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The paper deals with the issue of reducing the dimension and size of a data set (random sample) for exploratory data ana-
lysis procedures. The concept of the algorithm investigated here is based on linear transformation to a space of a smaller
dimension, while retaining as much as possible the same distances between particular elements. Elements of the transfor-
mation matrix are computed using the metaheuristics of parallel fast simulated annealing. Moreover, elimination of or a
decrease in importance is performed on those data set elements which have undergone a significant change in location in
relation to the others. The presented method can have universal application in a wide range of data exploration problems,
offering flexible customization, possibility of use in a dynamic data environment, and comparable or better performance
with regards to the principal component analysis. Its positive features were verified in detail for the domain’s fundamental
tasks of clustering, classification and detection of atypical elements (outliers).
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1. Introduction

Contemporary data analysis avails of a broad and varied
methodology, based on both traditional and modern, often
specialized statistical procedures, currently ever more
supported by the significant possibilities of computational
intelligence. Apart from the classical methods—fuzzy
logic and neural networks—metaheuristics such as
genetic algorithms, simulated annealing, particle swarm
optimization, and ants algorithms (Gendreau and Potvin,
2010) are also applied here more widely. Proper
combination and exploitation of the advantages of
these techniques allows in practice an effective solution
of fundamental problems in knowledge engineering,
particularly those connected with exploratory data
analysis. More and more frequently the process of
knowledge acquisition is realized using multidimensional
data sets of a large size. This stems from the dynamic
growth in the amount of information collected in database
systems requiring permanent processing.

The extraction of knowledge from extensive data
sets is a highly complex task. Here difficulties are
mainly related to limits in the efficiency of computer

systems for large size samples and problems exclusively
connected with the analysis of multidimensional data.
The latter arise mostly from a number of phenomena
occurring in data sets of this type, known in the literature
as “the curse of multidimensionality”. Above all, this
includes the exponential growth in the sample size
necessary to achieve appropriate effectiveness of data
analysis methods with an increasing dimension (the empty
space phenomenon), as well as the vanishing difference
between near and far points (norm concentration) using
standard Minkowski distances (François et al., 2007). As
previously mentioned, the data set size can be reduced
mainly to speed up calculations or make them possible at
all (Czarnowski and Jędrzejowicz, 2011). In the classical
approach, this is realized mostly with sampling methods
or advanced data condensation techniques.

Useful algorithms have also been worked out
allowing the problem to be simplified by decreasing its
dimensionality. Therefore, let X denote a data matrix of
dimension m× n:

X = [x1|x2| . . . |xm]T , (1)
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with particular m rows representing realizations of an
n-dimensional random variable1. The aim of reducing a
dimension is to transform the data matrix in order to
obtain its new representation of the dimension m × N ,
where N is considerably (from the point of view of the
conditioning of a problem in question) smaller than n.
This reduction can be achieved in two ways, either by
choosing N most significant coordinates/features (feature
selection) or through the construction of a reduced data
set, based on initial features (feature extraction) (Inza
et al., 2000; Xu and Wunsch, 2009). The latter can be
treated as more general—the selection is a particularly
simple case of extraction. Noteworthy among extraction
procedures are linear methods, where the resulting data
set Y is obtained through the linear transformation of the
initial set (1), therefore using the formula

Y = XA, (2)

where A is a matrix of dimension n × N , as well as
nonlinear methods for which the transformation can be
described by a nonlinear function g : R

n → R
N .

This group also contains the methods for which such
a functional dependence, expressed explicitly, does not
exist.

Studies on the efficiency of extraction procedures
carried out in the literature on the subject show that
nonlinear methods, despite having a more general
mathematical apparatus and higher efficiency in the case
of artificially generated specific sets of data, frequently
achieve significantly worse results for real samples
(Maaten, 2009). The goal of this paper is to develop a
universal method of reducing the dimension and size of
a sample designed for use in data exploration procedures.
The reduction of the dimension will be implemented using
a linear transformation on the condition that it affects as
little as possible the mutual positions of the original and
resulting samples’ elements.

The focus of this contribution is to offer an
alternative for the state-of-the-art linear method of
principal component analysis (Sumi et al., 2012), with
unsupervised character and the possibility to customize
the algorithm’s features. To this aim a novel version of
the heuristic method of parallel fast simulated annealing
will be researched. Moreover, those elements of a
random sample which significantly change their position
following transformation will be eliminated or assigned
less weight for the purposes of further analysis. This
concept achieves an improvement in the quality of
knowledge discovery and, possibly, a reduction in the
sample size. The effectiveness of the presented method
will be verified for fundamental procedures in exploratory

1Particular coordinates of a random variable clearly constitute one-
dimensional random variables, and if the probabilistic aspects are not
the subject of research then in data analysis these variables are given the
terms “feature” or “attribute”.

data analysis: clustering, classification and detection of
atypical elements (outliers). Many aspects considered
in this paper were initially proposed by Łukasik and
Kulczycki (2011) as well as Kulczycki and Łukasik
(2014) in their basic form.

2. Preliminaries

2.1. Reduction in the dimension and sample si-
ze. The dimension can be reduced in many ways.
Correctly sorting the procedures applied here requires,
therefore, a wide range of criteria to be taken into
account. Firstly, the aforementioned systematic for linear
and nonlinear methods is associated with the character
of the dependence between the initial and reduced data
sets. Most important of these, being even a reference
linear procedure for dimension reduction, is Principal
Component Analysis (PCA). Among linear methods most
often mentioned is MultiDimensional Scaling (MDS).
Reduction procedures are often considered with respect
to the ease of description of the mapping between the
initial and reduced data sets. This can be defined expli-
citly (which allows generalizing the reduction procedure
on points not belonging to the initial data set), as
well as given only implicitly, i.e., through a reduced
representation of elements of the initial data set.

The type of method chosen has particular
significance in the cases of data analysis tasks, where a
continuous influx of new information is present. In this
form of the problem, reduction methods belonging to the
first of the above groups are preferred. The third division
of transformation procedures is related to their level of
relationship with the data analysis algorithms used in the
next step.

It is worth noting here universal techniques
which, through an analogy to machine learning
methods, can be termed as unsupervised. These work
autonomously, without using results of exploration
procedures (Bartenhagen et al., 2010; Aswani Kumar and
Srinivas, 2006). The second category concerns algorithms
dedicated to particular techniques in data analysis,
in particular considering class labels. Here statistical
methods as well as heuristic procedures of optimization,
e.g., evolutionary algorithms or simulated annealing, are
often used (Tian et al., 2010). For an overview of the
existing dimension reduction techniques one could refer
to Cunningham (2007) or Aswani Kumar (2009).

A reduction in the data set size can be realized with a
wide range of sampling or grouping methods. The former
most often use random procedures or stratified sampling
(Han and Kamber, 2006). The latter apply either classical
clustering techniques or special procedures for data
condensation problems. There also exists a significant
number of methods for size reduction which take into
account additional knowledge, for example, concerning
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whether elements belong to particular classes (Kulczycki
and Kowalski, 2011; Wilson and Martinez, 2000).
Moreover, methods dedicated to particular analytical
techniques, for example, kernel estimators (Kulczycki,
2005; Wand and Jones, 1995), have been developed (see,
e.g., Deng et al., 2008).

The method presented in this paper is based on a
concept of dimension reduction which is linear explicitly
defined and of universal purpose. Its closest equivalents
can be the principal component analysis method (due
to its linear and unsupervised nature), feature selection
using evolutionary algorithms (Saxena et al., 2010) and
the projection method with preserved distances (Sammon,
1969; Strickert et al., 2005; Vanstrum and Starks, 1981),
with respect to the similar quality performance criterion.
A natural priority for the dimension reduction procedure
is maintaining distances between particular data set
elements—a wide range of methods treat this as a quality
index.

Typical for this group of algorithms is the classic
multidimensional scaling, also known as principal
coordinates analysis. It is a linear method which creates
the analytical form of the transformation matrix A,
minimizing the performance index

S(A) =
m−1∑

i=1

m∑

j=i+1

(
d2

ij − δij(A)2
)
, (3)

where dij denotes the distance between the elements xi

and xj of the initial data set, while δij(A) are respective
distances in the reduced data set. A different strategy
is required when searching for a solution with different
structural characteristics or the performance index, or a
nonlinear relation between the initial and reduced data
sets. This type of procedure is termed multidimensional
scaling, as mentioned before. A model example of
this is nonlinear Sammon mapping, which (due to the
application of a simple gradient algorithm) allows us
to find a reduced representation of the investigated data
set, ensuring the minimization of the so-called Sammon
stress:

SS(A) =
1

∑m−1
i=1

∑m
j=i+1 dij

×
m−1∑

i=1

m∑

j=i+1

(dij − δij(A))2

dij
. (4)

Such a criterion enables a more homogeneous
treatment of small and large distances (Cox and Cox,
2000), while the value SS(A) is further normalized to the
interval [0, 1]. An alternative index, also considered in the
context of MDS, is the so-called raw stress, defined by

SR(A) =
m−1∑

i=1

m∑

j=i+1

(dij − δij(A))2 . (5)

Multidimensional scaling methods are mostly nonlinear
procedures. However, the task was undertaken to
formulate the problem of minimization of the indexes (4)
and (5) with the assumed linear form of transformation.

The first example of this technique is the algorithm
for finding a linear projection described by (Vanstrum and
Starks, 1981). They apply an iterative method of steepest
descent, which gives in consequence better results than
PCA in the sense of the index (4). A similar procedure
was investigated for the function (5), with the additional
possibility to successively supplement a data set (Strickert
et al., 2005). In both the cases the approach applied did
not account for the multimodality of the stress function.
To avoid becoming trapped in a local minimum, one
can use the appropriate heuristic optimization strategy. In
particular, for minimization of the index (4), Saxena et al.
(2010) use the evolutionary algorithm. The solution for
this investigation is, however, only to choose the reduced
features set.

A more effective approach seems to be the concept of
their extraction—being more general, it will be the subject
of investigation in this paper. In the construction of the
algorithm presented here, an auxiliary role is played by
an unsupervised technique of feature selection using to
this aim an appropriate measure of the similarity index
of maximal compression of information (Pal and Mitra,
2004). It is based on the concept of dividing features
into clusters, with the similarity criterion of features
defined by the aforementioned index. This division is
based on the algorithm of k-nearest neighbors, where it is
recommended that k ∼= n − N . The number of clusters
achieved then approaches N , although it is not strictly
fixed, but in a more natural manner adapted to a real data
structure.

Another aspect of the procedure presented here is a
reduction in the size of the sample (1). Conceptually, the
closest technique is the condensation method (Mitra et al.,
2002). It is unsupervised, and to establish the importance
of elements it takes into account their respective distances.
In this case the algorithm of k-nearest neighbors is also
applied, where the similarity measure between sample
elements is the Euclidean distance. Within this algorithm,
in the data set there are iteratively found prototype points,
or points for which the distance r to the k-th nearest
neighbor is the smallest. With every iteration, elements
closer than 2r from the nearest prototype point are
eliminated.

2.2. Simulated annealing algorithm. Simulated
Annealing (SA) is a heuristic optimization algorithm,
based on the iterative technique of local search with an
appropriate criterion for accepting solutions. This allows
establishing a valid solution for every iteration, mostly
using the performance index value for the previous and
current iteration, and a variable parameter called the
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annealing temperature, which decreases in time. Within
the scheme of the algorithm it is possible to accept a valid
solution a worse than the previous one, which reduces the
danger of the algorithm getting stuck at local minimums.
It is assumed, however, that the probability of accepting
such worse solution should decrease over time. All of
the above traits contain the so-called Metropolis rule,
which is most often applied as an acceptance criterion in
simulated annealing algorithms.

Let therefore Z ⊂ R
t denote the set of admissible

solutions to a certain optimization problem, while the
function h : Z → R is its performance index, hereinafter
referred to as cost. Furthermore, let k = 0, 1, . . . stand for
the number of iteration, whereas T (k) ∈ R, z(k) ∈ Z ,
c(k) = h(z(k)), z0(k) ∈ Z , c0(k) = h(z0(k)) denote
respectively the temperature and the solution valid for
the iteration k and its cost, and also the best solution
found to date and its cost. Under the above assumptions
the basic variant of the SA algorithm can be described
as Algorithm 1. The procedure for the Metropolis rule is
realized by Algorithm 2.

Algorithm 1. Simulated annealing.
1: Generate(T(1),z(0))
2: c(0)← Evaluate_quality(z(0))
3: z0(0)← z(0)
4: c0(0)← c(0)
5: k← 1
6: repeat
7: z(k)← Generate_neighbor(z(k− 1))
8: c(k)← Evaluate_quality(z(k))
9: Δc← c(k)− c(k − 1)

10: z(k) =Metropolis_rule(Δc, z(k), z(k− 1), T (k))
11: if c(k) < c0(k − 1) then
12: z0(k)← z(k)
13: c0(k)← c(k)
14: else
15: z0(k)← z0(k − 1)
16: c0(k)← c0(k − 1)
17: end if
18: Calculate(T (k + 1))
19: stop_condition = Check_stop_condition()
20: k← k + 1
21: until stop_condition = false
22: return kstop = k − 1, z0(kstop), c0(kstop)

The SA algorithm requires in the general case the
assumption of the appropriate initial temperature value, a
formula of its changes associated with an accepted method
of generating a neighboring solution, and a condition for
ending the procedure. However, in particular applications
one should also define other functional elements, such
as the method of generating the initial solution and the
form of the quality index. The first group of tasks will

Algorithm 2. Metropolis rule.
1: if Δc < 0 then
2: return z(k)
3: else
4: if Random_number_in_(0,1) < exp(−Δc/T (k))

then
5: return z(k)
6: else
7: return z(k − 1)
8: end if
9: end if

now be discussed, while the second—as specific for the
application of the SA algorithm investigated here—will be
the subject of a detailed analysis in Section 3. Numerous
fundamental and applicational works have resulted in
the creation of many variants of the algorithm described
here. Their main difference is the scheme for temperature
changes and the method for obtaining a neighboring
solution.

A standard approach is the classical simulated
annealing algorithm, also known as the Boltzmann
Annealing (BA) algorithm. This assumes an iterative
change in temperature according to a logarithmic schedule
and generation of a subsequent solution by adding to
the current one the value of step Δz ∈ R

t, which is
a realization of a t-dimensional pseudorandom vector
with the normal distribution. The BA algorithm, although
effective in the general case, has a large probability of
acceptance of worse solutions, even in the final phase
of the search process. This allows effective escape from
local minima of a cost function and guarantees asymptotic
convergence to a global one (Geman and Geman, 1984),
while also causing that the procedure represents, in
some sense, random search of the space of admissible
solutions. For the SA algorithm to be more deterministic
in character, and at the same time to keep convergence
to the optimal solution, the following scheme for the
temperature change can be applied:

T (k + 1) =
T (1)
k + 1

, (6)

together with the generation of neighboring solution using
the Cauchy distribution,

g(Δz) =
T (k)

(Δz2 + T (k)2)(t+1)/2
. (7)

The procedure defined by the above elements
is called Fast Simulated Annealing (FSA) (Szu and
Hartley, 1987). It will be a base—in the framework
of this paper—for the dimension reduction algorithm.
The problem of practical implementation of FSA
is effective generation of random numbers with a
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multidimensional Cauchy distribution. The simplest
solution is the application, for each dimension of the
vector, of a one-dimensional number generator with the
same distribution. This strategy was used in the Very Fast
Simulated Annealing (VFSA) algorithm, expanded later
within the framework of a complex procedure of adaptive
simulated annealing (Ingber, 1996). Such a concept has,
however, a fundamental flaw: the step vectors generated
here concentrate near the axes of the coordinate system.

An alternative could be to use a multidimensional
generator based on the transformation of the Cartesian
coordinate system to a spherical one. It is suggested
here that the step vector Δz = [Δz1, Δz2, . . . , Δzt]
should be obtained by generating first the radius r
of the hypersphere, using the method of inverting
the Cauchy distribution function described with the
spherical coordinates, and then selecting the appropriate
point on the t-dimensional hypersphere. The second
phase is realized by randomly generating the vector
u = [u1, u2, ut]T with coordinates originating from the
one-dimensional normal distribution ui ∼ N(0, 1), and
then the step vector Δz is obtained by

Δzi = r
ui

|u| , i = 1, 2, . . . , t. (8)

The presented procedure ensures a symmetric and
multidirectional generation scheme, with heavy tails
of distribution, which in consequence causes effective
exploration of a solution space (Nam et al., 2004).
Taking the above into account, it has been applied in
the algorithm investigated in this paper. Establishing an
initial temperature is vital for correct functioning of the
simulated annealing algorithm. It implies the probability
of acceptance of a worse solution at subsequent stages
of the search in the solution space. The subject literature
tends to suggest choosing the initial temperature so that
the probability of acceptance of a worse solution at the
first iteration, denoted hereinafter as P (1), is relatively
large. These recommendations are not absolute, however,
and different proposals can be found in the literature, for
example, close to 1.0 (Aarts et al., 1997), around 0.8
(Ben-Ameur, 2004) or even only 0.5 (Kuo, 2010).

Often in practical applications of SA algorithms the
temperature value is fixed during numerical experiments.
An alternative is to choose a temperature according to
a calculational criterion which has the goal of obtaining
the T (1) value on the basis of a set of pilot iterations,
consisting of generating the neighbor solution z(1) so
that the assumed P (1) value is ensured. For this purpose
one can, analyzing the mean difference in cost between
the solutions z(1) and z(0), denoted by Δc, calculate
the temperature T (1) value by substituting Δc to the
right-side of the inequality in the Metropolis rule defining

the probability of the worse solutions acceptance:

P (1) = exp
(
− Δc

T (1)

)
, (9)

thus in consequence

T (1) = − Δc

ln P (1)
. (10)

The mean difference in cost can be replaced with,
e.g., the standard deviation of the cost function value,
marked as σc, also estimated on the basis of the set
of pilot iterations (Sait and Youssef, 2000). A problem
which appears in the case of SA algorithms dedicated
to minimizing functions with real arguments (including
the aforementioned BA, FSA, VFSA and ASA) is the
dependence of the strategy for generating a neighbor
solution on temperature. Therefore, both the standard
deviation σc and the mean Δc are directly dependent on
it.

The application of the formula (10) is not possible
here, and in the case of these algorithms the initial
temperature value is usually arbitrary. This paper proposes
a different strategy based on the generation of a set of
pilot iterations. It allows the value T (1) to be obtained
with the assumption of any initial probability of worse
solution acceptance. As important as the choice of the
initial temperature is the determination of the iteration at
which the algorithm should be terminated. The simplest
(although not flexible and often requiring too detailed
knowledge of the investigated task) stop criterion is
reaching a previously assumed number of iterations or a
satisfactory cost function value. An alternative could be
to finish the algorithm when following a certain number
of iterations the best obtained solution is not improved, or
the use of an appropriate statistical method based on the
analysis of cost function values as they are obtained. The
last concept is universal and (desirable among heuristic
algorithms stop criteria) related to the expected result
of their works. This usually consists of calculating the
estimator of the expected value of the global minimum
ĉmin and finishing the algorithm in the iteration k, when
the difference between it and the discovered smallest value
c0(k) is not greater than the assumed positive ε, so if

|c0(k)− ĉmin| ≤ ε. (11)

One recent technique using this type of strategy
is the algorithm proposed by Bartkuté and Sakalauskas
(2009). In order to calculate the value ĉmin an
estimator is applied here based on order statistics
(David and Nagaraja, 2003). This algorithm constitutes
a universal and effective tool for a wide range of
stochastic optimization techniques. Such a method, used
as part of the FSA procedure, will now be described.
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Let therefore {c0(k), c1(k), c2(k), . . . , cr(k)} denote the
ordered non-decreasing set of r lowest cost function
values, obtained during k iterations of the algorithm. In
the case of an algorithm convergent to a global minimum,
the condition limk→∞ cj(k) = cmin is fulfilled for every
j ∈ N, while the sequences cj(k) can be applied to
construct the aforementioned estimator value ĉmin. This
estimator makes use of the assumption of asymptotic
convergence of the order statistic distribution to the
Weibull distribution, and in the iteration k takes the
general form:

ĉmin(k) = c0(k)−
2t

β−1

r
(cr(k)− c0(k)). (12)

The parameter β, occurring above, is termed a
homogenous coefficient of the cost function h around
its minimum. On additional assumptions, in calculational
practice one can take β = 2 (Zhigljavsky and Žilinskas,
2008). The confidence interval for the cost function
minimum, at the assumed significance level δ ∈ (0, 1),
is of the form

[
c0(k)− (1− (1− δ)1/r)β/t

1− (1− (1− δ)1/r)β/t
(cr(k)

− c0(k)), c0(k)
]
. (13)

Bartkuté and Sakalauskas (2009) suggest that the
point estimator (12) can be replaced by the confidence
interval (13) with the algorithm being stopped when the
confidence interval width is less than the aforementioned,
assumed value ε. Such an idea, modified for the
specific problem under investigation, will be applied
here. The simulated annealing procedure can be easily
parallelized, whether for required calculations or in
the scheme of establishing subsequent solutions. While
parallelizing the SA algorithm is not a new idea and
was already investigated a few years after its creation
(Azencot, 1992), it needs to be adapted for particular
applicational tasks (Alba, 2005). At present the suitability
of the Parallel Simulated Annealing (PSA) algorithm
continuously increases with the common availability of
multicore systems. In the algorithm worked out in this
paper, a variant will be taken with parallel generation
of neighbor solutions, assuming that the number of SA
threads equals that of available processing units.

3. Procedure for reducing the dimension
and sample size

The algorithm investigated in this paper consists of two
functional components: a procedure for reducing the
dimension and a way of allowing the sample size to be
decreased. They are implemented sequentially, with the
latter dependent on the results of the former. The reduction
of the sample size is optional here.

3.1. Procedure for dimension reduction. The aim of
the algorithm under investigation is a decrease in the
dimensionality of the data set elements, represented by the
matrix X with the form specified by the formula (1), so of
the dimension m × n, where m means the data set size
and n the dimension of its elements. In consequence, the
reduced form of this set is represented by the data matrix
Y of the dimension m×N , while N denotes the assumed
reduced dimension of elements, appropriately less than
n. The procedure for reducing the dimension is based on
the linear transformation (2). For the purposes of notation
used in the simulated annealing algorithm, matrix A is
denoted as the row vector

[
a11, a12, . . . , a1N , a21, a22, . . . , a2N , . . . , an1,

an2, . . . , anN

]
, (14)

which represents the current solution z(k) ∈ R
(nN) in any

iteration k.
In order to generate neighbor solutions, a strategy

was used based on the multidimensional generator of the
Cauchy distribution (formulas (7) and (8)). The quality of
the obtained solution can be evaluated with the application
of the cost function h, which is the function of the raw
stress SR given by the dependence (5), where the elements
of the matrix Y are defined on the basis of Eqn. (2).
The alternative possibility of using the Sammon stress
(4) for this purpose was also examined. The developed
procedure requires firstly that the basic parameters should
be specified: the dimension of the reduced space N , a
coefficient defining directly the maximum allowed width
of the confidence interval εw for the stop criterion based
on the order statistics, the number of processing threads of
the FSA procedure pthread, the initial scaling coefficient
(step length) for the multidimensional Cauchy generator
Tscale, as well as the probability of acceptance of a worse
solution P (1) in the first iteration of the FSA algorithm.

Starting the algorithm requires moreover the
generation of the initial solution z(0). To this aim, the
feature selection procedure of Pal and Mitra (2004),
described in the previous section, was realized. Here
k = n − N should be assumed, which in consequence
usually results in obtaining approximately N clusters.
The aforementioned procedure leads to obtaining the
auxiliary vector b ∈ R

n, whose particular coordinates
characterize the number of the cluster to which the
coordinate from the original space was mapped, as well
as the vector br ∈ R

n of binary values br(i) ∈ {0, 1}
for i = 1, 2, . . . , n, defining whether a given feature
was chosen as a representative of the cluster to which it
belongs, in which case br(i) = 1, or not, then br(i) = 0.
The auxiliary vectors b and br can be used in the algorithm
considered for generating the initial solution in two ways:

1. Each of N features of the initial solution is a
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linear combination of features mapped to one of N
clusters—to define the form of the matrix A one can
use

aij =

{
1 if b(i) = j,

0 if b(j) �= j
(15)

for i = 1, 2, . . . , n and j = 1, 2, . . . , N .

2. Each of N features of the initial solution is given as
a representative for one of N clusters—the form of
the matrix A is then defined as

aij =

{
1 if br(i) = 1 and b(i) = j,

0 if br(i) = 0
(16)

for i = 1, 2, . . . , n and j = 1, 2, . . . , N .

The possibility of applying both of the above ways
of generating an initial solution—the first called a linear
combination of features and the second referred to as
feature selection—is a subject of detailed experimental
analysis concerning dimensional reduction, described
in Section 4. After generating the initial solution, in
order to carry out the simulated annealing algorithm,
the temperature T (1) should be established for the first
iteration. To this aim, the technique presented in the
previous section can be followed, allowing us at the start
to obtain the assumed initial value of the probability
of worse solution acceptance P (1). In the case of the
algorithm for generating neighbor solutions, it is not
recommended to use the relation resulting from the
equality (9). As mentioned in the previous section, this
is implied by the dependence of a formula for generating
a neighbor solution on the annealing temperature. In
order to avoid this inconvenience, an additional coefficient
Tscale was introduced, being the parameter of the Cauchy
distribution in the first iteration of the FSA algorithm
(also known as an initial step length), and furthermore the
temperature occurring in the generating distribution was
scaled.

The coefficient Tscale is thus used as a parameter of
the random numbers generator, with the aim of calculating
a set of pilot iterations (the size of this set is assumed
to be 100). These iterations consist of the generation of
an appropriate number of transitions from z(0)—worse
in the sense of the cost function used—to the neighbor
solution z(1), and the establishment of the mean value of
the cost difference δc between z(1) and z(0). This value
is inserted to the formula (10), through which the initial
temperature can be obtained. Moreover, in order to find
the assumed shape of the generated distribution, in the
first iteration of the FSA algorithm an additional scaling
coefficient is calculated:

ctemp =
−Δc

ln P (1)Tscale
. (17)

In consequence, in the first iteration of the actual
algorithm, in order to generate a neighbor solution,
the scaled temperature T (1)/ctemp (therefore Tscale) is
used, and for the Metropolis rule—it is just the value
T (1). Similar scaling takes place during the generation
of neighbor solutions in each consecutive iteration of
the FSA algorithm. Thanks to this kind of operation
it becomes possible to fix the initial probability of
acceptance of a worse solution, determined by the
coefficient P (1), while retaining the additional possibility
of establishing—by assuming the value Tscale—the
parameter of the initial spread of values obtained from a
pseudorandom numbers generator.

All iterations of the FSA algorithm have been
parallelized using a strategy with parallel generation of
neighbor solutions. So each of pthread threads creates a
solution neighboring the one established in the previous
iteration z(k − 1). This occurs with the application of
a random generator with a multidimensional Cauchy
distribution. For all threads, the annealing temperature
is identical and equals T (k)/ctemp. Furthermore, every
thread realizes the procedure for the Metropolis rule,
accepting or rejecting its own obtained neighbor solutions.

The next two steps of the algorithm are performed in
sequence. So, first the current solution is established for
the SA algorithm. The procedure for this is to choose as
a current solution either the best from those better than
that the ones found in the previous iteration obtained by
different threads, or if such a solution does not exist–a
random selection of one of the worse solutions. Thus, the
current solution, together with the temperature updated
according to the formula (6), is used in the next iteration
of the FSA algorithm as the current solution. This kind
of strategy can be classified as a method of parallel
processing based on speculative decomposition.

The last step performed as part of a single iteration is
verifying the criterion for stopping the SA procedure. To
this aim, the confidence interval for the minimum value of
the cost function, given by the formula (13), is calculated.
The order statistics used for interval estimation have the
order r assumed to be 20, in accordance with the proposals
of Bartkuté and Sakalauskas (2009). As a significance
level δ for the confidence interval defined by the formula
(13), a typical value 0.99 is assumed. The width of the
confidence interval is compared with the threshold value
ε calculated at every iteration with

ε = 10−εwc0(k). (18)

Finally, the simulated annealing procedure is
terminated if

(1− (1− δ)1/r)β/t

1− (1− (1 − δ)1/r)β/t
(cr(k)− c0(k)) > ε, (19)

with the notation introduced at the end of Section 2.
Finding the threshold value ε based on the formula (19)
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allows the adaptation of such a criterion to the structure
of a specific data set under investigation. The sensitivity
of the above procedure can be set by assuming the value
of the exponent εw ∈ N, one of the arbitrarily fixed
parameters of the procedure worked out in this paper. It is
worth noting that the nature of the method presented here
for dimension reduction enables the establishment of the
“contribution” which particular elements of the data set Y
make to the final value c0(kstop). This fact will be used in
the procedure for reducing the sample size, which will be
presented in the next section. A graphical description of
the algorithm is summarized in Fig. 1.

Fig. 1. Dimension reduction algorithm.

3.2. Procedure for sample size reduction. In the
case of the dimension reduction method presented above,
some sample elements may be subject to an undesired
shift with respect to the others and, as a result, may
noticeably worsen the results of an exploratory data
analysis procedure in the reduced space R

N . A measure of

the location deformation of the single sample element xi

compared to the others, resulting from the transformation
(2), is the corresponding stress value c0(kstop) calculated
for this point (called the stress per point) (Borg and
Groenen, 2005). In the case of the raw stress it is given
by

c0(kstop)i = SR(A)i =
m∑

j=1
j �=i

(dij − δij(A))2 , (20)

whereas for the Sammon stress it takes the form

c0(kstop)i

= SS(A)i

=
1

∑m−1
i=1

∑m
j=i+1 dij

m∑

j=1
j �=i

(dij − δij(A))2

dij
.

(21)

It is worth noting that in both cases these values are
nonzero, except for the case (unattainable in practice) of
“perfect” matching of respective distances of elements in
the original and reduced spaces. The values c0(kstop)i

for particular elements can be used to construct a set
of weights, defining the adequacy of their location in a
reduced space. Let therefore wi represent nonnegative
weight mapped with the element xi. Taking the above
into account, it is calculated according to the following
formula:

wi =
m 1

c0(kstop)i∑m
i=1

1
c0(kstop)i

. (22)

The normalization which occurs in the above dependence
guarantees the condition

m =
m∑

i=1

wi. (23)

The weights in this form contain information as to
the degree to which a given sample element changed
its relative location compared with the rest, where the
larger the weight, the more relatively adequate its location,
and its significance should be greater for procedures
of exploratory data analysis carried out in a space of
a reduced dimension. The weights’ values which are
calculated on the basis of the above formulas can be used
for further procedures of data analysis. They also allow the
following method of reducing the sample size. From the
reduced data set Y one can remove those mel elements
for which their respective weights fulfill the condition
wi < W with assumed W > 0. Intuitively, W = 1
is justified taking into account the formula (23), and this
results in the elimination of elements corresponding to the
values wi less than the mean. In conclusion, conjoining
the methods from Sections 3.1 and 3.2 enables a data set
with a reduced dimension as well as size to be obtained,
with the degree of compression implied by the values of
parameters N and W .



An algorithm for reducing the dimension and size of a sample for data exploration procedures 141

3.3. Comments and suggestions. In the case of the
procedure for reducing the dimension and sample size
presented here, efforts were made to limit the number
of parameters, whose arbitrary selection is always a
significant practical problem for heuristic algorithms. At
the same time, conditioning data analysis tasks, in which
the procedure investigated here will be applied, means
that, from a practical point of view, it is useful to propose
specific values of those parameters with an analysis of the
influence of their potential changes.

One of the most important arbitrarily assumed
parameters is the reduced space dimension N . It can be
fixed initially using one of the methods for estimating a
hidden dimension (Camastra, 2003), or by taking a value
resulting from other requirements, for example, N = 2
or N = 3, to enable a suitable visualization of the
investigated data set. It is worth remembering that the
procedure applied earlier for generating an initial solution
with the fixed parameter k = n − N creates a solution
which does not always have a dimensionality identical
to the assumed (as mentioned in the previous section).
If a strictly defined dimension of the reduced data set is
required, one should adjust the parameter k by repeating
the feature selection algorithm with its correctly modified
value, or use the initial solution, generated randomly, of
the assumed dimension of reduced space. It is also worth
mentioning the problem of computational complexity of
the procedure worked out here, in particular regarding
calculation of the cost function value.

In practice, the computational time for the PSA
algorithm increases exponentially with an increase in
the sample size. So, despite the heuristic algorithm
being the only method available in practice to minimize
the stress function SS or SR for data sets of large
dimensionality and size, its application must, nonetheless,
be limited to those cases which are in fact feasible.
Therefore, although the number of simulated annealing
treads pthread can be fixed at will, it should take the
available number of processing units into account. This
allows efficient parallel evaluation of the cost function
by particular threads. It should also be noted that the
subject algorithm, due to its universal character, can be
applied to a broad range of problems in statistics and data
analysis. An example, from the case of statistical kernel
estimators (Kulczycki, 2005; Wand and Jones, 1995), is
the introduction of generalization of the basic definition
of the estimator of probability distribution density to the
following form:

f(ŷ) =
1

hn
∑m

i=1 wi

m∑

i=1

wiK

(
y − yi

h

)
. (24)

Such a concept allows not only a reduction in
the sample size (for removed elements, wi = 0
is assumed), but also alternatively an improvement in

the quality of estimation in the reduced space without
eliminating any elements from the initial data set. In
the former case care should also be taken to normalize
the weights after eliminating parts of elements, to fulfill
the condition (23). This approach may be used, e.g., in
the complete gradient clustering technique (Kulczycki
and Charytanowicz, 2010). Weights wi calculated in the
above manner can also be introduced to modified classical
methods of data analysis, such as a weighted k-means
algorithm (Kerdprasop et al., 2005), or a weighted
technique of k-nearest neighbors (Parvin et al., 2010). In
the first case, the weights are activated in the procedure
for determining centers of clusters. The location of the
center of the cluster Ci, denoted by si = [si1, si2, siN ]T ,
is updated in every iteration if

∑
yl∈Ci

wl �= 0, according
to the formula

sij =
1∑

yl∈Ci
wl

∑

yl∈Ci

wlylj (25)

for j = 1, 2, . . . , N . In the k-nearest neighbors procedure,
however, each distance from neighbors of any element
from the learning data set is scaled using the appropriate
weight.

4. Numerical verification

The presented methodology underwent detailed numerical
testing. It consisted of an analysis of the main functional
aspects of the investigated algorithm, in particular the
dependence of its efficiency on the values of arbitrarily
assumed parameters. Another subject of the numerical
analysis was the quality of reduction of the dimension
and sample size, also in comparison with alternative
solutions available in the literature. Examination was
made with both data sets obtained from repositories and
the literature, as well as those generated pseudorandomly
with various dimensionalities and configurations. The
former consist of the data sets, denoted hereinafter as
W1, W2, W3, W4 and W5, with the first four taken
from the Machine Learning Repository maintained by
the Center for Machine Learning and Intelligent Systems,
University of California Irvine, on the website (UC Irvine
Machine Learning Repository, 2013), while the fifth one
comes from the authors’ own research (Charytanowicz
et al., 2010). Thus

• W1: glass, contains the results of chemical and visual
analysis of glass samples, from 6 weakly separable
(Ishibuchi et al., 2001) classes, characterized by 9
attributes;

• W2: wine, represents the results of analysis of
samples from 3 different producers, making up
strongly separable (Cortez et al., 2009) classes, with
13 attributes;
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• W3: Wisconsin Breast Cancer (WBC), obtained
during oncological examinations (Mangasarian and
Wolberg, 1990), has 2 classes and 9 attributes;

• W4: vehicle, presents measurements of vehicle
shapes taken with a camera (Oliveira and Pedrycz,
2007), grouped into 4 classes, described by 18
attributes;

• W5: seeds, lists the dimensions of 7 geometrical
properties of 3 species of wheat seeds, obtained using
the X-ray technology (Charytanowicz et al., 2010).

For classification purposes the above data sets are
divided into learning and testing samples in the proportion
4:1. The latter, data sets R1, R2, R3, R4 and R5,
were obtained using a pseudorandom number generator
with the normal distribution, with the assumed expected
value and the covariance matrix Σ. The tested sets were
formed as linear combinations of such components with
coefficients pk ∈ (0, 1). Their list is presented in Table 1.

For classification purposes, every component of a
given distribution is treated as an individual class, while
in the case of clustering it is assumed that subsequent
clusters contain elements of particular components of
linear combinations.

Similarly for the needs of identification of outliers,
atypical elements are considered to be components with
marginal values of linear combination coefficients. The
case of clustering uses the classic procedure of k-means
with the assumed number of clusters equal the number of
classes appearing in the tested set. Its quality is assessed
with the Rand index (Parvin et al., 1971):

Ic =
a + b(

m
2

) · 100%, (26)

where a and b denote the number of pairs of elements
properly assigned to the same and different clusters.

If the results concern the initial space, then the
above index specifies itself to IcINIT, whereas IcRED

corresponds to the reduced space. Next, the classification
procedure will be realized applying the standard nearest
neighbor algorithm. Its results are judged with a natural
indicator which is given as a percentage of correctly
qualified elements, denoted in the initial space as IkINIT

and in the reduced as IkRED. Finally, an identification of
outliers is made by a testing procedure based on statistical
kernel estimators (Kulczycki, 2008). The quality of
the effects can be appraised in the same way as for
classification, where the indicators are termed IoINIT and
IoRED, respectively. All performance indices used in the
paper are outlined in Table 2.

The dimension of the reduced space N is arbitrarily
assumed following suggestions from the appropriate
subject literature (Charytanowicz et al., 2010; Saxena
et al., 2010). For pseudorandom data sets its value was

selected to ensure a convenient visualization of results.
Table 3 presents a summary of these. In every case,

Table 3. Dimensions of reduced spaces.

Data set N Data set N

W1 4 R1 1
W2 5 R2 1
W3 4 R3 2
W4 10 R4 2
W5 2 R5 2

the tested procedure was repeated 30 times, following
which, for further inference, the mean values and standard
deviations of the introduced indexes were used.

Thus, preliminary research concerned the
functionality of the investigated procedure, in particular
its sensitivity to versions and parameters with arbitrarily
assumed values. During the conducted research, the
options mentioned below were taken into account:

(i) two versions of generating the initial solution:
feature selection (version A) and the linear
combination of features (version B); in addition, a
randomly obtained initial form of the transformation
matrix was also considered, which was, however,
dismissed at the preliminary stage, due to its
ineffectiveness;

(ii) two possible forms of the cost function, described by
the formulas (5) and (4);

(iii) four levels of sensitivity for the stop criterion εw =
{1, 2, 3, 4}, whose range resulted from practical
conditioning of the test carried out;

(iv) three possible values for the parameter Tscale =
{0.01 0.1 1}.

Furthermore, in this phase it was also assumed that
P (1) = 0.7 and pthread = 4.

In general, it can be ascertained that the results
obtained for every option did not differ significantly,
therefore (worth stressing) the algorithm worked out is
not very sensitive to the selected parameters. In practice,
this is highly valuable and considerably increases its
applicational potential.

The preferred strategy for generating an initial
solution seems to be the version based on feature selection
(version A). The form of the cost function, however,
does not appear to have a great influence on the quality
of the transformation. The difference, while negligible
in the sense of the examined indexes, can only be seen
following the analysis for εw = 4. In problems of
identifying outliers and clustering, using the function SR

is recommended, and for classification—the function SS .
However, it is difficult to definitely suggest a value for
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Table 1. Characteristics of data sets R1–R5 of pseudorandom nature.

Data set n Parameters of distribution components
k pk μk Σk

R1(m,a,o) 2 1 o/2 [0 a] [
1 0
0 1

]
2 o/2 [a a]
3 1-o [a 0]

R2(m,a,o) 3 1 1-o [0 0 0] ⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦
2 o/4 [a 0 0]
3 o/4 [a 0 -a]
4 o/4 [a a 0]
5 o/4 [0 0 a]

R3(m,a,o) 5 1 o/5 [a 0 0 0 0]
[σij ]

i, j = 1, 2, . . . , n
∀i = j, σij = 1
∀i �= j, σij = 0

2 o/5 [0 a 0 0 0]
3 o/5 [0 0 a 0 0]
4 o/5 [0 0 0 a 0]
5 o/5 [0 0 0 0 a]
6 1-o [a a a a a]

R4(m,a,o) 10 1 o/2 [a 0 0 0 0 0 0 0 0 0] [σij ]
i, j = 1, 2, . . . , n
∀i = j, σij = 1
∀i �= j, σij = 0

2 o/2 [0 0 0 0 0 0 0 0 0 -a]
3 (1-o)/2 [0 0 0 0 0 0 0 0 0 0]
4 (1-o)/2 [0 0 0 0 0 0 0 0 0 a/2]

R5(m,a,o) 15 1 1-o [5a -a a -a a -a a -a a -a a -a a -a 5a]
[σij ]

i, j = 1, 2, . . . , n
∀i = j, σij = 1
∀i �= j, σij = 0

2 o/2 [a -a a -a a -a a -a a -a a -a a -a a]
3 o/2 [-a a a -a a -a a -a a -a a -a a -a a -a]

the coefficient Tscale. The most stable in the sense of
presented efficiency seems to be the version with Tscale =
0.1. Lastly, the most advantageous results were obtained
for two versions of the FSA algorithm based on generating
an initial solution with selection of adequate features, the
sensitivity of the stop criterion εw = 4, the coefficient
Tscale = 0.1, as well as the cost function SS or SR. These
two versions, called standard in the following part of this
paper, were used in later research involving numerical
evaluation of the concept presented here.

In the next stage of the experimental research, the
dependence of the algorithm’s efficiency on the value
P (1) was examined. Appropriate tests were carried out
considering the cases P (1) ≈ 0, P (1) = 0.1, 0.2, . . . , 0.9
and also P (1) ≈ 1. Above all it can be inferred that the
FSA algorithm applied is highly efficient with respect to
parallel local search (which corresponds to P (1) ≈ 0),
and also primarily a random parallel exploration of the
solution space (when P (1) ≈ 1). In the case of the
algorithm used, low probabilities in the interval [0.1, 0.4]
are preferred. This results from the employed scheme of
generating neighbor solutions, which, together with the
procedure of temperature change according to the formula
(6), allows “distant jumps” in the solutions space under
investigation. It compensates for the influence of the low
probability of the acceptance of worse solutions.

The next subject of the research was the presented
algorithm for reducing the sample size. Verification of
the obtained results consisted in defining the percentage
reduction of the sample for particular values of W =
0, 0.1, . . . , 2.0. The dependence of the number of removed
elements on the parameter W is not easy to express
with an analytical formula. It is, however, possible to
continuously adjust the degree of reduction achieved. The
value W close to zero implies the removal of a small
number of data set elements, while even W = 2 results
in a reduction greater than 80%. Fixing W = 1 usually
causes a sample size reduced by about half, because the
elements with weights less than average are eliminated.

An increase in the intensity of sample reduction
in the case of some data analysis procedures may have
a positive influence on the quality of the results in
the reduced space. This was mainly observed for the
identification of outliers, where W = 0.9 produced
the best results. In this event, removal from the data
set of a significant amount of its elements did not
usually lower the difference between typical elements and
outliers, but often actually exaggerated it. In clustering
and classification, one can use the research to argue
that such a high degree of reduction is advisable, as
it leads to the elimination of sample elements which
are fundamental to the creation of a grouping structure.
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Table 2. Performance indices used for evaluating results of the data analysis tasks considered.

Task Cluster analysis Classification Outlier detection

Solution quality Ic = a+b

(m
2 )

· 100% Ik = a
m

· 100% Io = a
m

· 100%
indicator and its

description m: sample size m: sample size m: sample size
a: number of sample elements a: number of sample elements a: number of sample elements

properly assigned assigned to the right class assigned to the right class
to the same cluster (outlier/typical)

b: number of sample elements
properly assigned

to different clusters

In conclusion it can be suggested that—where other
conditions are not present—for these problems, the
compression coefficient should be assumed from the range
between 0.1 and 0.2. This often enables the elimination
of such elements which, as a result of transformation,
undergo significant displacement with respect to the rest,
causing an improvement in clustering and classification
quality in the reduced space. All suggested values of
the algorithm’s parameters and recommended options are
ultimately summarized in Table 4.

Table 4. Suggested values and options of the algorithm.
Parameter/option Suggested value

Initial solution generation Version A

Cost function SS for classification
SR otherwise

Sensitivity of stop criterion εw = 4

Temperature scaling Tscale = 0.1

Initial probability of P (1) ∈ [0.1, 0.4]
worse solution acceptance

Compression coefficient W ∼= 1 for outlier detection
W ∈ [0.1, 0, 2] otherwise

Finally, the effectiveness of the algorithm under
investigation was compared with other reference methods.
The first verification was made only for the dimension
reduction procedure, and then together with the sample
size reduction algorithm. Research was carried out using
the options given above, whereas for the identification of
outliers and clustering the cost function SR was used, and
for classification the function SS . In the case of dimension
reduction, the classic PCA linear algorithm as well as
the aforementioned features selection procedure using
evolutionary algorithms and the Sammon stress function
were used as reference techniques. Research of the latter
focused only on the efficiency of classification, for which
this strategy was confirmed earlier in the work (Saxena
et al., 2010). The results of experiments are shown in
Tables 5–7. The reported execution times include both
dimensionality reduction and the given data mining task.

In interpreting the results of identifying outliers
shown in Table 5, it must be underlined that the proposed
method for dimension reduction ensures, in most cases, a
greater efficiency of the data analysis procedure used. This
is also true when comparing results of this procedure in an
unreduced space, as well as when juxtaposing the result
with that obtained using principal component algorithm.

Reducing the dimensionality of a data set with the
subject algorithm, also in the case of classification (as
shown in Table 6), ensures greater average efficiency, both
when the reference constitutes the result obtained on the
basis of a reduced data set using the principal component
algorithm, as well as in the consequent analysis of a
features set, chosen with an evolutionary strategy.

For clustering (Table 7), a reduced form of a data
set is usually achieved, for which the k-means algorithm
produces a result which is more compatible (in the sense
of the IcRED index) with the data structure than for the
PCA method.

Table 7. Comparison of results of dimension reduction for clu-
stering.

W1 W2 W3 W4 W5
glass wine WBC vehicle seeds

IcINIT 68.23 93.48 66.23 64.18 91.06
±σ(IcRED) ±1.39 ±0.68 ±0.38 ±1.08 ±0.53

Reduction using FSA
IcRED 68.01 92.78 66.17 64.49 89.74

±σ(IcRED) ±0.61 ±0.76 ±0.31 ±0.28 ±0.78
max(IcRED) 69.18 94.14 66.69 65.02 90.52

time[s] 4.2 2.4 149.3 26.8 18.4

Reduction using PCA
IcRED 67.71 92.64 66.16 64.16 88.95

±σ(IcRED) ±0.21 ±0.88 ±0.21 ±0.32 ±0.55

In the next stage, a complete comparison, similar
to the one presented above, was conducted, additionally
taking into account the procedure for sample size
reduction. According to previous inferences, for the
identification of outliers, the compression coefficient W
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Table 5. Comparison of results of dimension reduction for identification of outliers.

R1 R2 R3 R4 R5
(300, 4, 0.1) (300, 4, 0.1) (500, 3, 0.1) (500, 4, 0.1) (500, 2, 0.1)

IoINIT 92.66 91.33 94.4 86.80 90.00

Reduction using FSA
IoRED 97.33 94.00 93.43 89.04 93.42

±σ(IoRED) ±0.00 ±1.91 ±0.87 ±1.20 ±0.73
max(IoRED) 97.33 95.33 95.20 91.20 95.20

time[ms] 67.7 1169.0 2820.6 28892.6 44405.40

Reduction using PCA
IoRED 93.33 90.00 92.40 86.80 90.00

time[ms] 5.7 15.1 16.9 58.6 98.3

Table 6. Comparison of results of dimension reduction for classification.

W1 W2 W3 W4 W5
glass wine WBC vehicle seeds

IkINIT 71.90 74.57 95.88 63.37 90.23
±σ(IkINIT) ±8.10 ±5.29 ±1.35 ±3.34 ±2.85

Reduction using FSA
IkRED 69.29 75.14 95.66 63.85 89.29

±σ(IkRED) ±3.79 ±6.46 ±1.12 ±2.98 ±2.31
time[s] 4.5 27.1 10.0 400.2 4.7

Reduction using PCA
IkRED 58.33 72.00 95.29 62.24 83.09

±σ(IkRED) ±6.37 ±7.22 ±2.06 ±3.84 ±7.31

Reduction using evolutionary algorithms
IkRED 64.80 72.82 95.10 60.86

N/A±σ(IkRED) ±4.43 ±1.02 ±0.80 ±1.51

value was fixed at the level 0.9, for classification W =
0.1, and for clustering W = 0.2. To illustrate, in
the latter two, a selected version with more intensive
reduction was additionally considered. In order to verify
the effectiveness of combining the investigated procedures
of dimension and sample size reduction, the possibility
was also examined of using clustering together with
the principal component algorithm, and the proposed
sample size reduction with a similar reduction intensity.
Moreover, in the case of identifying outliers, the prospect
was also considered of applying the PCA method with the
algorithm for condensing data presented by Mitra et al.
(2002). The results obtained are presented sequentially in
Tables 8–10.

The results displayed in Tables 8–10 lead us to
conclude that the strategy of sample size reduction
is a worthy supplement to the method for dimension
reduction based on the FSA algorithm. For identifying
outliers, treated data sets saw 30–50% of sample elements
removed and, as expected, the quality of identification
of outliers improved greatly. In the cases of clustering
and classification, the first series of experiments did not
apply intensive reduction of the sample size. However,

elimination of even a small part of “stray” elements
transformed during dimension reduction leads to an
increase in the average efficiency of the procedures
applied in the reduced space. This is especially obvious
in classification with the nearest neighbor algorithm,
which is very sensitive to disturbances in the data set
structure introduced by the transformation. An increase
in the compression coefficient W value, realized in the
second stage of the numerical experiments, usually sees
the worsening of stability and/or average efficiency of
classification and clustering. This mainly concerns the
first procedure, where the growth of the value W above
0.5 has decidedly negative implications. In the case of
clustering, one can achieve high efficiency of conducted
analysis most often in single experiments only, with
an additional 20–40% reduction in the sample size,
although the improvement was permanent for the data
set seeds. Despite the results obtained for sets reduced
by the PCA algorithm, and the procedure for sample
size reduction proposed here usually being significantly
worse than the two-stage method investigated in this
paper, a combination of these two algorithms also seems
to be a valuable concept in practical applications and is
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broadly studied within a separate contribution (Łukasik
and Kulczycki, 2013).

In conclusion of this experimental study, let us
illustrate the advantages of using the proposed algorithm
for additional multidimensional dataset from the UCI
Machine Learning Repository. It concerns an image
segmentation problem and consists of 2310 instances with
19 attributes each, representing 7 classes of textures. The
execution of cluster analysis for PCA-reduced two feature
set results in the average accuracy of 79.9%. For the same
feature set size, PFSA-based algorithm reaches on average
82.3% of the Rand index value. The obtained cluster
structure is illustrated on Fig. 2.

5. Summary and final remarks

The subject of this paper was a complete algorithm
for reducing the dimension and sample size, ready to
be used in a wide range of exploratory data analysis
problems. It constitutes a universal, unsupervised linear
transformation of a features space, with the aim of
best maintaining distances between sample elements,
additionally supplemented by a reduction in significance
of those elements whose locations in relation to the
rest changed considerably. The foundation for this
algorithm is an innovative version of the parallel fast
simulated annealing procedure, with the stop criterion
based on order statistics, automatic generation of
initial temperature and a multidimensional generator of
pseudorandom numbers with the Cauchy distribution.
The sample size was reduced as a result of calculating
weights for particular elements, with the possibility
of continuous adjustment of this procedure’s intensity,
through establishing an appropriate—for an investigated
problem—value for the compression coefficient.

Besides presenting the concept of the algorithm
and selected applicational properties, diverse numerical
experiments were also included. They led to the
conclusions regarding the recommended values of
parameters which can be fixed within this algorithm,
and also allowed its properties to be examined. In
addition, during the research the investigated procedure
was compared with the principle component method and
a technique using evolutionary algorithms. Generally the
obtained results of numerical verification, conducted for
both pseudorandom and real data sets, confirmed the
validity of the proposed concept as well as its many
positive properties.

Furthermore, the particular functional components
of the procedure presented here can be applied in other
tasks of information processing. Thus, the parallel fast
simulated annealing algorithm may be used successfully
in a wide range of optimization problems, due to
its universal structure and relatively intuitive selection
of arbitrarily assumed parameters. What is more, the

proposed procedure for reducing the sample size can be
applied together with other, also nonlinear, strategies for
dimension reduction.

Finally, it is worth stressing that, regardless of the
calculational complexity of the proposed algorithm, as its
execution time is guided by the adaptive stop criterion it
corresponds to the difficulty of the problem at hand. The
use of linear transformation, which is easy to generalize,
and the simple idea of a set of weights, makes it possible
to use the investigated method effectively in a wide
range of contemporary data analysis problems, also those
involving data sets characterized by the influx of new
sample elements.

Fig. 2. Result of cluster analysis for the two-dimensional repre-
sentation of the segmentation dataset.
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in E. Piątka and J. Kawa (Eds.), Information Technologies
in Biomedicine, Vol. 2, Springer-Verlag, Berlin, pp. 15–24.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T. and Reis,
J. (2009). Modeling wine preferences by data mining
from physicochemical properties, Decision Support Sys-
tems 47(4): 547–553.

Cox, T. and Cox, M. (2000). Multidimensional Scaling,
Chapman and Hall, Boca Raton, FL.

Cunningham, P. (2007). Dimension reduction, Technical re-
port, UCD School of Computer Science and Informatics,
Dublin.
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