable in the form (27).

f0 is continuously differentiable, the same approach as
described above can be applied to the modified IVP.

Nedialkov and von Mohrenschildt (2002) apply this
approach to non-smooth hybrid systems in combination
with the smooth IVP solver VNODE (Nedialkov, 2002).

3.3. Automaton-based method. There are several
authors who consider result verification of non-smooth
models given in the automaton representation (Nedialkov
and von Mohrenschildt, 2002; Rauh et al., 2011;
Ratschan, 2012; Henzinger et al., 2000). Rauh et al.
(2011) study dynamical systems consisting of l different
smooth models S = {S1, S2, . . . , Sl} given in the
state-space representation

ẋ (t) = fSi (x (t) , p, u (t) , t) , i = 1, . . . , l. (25)

Here, x ∈ R
n denotes the solution, p ∈ R

q the vector of
uncertain system parameters, and u ∈ R

r the vector of
control variables. The different models Si, i = 1, . . . , l,
are interpreted as discrete states of the overall non-smooth
model for the real world system. A transition from the
currently active state Si to the state Sj , i, j = 1, . . . , l,
takes place if the condition T j

i (x, u), which depends on
the solution and the control input, becomes active. The
condition T i

i denotes that the state Si remains active. T j
i

are supposed to be mutually exclusive.
The goal is to compute guaranteed enclosures of

solutions to the non-smooth model at discrete time
points. For this purpose, the authors suggest to extend
smooth IVP solving routines from interval analysis with
a technique to detect all possible points of time at which
transition conditions T j

i are activated. To provide tight

enclosures of the state variables, it is necessary to detect
as soon as possible that one of the states from S is not
active at a given point of time. The proposed algorithm
consists of the following four stages.

1. Calculation of a coarse bounding box ba
k for all

solutions in the time interval [tk , tk+1]. The Picard
iteration (Lohner, 1988) is applied formally for each t =
tk, the given stepsize h = tk+1 − tk, and the enclosure at
the previous step xk with

ba
k :=

⋃
i∈Ia

(x0 + [0, h] · fSi(xk, p, u(tk), tk)) ,

where ∪ denotes the convex hull and

Ia =
{
i
∣∣ T i

i = true
}

for t = tk.

Note that there is always at least one index in Ia. The
sets fSi(xk, p, u(tk), tk) can be obtained, for example, by
interval evaluation of the right-hand sides of the smooth
problems Si. Interval bounds of admissible, piecewise
constant control inputs u (tk) are assumed to be available
during the computation.

2. Activation of additional transition conditions. The
bounding box ba

k serves as a basis for checking whether
additional transition conditions become active for at least
one of the active models Si, i ∈ Ia. If transition
conditions to new models are activated, the bounding
box ba

k from the previous step is adjusted to contain the
additional information. That is, if Ĩa �= Ia, where

Ĩa

= Ia∪
{

j
∣∣∃i ∈ Ia : T j

i (ba
k, u ([tk, tk+1])) = true

}
,

A verified method for solving piecewise smooth initial value problems 739

then

b̃
a

k := ba
k ∪

⋃
i∈Ĩa\Ia

(
x0 + [0, h]

· fSi(b
a
k, p, u([tk, tk+1]), [tk, tk+1])

)
.

This procedure is repeated until no new indices can be
added to Ĩa.

3. Computation of a guaranteed enclosure of the so-
lution xk+1 at tk+1. The enclosure xk+1 at t = tk+1

is computed using an interval Taylor series expansion
method (Lohner, 1988). If only one discrete state is
activated (�Ĩa=1), an order q > 0 of the Taylor method
is used. If several discrete states Si are active, the order
q = 0 of the Taylor expansion is used for a convex hull fa

of functions fSi , i ∈ Ĩa. For more details, see the work of
Rauh et al. (2006).

4. Deactivation of discrete states for tk+1. The indices
of discrete states Si inadmissible at t = tk+1 have to be
deleted from Ĩa using predefined deactivation conditions
Dj

i (xk+1, u(tk+1)).
In the current implementation by Rauh et al. (2011),

the transition/deactivation conditions T j
i , Dj

i as well as
the hulls fa have to be specified manually, which, in
general, need not be so (cf. Eggers et al., 2009; Ratschan,
2012). The approach is implemented in MATLAB.

3.4. Further methods. Ratschan (2012), Eggers
et al. (2009) and Ishii (2010) rely on constraint
solving techniques and formal verification methods in
combination with interval analysis to study hybrid
systems given as automata. In the first two references,
the main goal is to formally verify that a hybrid
system does not reach a set of states marked as
unsafe, whereas the latter seeks to provide “a proof
of the reachability of a model, and [. . .] a guide in
the over-approximation refinement procedure”. In the
works of Eggers et al. (2009) and Ishii (2010), the
problem is formulated as a hybrid constraint system
which consists of instantaneous constraints, continuous
constraints on trajectories, and guard constraints on states
causing discrete changes. Ratschan (2012) provides a
generalized specification framework. Another method
from this class is described by Henzinger et al. (2000).
There, a hybrid system model checker is developed which
can handle dynamics expressed as a combination of
polynomials, exponentials, and trigonometric functions.
It conservatively overapproximates the set of reachable
states by using interval methods as a tool for computing
the flow successors of a given region.

A different approach that combines verified and
traditional algorithms for IVPs (2)6 with Lipschitz
continuous right-hand sides is that by Mahmoud and Chen

6With d(M · x(t))/dt instead of just dx(t)/dt.

(2008). The authors adapt an Implicit Runge–Kutta (IRK)
method of order s to non-smooth problems. First, they
solve the nonlinear system of equations associated with
IRK using a generalized Krawczyk algorithm to obtain an
enclosure xk of its exact solution. After that, they prove
that the error of the approximation to the IVP solution
obtained in the second step of IRK is smaller than a certain
weighted sum of the maximal widths of xk. Here, the
midpoints of xk are used to compute the approximation.

The above-mentioned techniques demonstrate their
close connection to the algorithms from non-smooth
optimization. Kearfott (1996) as well as Munoz and
Kearfott (2004) study from the verified point of view
the relationships between different generalizations of the
derivative for non-smooth functions and their application
to optimization problems and, in particular, to solving
systems of equations. In the work of Schnurr (2007),
the concept of slopes is implemented and extended to the
second order.

Further interesting references are the works of
Goldsztejn et al. (2010), Ramdani and Nedialkov (2011),
Ishii et al. (2011), Zgliczynski and Kapela (2009), or
Galias (2012).

In Table 1, the methods mentioned in this section are
summarized with respect to their main components and
requirements. A simple verified approach we propose
in the next section is shown in the last column. From
the table, it can be observed that this method needs less
strict requirements than most of the other methods to
produce a verified enclosure, at the cost of representing
the right-hand side in the form (27).

4. Simple verified approach

As pointed out by Kearfott (1996) with respect
to non-smooth optimization, “simplicity is a major
advantage of treating [. . .] non-smooth problems with
the same techniques as smooth problems”. This is
also true in the area of solving IVPs and makes a
difference between our approach and those outlined in
the previous section. To be able to treat non-smooth
problems as smooth, a generalized derivative definition is
necessary since derivative-free techniques can be overly
conservative. While devising such a definition, we have to
ensure that the intervals obtained similarly to (20) enclose
the range of the function so that no part of the solution is
lost. The generalization of the derivative proposed here
is not the same as in the formulas by Kearfott (1996)
since it combines symbolic and automatic differentiation
techniques while factoring at the development point of
the mean value theorem similarly to slopes to improve
the resulting enclosures. Moreover, our technique is
different from the implementation proposed by Schnurr
(2007) since we do not overload all variables with the
data type for slopes (or derivatives, in our case) to obtain

740 E. Auer et al.

an enclosure of a function in a bottom-up approach, but
compute it in a top-down way instead.

In this section, we formulate the IVP under
consideration, specify the type of the right-hand side
exactly and define the corresponding solution. After that,
we propose a way of obtaining an interval evaluation of
this right-hand side and a generalized first derivative for
it. Finally, we show that using the above mentioned
generalized derivative in VALENCIA-IVP does not
change the verified nature of its results while extending its
application domain to a certain class of non-smooth IVPs.

4.1. Problem formulation and a derivative definition.
Let the right-hand side f : D ⊂ R

n → R
n, where D is

open, of the autonomous IVP with uncertain initial values
from the interval x0 ∈ IR

n

ẋ = f(x), x(0) ∈ x0, (26)

be available in its algorithmic representation (Stauning,
1997),

⎧⎪⎪⎨
⎪⎪⎩

τi(x) = xi, i = 1, . . . , n,
τi(x) = gi(τi1 (x)) or gi(τi1(x), τi2 (x)),

i = n + 1, . . . , l,
gi ∈ SEO ∪ SPW ,

(27)

where all functions τi and gi are scalar, gi may be unary
or binary, and ik ∈ {1, . . . , i − 1}, k = 1, 2. The
last n variables τl−n+1, . . . , τl correspond to the output
variables f1, . . . , fn. The usual definition for gi is to
belong to the set SEO of operations +,−, ∗, / and el-
ementary functions such as trigonometric ones. In this
paper, we allow gi to be part of the set of piecewise smooth
functions (denoted by SPW). A function from this set
depends on one variable and can be defined by a separate
algorithmic scheme. Let y = τν(x) be an input or an
intermediate variable with the index ν ∈ {1, . . . , i − 1}
and each ϕj(y), j = 0, . . . , L, be composed according to
(27) with all gji ∈ SEO and the single input variable y.
Then τi(y) = ϕL+1(y) ∈ SPW is defined as

ϕL+1(y) (28)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0(y) for c−1 = −∞ < y

{
≤
<

}
c0,

ϕ1(y) for c0

{
≤
<

}
y

{
≤
<

}
c1,

...
...

ϕL−1(y) for cL−2

{
≤
<

}
y

{
≤
<

}
cL−1,

ϕL(y) for cL−1

{
≤
<

}
y < cL = +∞.

Here, c = (c0, . . . , cL−1) are constant values for which
the function changes its behavior (switching points in

terms of y). The subfunctions ϕ0, . . . , ϕL should be
continuous, differentiable, and bounded in the definition
domain. The arity of τi ∈ SPW can be assumed to equal
one (similarly to elementary functions such as the sine).

Note that the fact that the piecewise function defined
in (28) depends on a single variable does not imply that
right-hand sides of ODEs with several variables cannot
be represented. For example, the function f(x1, x2) =
|x1| + x1 · sign(x2) can be easily constructed. It is
also possible to use nested piecewise operations such as
|sign(x1)|. However, operations depending on more than
one variable cannot be represented as, for example, in

f(x1, x2) =
{

1, x2 < x1,
2, x2 > x1.

(29)

The formulation (4) can cover this situation by introducing
functions g(x1, x2) = x2 − x1, f1 = 1, f2 = 2. Yet it is
difficult to represent, for example, the dead time

f(x) =

⎧⎨
⎩

−h, x < −x+,
0, −x+ < x < x+,
h, x+ < x

(30)

(with h, x+ constants) in the form (4), whereas (28) fits.
If a function ϕi is smooth, we understand its interval

extension ϕi(x) over x ∈ IR as the natural interval
extension (cf. Section 3.1). An interval extension of a
function ϕ := ϕL+1 from (28) over x is constructed as

ϕ(x) (31)

=

⎧⎪⎪⎨
⎪⎪⎩

ϕi(x) for x ⊂ (ci−1, ci),(⋃j−1

k=i+1
ϕk([ck−1, ck])

)
∪ϕi([x, ci])

∪ϕj([cj−1, x]) for x ⊂ (ci−1, cj),

with (ci−1, cj) the smallest interval enclosing x, 0 ≤ i <
j ≤ L and

⋃
denoting the convex hull again. Note

that the interval evaluation in (31) always encloses both
left and right values if a jump discontinuity occurs within
x or on its border regardless of which condition (< or
≤) is chosen. This regulation has its origin in practice
and differs from the definition we offered in our previous
work (Auer et al., 2011). For example, if we consider the
function

f(v) =

{
−λ + μ · v, v < 0 =: c0,

+λ + μ · v, v > 0,
(32)

where λ and μ are positive scalars, which often serves
as a model for friction, the favored way to define the
function value in the point of the discontinuity v = 0
(static friction) is as varying between −λ and λ (because
the static friction force is undefined but known to be
bounded by λ). With the help of the definition from
Eqn. (31), we compute f([0, 0]) = [−λ, λ] because

A verified method for solving piecewise smooth initial value problems 741

[0, 0] ⊂ (c−1, c1) = (−∞, +∞) and, therefore, both
branches are active. In the same way, f([−0.5, 0]) =
[−λ−μ/2, λ] or f([0, 0.5]) = [−λ, λ+μ/2]. Note that the
continuity of the right-hand side f(x) defined as in (27)
does not necessarily follow from the fact that each gi ∈
SPW is continuous (ϕj(cj) = ϕj+1(cj), 0 ≤ j < L),
since SEO contains operations discontinuous everywhere
(e.g., division or the reciprocal 1

x). The following property
holds.

Property 1. If we assume that all gi are continuous
(or Lipschitz continuous) everywhere, then the right-hand
side f of (26) is also continuous (Lipschitz continuous).

This result follows from the theorem about the
composition of continuous (Lipschitz continuous)
functions. Note, however, that this excludes the division.
To allow this operation in the framework of algorithmic
procedures, it is decomposed into multiplication and the
reciprocal. In this case, all binary operations are smooth,
and the unary reciprocal 1/x is handled as an elementary
function undefined everywhere (the plane x = 0 has to be
excluded).

A possible generalization of the derivative of ϕ over
the interval x is

ϕ!(x) (33)

=

⎧⎨
⎩

ϕ′
i(x) for x ⊂ (ci−1, ci),⋃j−1

k=i+1
ϕ′

k([ck−1, ck])∪ϕ′
i([x, ci])∪ϕ′

j([cj−1, x])
for x ⊂ (ci−1, cj) .

Defined in this way, it encloses both left and right
derivatives at a switching point ci. Note that the following
property holds for this definition.

Property 2. If ϕ′ exists for an x ∈ x, then ϕ′(x) ∈ ϕ!(x).
That is, the interval derivative from Eqn. (33) always con-
tains the correct derivative value in x.

If the mean value form is to enclose the function
range in the manner of Eqn. (20) in the one-dimensional
case, a derivative generalization has to produce Lipschitz
matrices (cf. Kearfott, 1996, Chapter 6). This is
true for the definition in Eqn. (33) for continuous
functions (McLeod, 1964/1965). However, this definition
cannot be used for discontinuous functions. Consider, for
example,

f(x) =
{

x, x < 0,
2x + 2 x > 0.

(34)

The enclosure of its range over the interval x = [−1, 2]
is [−1, 6]. The definition in Eqn. (33) delivers [1, 2] as the
derivative enclosure. If we apply the mean value theorem
with this definition and x0 = −1/2, we obtain

f(−1
2
) + f !(x)(x +

1
2
) = −1

2
+ [1, 2]([−1, 2] +

1
2
)

= [−1.5, 4.5] � [−1, 6].

Without loss of generality, we restrict our discussion
in the following to a function of the form

ϕ(x) =

⎧⎨
⎩

ϕ0(x), x

{ ≤
<

}
c0,

ϕ1(x), otherwise,

in the interval x � c0, where ϕi, i = 0, 1, are continuous,
differentiable, and bounded (a classical IF-THEN-ELSE
operator). An interval extension of the derivative of
a continuous function ϕ!

cont(x) can be defined as in
Eqn. (33). If ϕ is discontinuous in c0, then we have
to account for the gap |ϕ1(c0) − ϕ0(c0)|. To avoid the
necessity to return intervals (−∞, +∞) as in the work
of Kearfott (1996), we need to know in which part of x
the reference point x0 from the mean value theorem is
contained. If this information is available, the definition
for discontinuous functions is

ϕ!
dis(x) (35)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
0([x, c0])∪

(ϕ1(c0) − ϕ0(c0)
[c0, x] − x0

+

ϕ′
0([x, c0])∪ϕ′

1([c0, x])
)

if x0 ∈ [x, c0),

ϕ′
1([c0, x])∪(ϕ0(c0) − ϕ1(c0)

[x, c0] − x0
+

ϕ′
0([x, c0])∪ϕ′

1([c0, x])
)

if x0 ∈ (c0, x],

ϕ′
0([x, c0])∪ϕ′

1([c0, x]) if x0 = c0.

Property 3. The interval extension of the derivative of ϕ
over x defined as in (35) satisfies the mean value theorem
if ϕ is discontinuous.

Proof. Let the reference point of the mean value theorem
x0 lie in the interval [x, c0) and x ∈ x. There are two
non-degenerate possibilities: x ∈ (c0, x] or x ∈ [x, c0).

Situation (a): x ∈ [x, c0), x0 ∈ [x, c0). Here, ϕ(x) ≡
ϕ0(x) and ϕ(x0) ≡ ϕ0(x0). That is, the relation

ϕ(x) ≡ ϕ0(x) = ϕ0(x0) + ϕ′
0(ξa)(x − x0)

holds for a ξa ∈ [x, c0) according to the usual mean value
theorem. That is,

ϕ(x) ∈ ϕ0(x0) + ϕ′
0([c0, x])(x − x0). (36)

Situation (b): x ∈ (c0, x], x0 ∈ [x, c0). In this case,
ϕ(x) ≡ ϕ1(x) and ϕ(x0) ≡ ϕ0(x0). The function is
discontinuous, that is, ϕ0(c0) �= ϕ1(c0). Let g(c0) :=
ϕ1(c0) − ϕ0(c0). We apply the mean value theorem to
functions ϕ0(x) and ϕ1(x0) with the reference point c0,
x ≤ x0 < c0 < x ≤ x:

ϕ0(x0) = ϕ0(c0) + ϕ′
0(ξb1)(x0 − c0),

ϕ1(x) = ϕ1(c0) + ϕ′
1(ξb2)(x − c0),

742 E. Auer et al.

with ξb1 ∈ (x, c0) and ξb2 ∈ (c0, x). That is,

ϕ1(x) − ϕ0(x0) = g(c0) + ϕ′
1(ξb2) · (x − c0)

− ϕ′
0(ξb1) · (x0 − c0).

Note that (x − c0) > 0 and (x0 − c0) < 0, i.e.,
c0 − x0 > 0 in our setting. Moreover, the relation (a +
b)s = as + bs holds for a, b ∈ R such that ab > 0 and
an interval s ∈ IR. Since ϕ′

0(ξb1), ϕ′
1(ξb2) are contained

in the interval s := ϕ′
0([x, c0])∪ϕ′

1([c0, x]), the following
enclosure can be derived:

ϕ1(x) − ϕ0(x0) ∈ g(c0) + s(x − c0) + s(c0 − x0)

=
(

g(c0)
(x − x0)

+ s

)
(x − x0). (37)

In the situation when x0 ∈ (c0, x], x ∈ x, we can
prove analogously that ϕ(x) is either in

ϕ1(x0) + ϕ′
1([x, c0]) · (x − x0), (38)

if x ∈ (c0, x], or in

ϕ1(x0) + (x − x0)

·
(−g(c0)

(x − x0)
+ ϕ′

0([x, c0])∪ϕ′
1([c0, x])

)
, (39)

if x ∈ (c0, x]. Taking the convex hull of the multiplicands
of (x−x0) in the relations (36)–(39) and keeping in mind
the interval parts that x comes from in each case, we get
the mean value form enclosure for the range of ϕ(x) with
the derivative defined as in (35). �

If there is more than one switching point ci, but x
contains only one of them, the definition turns into

ϕ!(x) (40)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
i(x) for x ⊂ (ci−1, ci),

ϕ!
cont(x) for x ⊂ (ci−1, ci+1),

ϕ is continuous at ci,

ϕ!
dis(x) for x ⊂ (ci−1, ci+1),

ϕ is discontinuous at ci.

Note that it is necessary to consider domain intervals both
left and right of ci whenever the boundary of x coincides
with it, regardless of the particular inequality sign.

This definition can be generalized for intervals
containing more than one switching point. However, we
can usually assume that an interval x containing more
than two switching points is too wide in practice. For
c0, c1 ∈ x and ϕ discontinuous in both c0, c1 with

fj = ϕj+1(cj) − ϕj(cj), j = 0, 1, the following holds:

ϕ!
dis(x) (41)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
0∪

(
f0

[c0, c1] − x0
+ (ϕ′

0∪ϕ′
1)

)

∪
(

f0 + f1

[c1, x] − x0
+ (ϕ′

0∪ϕ′
1∪ϕ′

2)
)

if x0 ∈ [x, c0),

ϕ′
1∪

(−f0

[x, c0] − x0
+ (ϕ′

0∪ϕ′
1)

)

∪
(

f1

[c1, x] − x0
+ (ϕ′

2∪ϕ′
1)

)
if x0 ∈ (c0, c1),

ϕ′
2∪

(−f1

[c0, c1] − x0
+ (ϕ′

2∪ϕ′
1)

)

∪
(

f0 + f1

[c1, x] − x0
+ (ϕ′

0∪ϕ′
1∪ϕ′

2)
)

if x0 ∈ (c1, x],

ϕ′
0∪ϕ′

1∪
(

f1

[c1, x] − x0
+ (ϕ′

2∪ϕ′
1)

)
if x0 = c0,

ϕ′
1∪ϕ′

2∪
(

f0

[c0, c1] − x0
+ (ϕ′

0∪ϕ′
1)

)
if x0 = c1.

for ϕi, i = 0, 1, 2, evaluated over their respective domains
[x, c0], [c0, c1], [c1, x]. Situations in which ϕ is continuous
in c0 and discontinuous in c1 or vice versa can be handled
by setting f0 or f1 to zero, respectively.

The overestimation we get by using the definitions
above is considerable. The reason is that we divide a
constant (corresponding to the gap in c0, c1) by an interval
(which might have a large width, or be close to zero).
This necessity has its source in the intention to produce
a general derivative definition obeying the mean value
theorem.

4.2. VALENCIA-IVP for non-smooth IVPs. We use
the definitions from Eqns. (31) and (40) in combination
with the IVP solver VALENCIA-IVP to solve non-smooth
problems of the form (26). We chose this particular
software because it needs only the Jacobian matrix of the
right-hand side of the ODE to provide guaranteed solution
enclosures. VALENCIA-IVP computes an enclosure of
the true solution to a smooth IVP as the functional tube
x(t) consisting of the non-verified approximation x̃(t)
and the verified error bound R(t) according to

x∗(t) ∈ x(t) := x̃(t) + R(t). (42)

Here, bounds for R(t) can be derived by integration of
its derivative, which is in turn obtained formally using the
Picard iteration

Ṙ
(k+1)

(t) = − ˙̃x(t) + f(x(k)). (43)

The enclosure of the range of f over x(k) need to be as
tight as possible. For this purpose, VALENCIA-IVP uses
mean value forms (among other techniques), which needs
derivatives satisfying (20) in order to produce verified

A verified method for solving piecewise smooth initial value problems 743

results. For more details about the algorithm of the solver,
see the results of Dötschel et al. (2013), Rauh and Auer
(2011), or Rauh et al. (2009).

We understand the term solution in the sense defined
by Rihm (cf. Definition 1), if the right-hand side of the
IVP is non-smooth in x. Such solutions are known
to exist and even to be unique in the general theory
(cf. Section 2.2). To demonstrate that the algorithm
of VALENCIA-IVP works in the discontinuous case, we
need to show that a certain fixed point theorem can be
applied to the operator

A(x)(t) := x0 +

t∫
0

f(x(s)) ds

and to the equivalent fixed point formulation of the IVP
x(t) = A(x(t)) in order to compute the enclosure of the
true solution of the IVP also for discontinuous right-hand
sides f .

To apply the algorithm of VALENCIA-IVP, we have
to use the appropriate definition of the derivative as
explained above. We showed that f(x) ∈ f(x0) +
f !(x)(x − x0) for all x, x0 ∈ x (Property 3) so that
the exchange in derivative definitions is valid. Next,
we need to prove that the fixed point iteration, on
which VALENCIA-IVP is based, is true for this class
of functions. In particular, we have to find a fixed
point theorem which can be applied in this case. If
the right-hand side f(x) of the IVP (26) is Lipschitz
continuous for [0, T], then Banach’s theorem can be
applied as usual to the integral operator A(x) which can
be shown to be contracting (cf. Walter, 1972). Then the
solution exists and is unique. If f is continuous, then
Schauder’s theorem ensures that the computed enclosure
contains a solution to the IVP.

In the case of discontinuous functions, a
generalization of Kakutani’s fixed point theorem (Granas
and Dugundji, 2003) for infinite dimensions (e.g., the
Fan–Glicksberg theorem) can be applied: If X is a
non-empty, compact and convex subset of a locally
convex space E and ϕ : X �→ S(X) is a compact and
convex set-valued function with a closed graph from X
to the set of its non-empty subsets, then ϕ has a fixed
point. Intervals are non-empty, compact and convex. The
interval evaluation of a discontinuous right-hand side f
according to the definition in Eqn. (31) corresponds to a
continuous set-valued function with (point) intervals as
(convex) sets (that is, it is at least upper semicontinuous).
Since integration preserves the continuity properties, the
integral operator A(x) is also upper semicontinuous and
possesses a fixed point if the inclusion property holds.

5. System with friction and hysteresis

As an example of the applicability of the method
described in Section 4, we consider the following
mechanical system with friction and hysteresis (Rauh
et al., 2011):

ẋ =
(

0 1
0 0

)
x +

(
0
1
m (Fa (t) − Ff (x2))

)
, (44)

where x = (x1 x2)T describes the motion of a mass m
subject to accelerating forces Fa and friction Ff . The
sliding friction force is given by

Ff (x2) =

⎧⎪⎪⎨
⎪⎪⎩

−Fs + μ · x2 for S1 = true
or S2 = true,

+Fs + μ · x2 for S4 = true
or S5 = true,

where Fs ∈ F s is the static friction coefficient, with the
static friction force

Ff (x2) ∈ Fmax
s :=

[−F s , F s

]
if S3 = true.

Here, the conditions Si are defined as follows:

S1 = {x2 < 0, ω ≥ 0},
S2 = {x2 < 0, ω < 0},
S3 = {x2 = 0},
S4 = {x2 > 0, ω ≥ 0},
S5 = {x2 > 0, ω < 0} .

The accelerating force is specified as

Fa (t) := u (t) − ϕ (x1 (t) , ω (t)) ,

where u (t) is the control variable provided by an actuator,
ϕ (x1 (t) , ω (t)) = κxx1+κωω is a restoring spring force,
and ω(t) is determined through the Bouc–Wen model,

ω̇ (t) = ρ · (x2 (t) − σ · |x2 (t)| · |ω (t)|ν−1 · ω (t)

+ (σ − 1) · x2 (t) · |ω (t)|ν)

with time invariant parameters ρ, σ and ν. This hysteresis
model can be used to describe velocity-dependent spring
forces. It can be easily extended to represent hysteretic
damping elements.

Rauh et al. (2011) solved this problem by
transforming it into a series of state transitions (cf.
the above-mentioned reference for details) and applying
a Taylor series verified enclosure method described in
Section 3.3 to the transition graph. In this application, the
transition conditions T j

i describe those state and control
input dependent relations which lead to the activation of
the discrete model state Sj from the currently active state
Si as shown in Fig. 1 from the paper by Rauh et al. (2011).

744 E. Auer et al.

We simulated the same problem using VALENCIA-
IVP in combination with a C++ class implementing the
derivative definition from Section 4.1. In our case, we can
write down the equations for the system as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 1
m(u(x4) − κxx1 − κωx3 − ϕ1(x2)),

ẋ3 = ρ · (x2 − σ · ϕ2(x2) · ϕ2(x3)ν−1 · x3

+ (σ − 1) · x2 · ϕ2(x3)ν
)
,

ẋ4 = 1,
(45)

where ϕ1 is the friction force (including static and sliding
parts) and ϕ2 is the absolute value function specified in
terms of the definition in Eqn. (28) simply as

ϕ1(x2) = Ff (x2)

=
{ −Fs + μ · x2, x2 < 0,

Fs + μ · x2, x2 > 0,
(46)

ϕ2(xi) = |xi|

=
{ −xi, xi < 0,

xi, xi > 0 (47)

for a new interval state vector x = (x1 x2 x3 x4)T, xi ∈
xi, i = 2, 3 and Fs ∈ F s.

We considered the two sets of parameters shown in
Table 2. The first set eventually activated all conditions
Si except S3 whereas the second one caused activation of
S3, that is, the velocity turned to zero after some time. We
compared the results with those obtained with the MAT-
LAB simulation by Rauh et al. (2011). In Fig. 1, the
velocity x2 of the mass is shown for the parameter sets
one (top) and two (bottom). Verified results obtained with
the approach proposed in this paper are represented by
thick black dashed curves and those from the MATLAB

simulation by thick solid gray ones. In the bottom figure,
the results for the second simulation are shown in a similar
way except that the additional thin black lines represent
verified outcomes obtained with point-valued parameters.
We included solutions for the lower and upper bounds of
parameters, respectively, to give an idea about the true
solution range (that need not necessarily be the correct
enclosure of the solution).

As expected, the figures demonstrate that the results
produced by the approach proposed in this paper are
consistent with those by Rauh et al. (2011) in both
the cases. In the first setting, the interval widths are
the same for simulations with VALENCIA-IVP. The
second, degenerate situation, where the velocity turns to
zero after some time, that is, remains on the switching
surface, is also properly reflected by our approach. The
true solution set is contained in the resulting intervals.
However, the approach overestimates the enclosures after
the point of time where the velocity initially turns to
zero since it possesses no special handling for such
situations. The simulation in VALENCIA-IVP with the

Table 2. Parameter values for the two simulation scenarios con-
sidered.

Parameter Value

x1(0) 0 m
x3(0) −0.001
κω 0.001
m [1.1,1.21] kg
F s [0.15,0.03] N
σ 0.001
ρ 0.001
μ 0.001
ν 1

Simulation 1 Simulation 2

u(t) 2 sin (3t) N 0.010 N
x2(0) 0 m/s −0.010 m/s
κx 0.001 0

step size 0.001 takes approximately 26 seconds CPU time
on an Intel Xeon 2GHz multicore processor under Linux
2.6.23.14-115.fc8. The MATLAB7 simulation needs 376
seconds on an Intel Core2 Duo E8400 3GHz computer
under Windows 7 Professional. Another advantage of our
approach is that we do not need to track down all possible
transitions T j

i manually. Equations (45)–(47) suffice for
describing the system.

6. Conclusions and an outlook

We presented a simple approach for computing interval
evaluations of non-smooth functions and their first
derivatives. We implemented it as a template class
and combined it with the solver VALENCIA-IVP for
smooth problems extending the area of applicability of
this solver. We tested the approach using the example of
a physically motivated system with friction and hysteresis
and compared the results to the automaton-based method
by Rauh et al. (2011). The enclosures were consistent,
and the computing times were lower. (Note that the
comparison between MATLAB and C++ gives us only
a reference.) The main advantage of the proposed
implementation is, however, a simple way to introduce
the goal system into the IVP solver. Another advantage
(e.g., over slopes or more complex methods) is that the
proposed approach needs less work per step. This might
lead to better computing times, which can be exploited in
situations where verified enclosures have to be obtained
with fixed stepsizes in real-time. However, we need
to perform a more in-depth comparison to show the
improvement in speed, which is a topic for our future
work.

The approach can find its application in many areas.
One scenario is stance stabilization from the field of

7MATLAB R2011a (64 bit) with INTLAB V6.

A verified method for solving piecewise smooth initial value problems 745

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10

v
e
lo

c
it
y
 i
n
 m

/s

time in s

ValEncIA+pwFunc
Matlab simulation

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

v
e
lo

c
it
y
 i
n
 m

/s

time in s

point (lower bound)
point (upper bound)
ValEncIA+pwFunc
Matlab simulation

Fig. 1. Velocity of the mass for the parameter sets one (top)
and two (bottom) compared with the automaton-based
method.

biomechanics. Generally, many models in biomechanics
employ non-smooth functions, and, in this particular case,
there is one for the reaction force of the impact between
the foot and the ground and one for the rotation of the
forefoot (for more information, see the work of Auer et al.
(2011)). On the one hand, the data for this problem are
affected by uncertainty, for example, because they are
obtained by averaging different sets of features. On the
other hand, the results need to be especially reliable for
a surgeon to suggest a therapy for a patient. Therefore,
the use of verified methods to handle uncertainty, at
least partially, is of particular importance. An additional
advantage is that of enhanced modeling. For example, the
contact between a cylinder (foot) and a plane (ground) is
not a point but a whole area for small angles between the
corresponding normals. The center of this area is usually
projected into a point, whereas verified methods would
offer a possibility to work with the original contact set as
an interval.

Acknowledgment

We would like to thank the anonymous reviewers for their
constructive suggestions.

References
Acary, V. and Brogliato, B. (2008). Numerical Meth-

ods for Nonsmooth Dynamical Systems: Applications in
Mechanics and Electronics, Lecture Notes in Applied
and Computational Mechanics, Vol. 35, Springer-Verlag,
Berlin/Heidelberg.

Alefeld, G. and Herzberger, J. (1983). Introduction to In-
terval Computations, Computer Science and Applied
Mathematics, Academic Press, New York, NY.

Auer, E., Albassam, H., Kecskeméthy, A. and Luther, W. (2011).
Verified analysis of a model for stance stabilization, in A.
Rauh and E. Auer (Eds.), Modeling, Design and Simulation
of Systems with Uncertainties, Mathematical Engineering,
Springer-Verlag, Berlin/Heidelberg, pp. 294–308.

Barboteu, M., Bartosz, K. and Kalita, P. (2013). An analytical
and numerical approach to a bilateral contact problem with
nonmonotone friction, International Journal of Applied
Mathematics and Computer Science 23(2): 263–276, DOI:
10.2478/amcs-2013-0020.

Bernardo, M., Budd, C., Champneys, A. and Kowalczyk, P.
(2007). Piecewise-smooth Dynamical Systems: The-
ory and Applications, Applied Mathematical Sciences,
Springer-Verlag, London.

de Figueiredo, L.H. and Stolfi, J. (2004). Affine arithmetic:
Concepts and applications, Numerical Algorithms
37(1–4): 147–158.

Dötschel, T., Auer, E., Rauh, A. and Aschemann, H. (2013).
Thermal behavior of high-temperature fuel cells: Reliable
parameter identification and interval-based sliding mode
control, Soft Computing (17): 1329–1343.

Eble, I. (2007). Über Taylor-Modelle, Ph.D. thesis, University
of Karlsruhe, Karlsruhe.

Eggers, A., Fränzle, M. and Herde, C. (2009). Application
of constraint solving and ODE-enclosure methods to the
analysis of hybrid systems, in E. Simos, G. Psihoyios
and Ch. Tsitouras (Eds.), Numerical Analysis and Ap-
plied Mathematics 2009, American Institute of Physics,
Melville, NY, pp. 1326–1330.

Filippov, A. (1988). Differential Equations with Discontinuous
Righthand Sides, Kluwer Academic Publishers, Dordrecht.

Galias, Z. (2012). Rigorous study of the Chua’s circuit spiral
attractor, IEEE Transactions on Circuits and Systems 59-
I(10): 2374–2382.

Goldsztejn, A., Mullier, O., Eveillard, D. and Hosobe, H. (2010).
Including ordinary differential equations based constraints
in the standard CP framework, in D. Cohen (Ed.), Prin-
ciples and Practice of Constraint Programming CP 2010,
Lecture Notes in Computer Science, Vol. 6308, Springer,
Berlin, pp. 221–235.

Granas, A. and Dugundji, J. (2003). Fixed Point Theory,
Springer Monographs in Mathematics, Springer-Verlag,
New York, NY.

Hansen, E. and Walster, G. (2004). Global Optimization Us-
ing Interval Analysis: Revised and Expanded, Pure and
Applied Mathematics, Marcel Dekker, New York, NY.

746 E. Auer et al.

Henzinger, T. A., Horowitz, B., Majumdar, R. and Wong-Toi, H.
(2000). Beyond HYTECH: Hybrid systems analysis using
interval numerical methods, in N.A. Lynch and B.H. Krogh
(Eds.), Proceedings of the Third International Workshop
on Hybrid Systems: Computation and Control, HSCC’00,
Springer-Verlag, London, pp. 130–144.

Ishii, D. (2010). Simulation and Verification of Hybrid Systems
Based on Interval Analysis and Constraint Programming,
Ph.D. thesis, Waseda University, Tokyo.

Ishii, D., Ueda, K. and Hosobe, H. (2011). An interval-based
SAT modulo ODE solver for model checking nonlinear
hybrid systems, International Journal on Software Tools
for Technology Transfer 13(5): 449–461.

Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied
Interval Analysis, Springer-Verlag, London.

Kearfott, R.B. (1996). Rigorous Global Search: Continuous
Problems, Kluwer, Boston, MA.

Kofman, E. (2004). Discrete event simulation of hybrid systems,
SIAM Journal on Scientific Computing 25(5): 1771–1797.

Kunze, M. (2000). Non-Smooth Dynamical Systems, Springer,
Berlin/Heidelberg.

Lohner, R. (1988). Einschließung der Lösung gewöhnlicher
Anfangs- und Randwertaufgaben und Anwendungen, Ph.D.
thesis, Universität Karlsruhe, Karlsruhe.

Lunze, J. and Lamnabhi-Lagarrigue, F. (2009). Handbook
of Hybrid Systems Control—Theory, Tools, Applications,
Cambridge University Press, Cambridge.

Magnus, K. and Popp, K. (2005). Schwingungen, Leitfäden
der angewandten Mathematik und Mechanik, Teubner,
Wiesbaden.

Mahmoud, S. and Chen, X. (2008). A verified inexact implicit
Runge–Kutta method for nonsmooth ODEs, Numerical Al-
gorithms 47(3): 275–290.

Makino, K. (1998). Rigorous Analysis of Nonlinear Motion
in Particle Accelerators, Ph.D. thesis, Michigan State
University, East Lansing, MI.

Mannshardt, R. (1978). One-step methods of any order
for ordinary differential equations with discontinuous
right-hand sides, Nimerische Mathematik 31(2): 131–152.

McLeod, R. M. (1964/1965). Mean value theorems for vector
valued functions, Proceedings of the Edinburgh Mathemat-
ical Society 14: 197–209.

Moore, R. (1966). Interval Arithmetic, Prentice-Hall,
Englewood Cliffs, NJ.

Munoz, H. and Kearfott, R.B. (2004). Slope intervals,
generalized gradients, semigradients, slant derivatives, and
csets, Reliable Computing 10(3): 163–193.

Myśliński, A. (2012). Topology optimization of quasistatic
contact problems, International Journal of Applied Math-
ematics and Computer Science 22(2): 269–280, DOI:
10.2478/v10006-012-0020-y.

Nedialkov, N.S. (2002). The Design and Implementation of an
Object-Oriented Validated ODE Solver, Kluwer Academic
Publishers, Dordrecht.

Nedialkov, N. and von Mohrenschildt, M. (2002). Rigorous
simulation of hybrid dynamic systems with symbolic and
interval methods, Proceedings of the American Control
Conference, Anchorage, AK, USA, Vol. 1, pp. 140–147.

Orlov, Y. (2004). Finite time stability and robust control
synthesis of uncertain switched systems, SIAM Journal on
Control and Optimization 43(4): 1253–1271.

Patton, R.J., Chen, L. and Klinkhieo, S. (2012). An LPV
pole-placement approach to friction compensation as an
FTC problem, International Journal of Applied Math-
ematics and Computer Science 22(1): 149–160, DOI:
10.2478/v10006-012-0011-z.

Ramdani, N. and Nedialkov, N.S. (2011). Computing reachable
sets for uncertain nonlinear hybrid systems using interval
constraint-propagation techniques, Nonlinear Analysis:
Hybrid Systems 5(2): 149–162.

Ratschan, S. (2012). An algorithm for formal safety verification
of complex heterogeneous systems, Proceedings of REC
2012, Brno, Czech Republic, pp. 457–468.

Rauh, A. and Auer, E. (2011). Verified simulation of
ODEs and DAEs in VALENCIA-IVP, Reliable Computing
5(4): 370–381.

Rauh, A., Brill, M. and Günther, C. (2009). A novel interval
arithmetic approach for solving differential-algebraic
equations with VALENCIA-IVP, International Jour-
nal of Applied Mathematics and Computer Science
19(3): 381–397, DOI: 10.2478/v10006-009-0032-4.

Rauh, A., Kletting, M., Aschemann, H. and Hofer, E.P. (2006).
Interval methods for simulation of dynamical systems
with state-dependent switching characteristics, IEEE CCA
2006, Munich, Germany, pp. 355–360.

Rauh, A., Siebert, C. and Aschemann, H. (2011). Verified
simulation and optimization of dynamic systems with
friction and hysteresis, Proceedings of ENOC 2011, Rome,
Italy.

Rihm, R. (1992). Enclosing solutions with switching points
in ordinary differential equations, in L. Atanassova and
J. Herzberger (Eds.), Computer Arithmetic and Enclo-
sure Methods. Proceedings of SCAN 91, North-Holland,
Amsterdam, pp. 419–425.

Rihm, R. (1993). Über Einschließungsverfahren für
gewöhnliche Anfangswertprobleme und ihre Anwendung
auf Differentialgleichungen mit unstetiger rechter Seite,
Ph.D. thesis, Universität Karlsruhe, Karlsruhe.

Rihm, R. (1998). Implicit methods for enclosing solutions
of ODEs, Journal of Universal Computer Science
4(2): 202–209.

Schnurr, M. (2007). Steigungen höherer Ordnung zur veri-
fizierten globalen Optimierung, Ph.D. thesis, Universität
Karlsruhe, Karlsruhe.

Smirnov, G. (2002). Introduction to the Theory of Differential
Inclusions, Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI.

Stauning, O. (1997). Automatic Validation of Numerical Solu-
tions, Ph.D. thesis, Technical University of Denmark, Kgs.
Lyngby.

A verified method for solving piecewise smooth initial value problems 747

Stewart, D. (1990). A high accuracy method for solving ODEs
with discontinuous right-hand side, Numerische Mathe-
matik 58(1): 299–328.

Walter, W. (1972). Gewöhnliche Differentialgleichungen,
Springer, Berlin/Heidelberg/New York, NY.

Zgliczynski, P. and Kapela, T. (2009). A Lohner-type
algorithm for control systems and ordinary differential
inclusions, Discrete and Continuous Dynamical Systems B
11(2): 365–385.

Ekaterina Auer received her diplomas in math-
ematics and computer science from Ulyanovsk
State University in 2001 and from the University
of Duisburg–Essen in 2002. Since 2002, she has
been working at the Chair for Computer Graph-
ics and Scientific Computing at the University of
Duisburg–Essen as a research assistant, receiving
her Ph.D. in 2006. Her main interests are scien-
tific computing, methods with result verification
accompanied by their application to problems in

(bio)mechanics or engineering, and uncertainty quantification.

Stefan Kiel received his diploma in computer
science from the University of Duisburg–Essen
in 2009. Since then he has been working at the
Chair of Computer Graphics and Scientific Com-
puting at the same university as a Ph.D. student.
His research focuses on application of methods
with result verification in geometry, interval op-
timization, and scientific computing using the
GPU.

Andreas Rauh was born in Munich, Germany,
in 1977. He received his diploma degree in elec-
trical engineering and information technology
from Technische Universität München, Munich,
in 2001 and his Ph.D. degree (Dr.-Ing.) from the
University of Ulm, Germany, in 2008. He has
published more than 110 articles and chapters in
edited books, international conferences and peer-
reviewed journals. His research interests are state
and parameter estimation for stochastic and set-

valued uncertainties, verified simulation of nonlinear uncertain systems,
nonlinear, robust, and optimal control, interval methods for ordinary
differential equations as well as differential-algebraic systems. Doctor
Rauh is currently with the Chair of Mechatronics, University of Ros-
tock, Germany, as a post-doctoral researcher. Since 2008 he has been
a member of the IEEE 1788 Working Group for the Standardization of
Interval Arithmetic. Moreover, in 2011, he was elected a corresponding
member of the International Academy of Engineering, Moscow, Russia.

Received: 5 December 2012
Revised: 30 April 2013
Re-revised: 19 June 2013

	Introduction
	Problem formulations
	Non-smoothness in practice
	ODEs with discontinuities
	Differential inclusions
	Filippov's inclusions
	Lipschitzian DI

	Further concepts

	Overview of the existing verified methods for non-smooth IVPs
	Basics on interval analysis
	Rihm's method
	Automaton-based method
	Further methods

	Simple verified approach
	Problem formulation and a derivative definition
	ValEncIA-IVP for non-smooth IVPs

	System with friction and hysteresis
	Conclusions and an outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

