
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 1, 151–163
DOI: 10.2478/amcs-2014-0012

CENTER–BASED L1–CLUSTERING METHOD

KRISTIAN SABO

Department of Mathematics
University of Osijek, Trg Lj. Gaja 6, HR 31 000 Osijek, Croatia

e-mail: ksabo@mathos.hr

In this paper, we consider the l1-clustering problem for a finite data-point set which should be partitioned into k disjoint
nonempty subsets. In that case, the objective function does not have to be either convex or differentiable, and generally
it may have many local or global minima. Therefore, it becomes a complex global optimization problem. A method of
searching for a locally optimal solution is proposed in the paper, the convergence of the corresponding iterative process is
proved and the corresponding algorithm is given. The method is illustrated by and compared with some other clustering
methods, especially with the l2-clustering method, which is also known in the literature as a smooth k-means method, on
a few typical situations, such as the presence of outliers among the data and the clustering of incomplete data. Numerical
experiments show in this case that the proposed l1-clustering algorithm is faster and gives significantly better results than
the l2-clustering algorithm.

Keywords: l1-clustering, data mining, optimization, weighted median problem.

1. Introduction

Clustering or grouping a data set into conceptually
meaningful clusters is a well-studied problem in recent
literature (Äyrämö, 2006; Frąckiewicz and Palus, 2011;
Gan et al., 2007; Iyigun, 2007; Kogan, 2007; Teboulle,
2007), and it has practical importance in a wide variety
of applications such as computer vision, signal image
video analysis, multimedia, networks, biology, medicine,
geology, psychology, business, politics and other social
sciences. The classification and ranking of objects are
also becoming more and more interesting topics for
researchers, decision makers and state administrations.

Generally speaking, clustering algorithms can be
divided into two main groups (Jain, 2010), i.e.,
hierarchical and partitional. The former (Gan et al., 2007)
recursively find nested clusters either in agglomerative
mode (starting with each data point in its own cluster and
merging the most similar pair of clusters successively to
form a cluster hierarchy) or in divisive mode (starting with
all the data points in one cluster and recursively dividing
each cluster into smaller clusters). The latter, on the other
hand, find all the clusters simultaneously as a partition of
the data and do not impose a hierarchical structure. The
most well-known hierarchical algorithms are single-link,
complete-link, average-link and Ward algorithms; the
most popular and the simplest partitional algorithm is the

k-means algorithm.

Partitional clustering algorithms can be divided
into two classes, i.e., hard clustering, where each data
belongs to only one cluster, and soft clustering, where
every data point belongs to every cluster to a certain
degree. Well-known soft clustering methods include fuzzy
k-means (Bezdek, 1981), the expectation maximization
algorithm (see, e.g., Duda et al., 2001), the smooth
k-means algorithm based on the Euclidean l2-norm
(Kogan, 2007; Teboulle, 2007), etc.

Motivated by the smooth k-means method
(l2-method) (Kogan, 2007; Teboulle, 2007), in this
paper we consider a soft clustering method that is based
on the l1-norm. The method is a generalization of the
one-dimensional center-based l1-clustering method
proposed by Sabo et al. (2012). It is well known that
the n-dimensional clustering problem can be reduced
to one-dimensional ones by projection of data-points
onto the line that corresponds to the main principal axes
associated with the data-point set (Kogan, 2007), or by
some nonlinear multidimensional scaling method (Gan
et al., 2007). Since numerical experiments show that,
in comparison with the corresponding one-dimensional
method, the n-dimensional l1-clustering method generally
gives better results, the main aim of this paper is to provide
formal theoretical background for the n-dimensional case.

ksabo@mathos.hr


152 K. Sabo

In this paper, by R
n we will denote the

n-dimensional Euclidean space, whose elements are
n-tuples of real numbers, which are called points. The
space R

n is equipped with a structure of a real vector
space, with usual addition and multiplication with scalars.
Analogously, the set of all points θ = (c1, . . . , ck),
whereby cs ∈ R

n, s = 1, . . . , k, will be denoted by
R

kn. Finally, the set of nonnegative real numbers will be
denoted by R+.

A partition of the data-points set A = {ai ∈ R
n : i =

1, . . . , m} ⊂ In ⊂ R
n, where In = {(x1, . . . , xn) ∈

R
n : αi ≤ xi ≤ βi, αi, βi ∈ R}, into k disjoint nonempty

subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k⋃

i=1

πi = A,

πi ∩ πj = ∅, i �= j, (1)

|πj | ≥ 1, j = 1, . . . , k,

will be further denoted by Π(A) = {π1, . . . , πk}, and the
elements π1, . . . , πk of such a partition are called clusters
in R

n.
If d : R

n × R
n → R+ is some distance-like function

(see, e.g., Kogan, 2007; Teboulle, 2007), then with each
cluster πj ∈ Π we can associate its center cj defined by

cj = arg min
x∈conv(πj)

∑

ai∈πj

d(x, ai), (2)

where conv(πj) is a convex hull of the set πj .
If we define an objective function F : P(A, k) →

R+ on the set of all partitions P(A, k) of the set A
containing k clusters by

F(Π) =
k∑

j=1

∑

ai∈πj

d(cj , ai), (3)

then we can define an optimal partition Π�, such that

F(Π�) = min
Π∈P(A,k)

F(Π).

Conversely, for a given set of centers c1, . . . , ck ∈
In, applying the minimal distance principle (see, e.g.,
Kogan, 2007; Teboulle, 2007), we can define the partition
Π = {π1, . . . , πk} of the set A. Therefore, the problem of
finding an optimal partition of the set A can be reduced to
the following global optimization problem:

min
c1,...,ck∈In

F (c1, . . . , ck), (4)

F (c1, . . . , ck) =
m∑

i=1

min
j=1,...,k

d(cj , ai),

where F : Ikn → R+ and Ikn = {(x1, . . . , xk) : xs ∈
In, s = 1, . . . , k} ⊂ R

kn. In general, the functional F

is not differentiable and it may have many local or global
minima. The optimization problem (4) can also be found
in the literature as a center-based clustering problem or a
k-median problem (Iyigun, 2007; Leisch, 2006; Teboulle,
2007).

If d(x, y) = ‖x − y‖2
2, we deal with the l2 or Le-

ast Squares (LS) clustering problem, and if d(x, y) =
‖x − y‖1, it is the l1 or Least Absolute Deviations
(LAD) clustering problem. The l1-clustering problem can
be reduced to the following nonconvex and nonsmooth
optimization one:

min
c1,...,ck∈In

Φ(c1, . . . , ck), (5)

Φ(c1, . . . , ck) =
m∑

i=1

min
j=1,...,k

‖cj − ai‖1,

where Φ: Ikn → R+, is a continuous function.
For example, Cominetti and Michelot (1997) present

a sufficient condition for clustering in l1-location
problems, based on the concept of an attraction cluster,
and Zhang et al. (2012) propose a cluster-dependent
multi-metric clustering approach by using the lp-norm
with special stress placed on robust clustering and outlier
detection methods. Various clustering methods based on
the l1-norm can be found in the works of Jajuga (1987;
1991) and Späth (1976; 1987).

Let us mention several interesting applications of
l1-optimality clustering that often occur in the literature.
For example, Angulo and Serra (2007) propose a new
polar representation for quantitative image processing
by using the l1-norm, and Jörnsten (2004) considers a
classifier based on the l1 data depth for the analysis of
microarray gene expression data. Li et al. (2010) propose
a novel rotational invariant l1-norm based discriminant
analysis in the presence of outliers. Choulakian (2001)
and Meng et al. (2012) consider a principal component
analysis of a data set based on the l1-norm. In the
work of Grbić et al. (2013), the problem of global data
approximation on the basis of data containing outliers is
considered and a new method named the moving least
absolute deviations method is proposed.

The optimization problem (5) can be transformed in
the following way. Since the nondifferentiable function
f : R

k → R, f(z) = maxj=1,...,k zj can be approximated
by a differentiable function

fε(z) = ε ln
k∑

j=1

exp (zj/ε)

(see, e.g., Boyd and Vandenberghe, 2004; Malinen and
Fränti, 2012), instead of solving the problem (5), we can
solve the following optimization problem (Kogan, 2007;
Teboulle, 2007):

min
c1,...,ck∈In

Φε(c1, . . . , ck), (6)



Center-based l1-clustering method 153

Φε(c1, . . . , ck) = −ε
m∑

i=1

ln
k∑

j=1

exp
(− 1

ε‖cj − ai‖1

)
,

where Φε : Ikn → R. This is a continuous optimization
problem, where the objective function does not have to be
either convex or differentiable, and generally it may have
many local or global minima and consequentially several
stationary points in the sense of Clarke (1990).

Inspired by the method given by Kogan (2007) and
Teboulle (2007), in our paper (Sabo et al., 2012) we
propose an iterative procedure for determining stationary
points of the function Φε given by (6) for a special case
n = 1. Now, we give a natural generalization of that
iterative procedure for an arbitrary dimension of data n ∈
N.

The paper is organized as follows. Section 2 gives
some properties of the function Φε. In Section 3, a we-
ighted median of the data-point set A ⊂ R

n is defined,
by means of which in Section 4 an iterative procedure is
constructed, which always converges to some stationary
point of the function Φε. Typical situations, such as the
presence of outliers among the data and clustering of
incomplete data, are illustrated by means of one example
on synthetic data and three examples on empirical data.

2. Properties of the function Φε

In this section we are going to analyze some properties
of the function Φε. To simplify the notation, we write
θ := (c1, . . . , ck) ∈ R

kn, cs ∈ R
n, s = 1, . . . , k.

Analogously as in the work of Sabo et al. (2012), the
relationship between the function Φ given by (5) and Φε

given by (6) (Lemma 1) and the Lipschitz property of the
function Φε (Lemma 2) can be shown.

Lemma 1. Let A = {ai ∈ R
n : i = 1, . . . , m} ⊂ In ⊂

R
n, In = {(x1, . . . , xn) ∈ R

n : αi ≤ xi ≤ βi, αi, βi ∈
R}, be a given set of data-points, and let Φ and Φε, ε > 0,
be functions given by (5) and (6), respectively. Then, for
all θ ∈ Ikn, the following inequalities hold:

0 < Φ(θ) − Φε(θ) ≤ ε m ln k. (7)

Lemma 2. For all θ1, θ2 ∈ Ikn, there holds

|Φε(θ2) − Φε(θ1)| ≤ mn ‖θ2 − θ1‖∞.

The function Φε is continuous, and according to
Lemma 1, it is bounded below,

Φε(θ) ≥ Φ(θ) − ε m lnk ≥ −ε m lnk.

Therefore, since Ikn ⊂ R
kn is compact, Φε attains its

global minimum.

Since the function Φε : Ikn → R+ is
Lipschitz-continuous, we have a well-defined Clarke
generalized subdifferential (see, e.g., Ruszczynski, 2006),
which can be written as

∂Φε(θ) = {(u1, . . . , uk) ∈ R
kn :

us =
m∑

i=1

ws
i (θ)

(
σλ1(c

s
1, a

i
1), . . . , σλ2(c

s
n, ai

n)
)

(8)

λj ∈ [−1, 1]},
where

σζ(c, a) =

{
sign(c − a) if c �= a,

ζ if c = a,
(9)

ws
i (θ) =

exp(− 1
ε‖cs − ai‖1)

k∑
j=1

exp(− 1
ε‖cj − ai‖1)

,

θ = (c1, . . . , ck), s = 1, . . . , k, i = 1, . . . , m.

If θ� ∈ Ikn is a local minimum of the Lipschitz
continuous function Φε : Ikn → R+, then 0 ∈ ∂Φε(θ∗).
Conversely, every point θ̂ ∈ Ikn for which 0 ∈ ∂Φε(θ̂) is
a stationary point of the function Φε.

3. Weighted median of the data-point set
A ⊂ R

n

In this section we define a weighted median of the data-
point set A ⊂ R

n (see also Sabo and Scitovski, 2008;
Vardi and Zhang, 2000; Vazler et al., 2012), which will
be used for construction of an iterative procedure for
searching for stationary points of the function Φε defined
by (6).

Definition 1. A weighted median of the data-point set
A = {ai = (ai

1, . . . , a
i
n) ∈ R

n : i = 1, . . . , m} ⊂ R
n

with the corresponding weights w = (w1, . . . , wm), wi >
0, is any point from the set

Med(w,A) :=
{
(u1, . . . , un) ∈ R

n :

ul ∈ Med
i=1,...,m

(wi, a
i
l), l = 1, . . . , n

}
,

(10)

where

Med
i=1,...,m

(wi, a
i
l) =

{
x∗

l ∈ R :
m∑

i=1

wi|x∗
l − ai

l |

≤
m∑

i=1

wi|x − ai
l |, ∀x ∈ R

}
, (11)

is the set of all weighted medians of real numbers (ai
l , i =

1, . . . , m) with the corresponding weights wi > 0.



154 K. Sabo

Remark 1. For every l = 1, . . . , n, the set
Medi=1,...,m(wi, a

i
l) given by (11) is obtained as a

solution of a weighted median problem, and it can be a
singleton {ai

l} for some i ∈ {1, . . . , m} or an interval
of real numbers [ai

l, a
j
l ] for some i, j ∈ {1, . . . , m}. The

elements of the set Medi=1,...,m(wi, a
i
l) will be denoted

by medi=1,...,m(wi, a
i
l). Thus, for every l = 1, . . . , n

there exists medi=1,...,m(wi, a
i
l) ∈ Medi=1,...,m(wi, a

i
l),

which coincides with some of the numbers a1
l , . . . , a

m
l .

The set Med(w,A) given by (10) belongs to the
convex hull of the set A, and it can have only one point
(u1, . . . , un) ∈ Med(w,A), where ul ∈ {a1

l , . . . , a
m
l }

for every l = 1, . . . , n, or it can be a hyperrectangle,
with the vertex of the form (v1, . . . , vn), where vl ∈
{a1

l , . . . , a
m
l } for every l = 1, . . . , n. The elements of the

set Med(w,A) are denoted by med(w,A).
Note that, if we write

A = {(u1, . . . , un) ∈ R
n : ul ∈ {a1

l , . . . , a
m
l },

l = 1, . . . , n},
then we can conclude that there exists med(w,A) ∈
Med(w,A), such that med(w,A) ∈ A. In practical
situations, such as the aforementioned iterative procedure
for determining stationary points of the function Φε, it will
not be necessary to know the whole set Med(w,A), but it
would suffice to determine just one of its representatives
belonging to the set A. Vardi and Zhang (2000) propose a
new, simple, fast, monotonically converging algorithm for
deriving the weighted median of the data-point set in R

n.

Example 1. Let A = {(1, 1), (2, 1), (5, 2), (6, 3), (4, 5),
(2, 4)} and w = (1, 1, 1, 1, 1, 1) be the corresponding
weights. The points of the set A are placed in nodes of
the network shown in Fig. 1. Since

Med
i=1,...,6

(wi, a
i
1) = [2, 4],

and
Med

i=1,...,6
(wi, a

i
2) = [2, 3],

it follows that Med(w,A) = [2, 4] × [2, 3]. Note that in
this case the set Med(w,A) does not contain any point
from the data-points set A, but it contains four points from
the set A (see Fig. 1(a)).

If we replace the point (2, 4) by (2, 3), the weighted
median Med(w,A) does not change, but now a6 ∈
Med(w,A) (Fig. 1(b)).

If we drop the point a6 from the set A, the weighted
median of the data-points set A becomes the point which
belongs to the set A \ A (Fig. 1(c)). �

An overview of useful properties of the weighted
median of real numbers can be found in the work of
Vazler et al. (2012). If the number of real numbers is
large, calculation of the weighted median of the data may

require a lot of computing time (Cupec et al., 2009; Sabo
et al., 2011; Sabo and Scitovski, 2008). Several fast
algorithms are given by Gurwitz (1990). The following
proposition holds.

Proposition 1. The set Med(w,A) is equal to the set
arg minξ∈Rn φ(ξ) of all global minimizers (i.e., points of
global minima) of the convex function φ : R

n → R+ given
by the formula

φ(ξ) =
m∑

i=1

wi ‖ai − ξ‖1.

Proof. Let

ξ∗ =
(

med
j=1,...,m

(wj , a
j
1), . . . , med

j=1,...,m
(wj , a

j
n)

)

∈ Med(w,A).

Let us show that

ξ∗ ∈ arg min
ξ∈Rn

φ(x).

There holds

φ(ξ∗) =
m∑

i=1

wi‖ai − ξ∗‖1

=
m∑

i=1

wi

n∑

l=1

|ai
l − med

j=1,...,m
(wj , a

j
l )|

=
n∑

l=1

m∑

i=1

wi|ai
l − med

j=1,...,m
(wj , a

j
l )|

=
n∑

l=1

min
ξl∈R

m∑

i=1

wi|ai
l − ξl|

= min
ξ=(ξ1,...,ξn)∈Rn

n∑

l=1

m∑

i=1

wi|ai
l − ξl|

= min
x∈Rn

m∑

i=1

wi‖ai − ξ‖1

= min
ξ∈Rn

φ(ξ),

i.e., ξ∗ ∈ arg minξ∈Rn φ(ξ).
Conversely, we show that, if

ξ∗ = (ξ∗1 , . . . , ξ∗n) ∈ arg min
ξ∈Rn

φ(ξ),

then
ξ∗l ∈ Med

j=1,...,m
(wi, a

j
l )

for every l = 1, . . . , n. For that purpose, let us notice that
for every l = 1, . . . , n the following holds:

m∑

i=1

wi|ai
l − ξ∗l | ≥

m∑

i=1

wi|ai
l − med

j=1,...,m
(wj , a

j
l )|, (12)



Center-based l1-clustering method 155

1 2 3 4 5 6

1

2

3

4

5

a1 a2

a3

a4

a5

a6

Med(w,A)

(a)
1 2 3 4 5 6

1

2

3

4

5

a1 a2

a3

a4

a5

a6

Med(w,A)

(b)
1 2 3 4 5 6

1

2

3

4

5

a1 a2

a3

a4

a5

(w,A)

(c)

Fig. 1. Median of the data-point set A: Med(w,A) is the set (a), Med(w,A) is the set (b), Med(w,A) is the point (c).

where

med
j=1,...,m

(wj , a
j
l ) ∈ Med

j=1,...,m
(wj , a

j
l ),

∀l = 1, . . . , n. Thereby, the equality in (12) holds if and
only if

ξ∗l ∈ Med
j=1,...,m

(wj , a
j
l ), l = 1, . . . , n.

Adding up (12) for l = 1, . . . , n, we obtain

φ(ξ∗) =
n∑

l=1

m∑

i=1

wi|ai
l − ξ∗l |

≥
n∑

l=1

m∑

i=1

wi|ai
l − med

j=1,...,m
(wj , a

j
l )|

=φ

(
med

j=1,...,m
(wj , a

j
1), . . . , med

j=1,...,m
(wj , a

j
n)

)
,

whereby the equality holds if and only if

ξ∗l ∈ Med
j=1,...,m

(wj , a
j
l )

for every l = 1, . . . , n. Since under the assumption that
vector ξ∗ comes from the set of global minima of the
function φ, there holds

φ(ξ∗) ≤ φ

(
med

j=1,...,m
(wj , a

j
1), . . . , med

j=1,...,m
(wj , a

j
n)

)
,

which together with (12) results in

φ(ξ∗) = φ

(
med

j=1,...,m
(wj , a

j
1), . . . , med

j=1,...,m
(wj , a

j
n)

)
,

i.e.,

ξ∗l ∈ Med
j=1,...,m

(wj , a
j
l )

for every l = 1, . . . , n. �

4. Method for finding stationary points of
the function Φε

Motivated by Cord et al. (2006), Kogan (2007) and
Teboulle (2007), similarly to Sabo et al. (2012), in this
section we construct an efficient iterative process for
detecting stationary points of the function Φε. Assuming
that θ(t) =

(
c1(t), . . . , ck(t)

) ∈ R
kn, cs(t) ∈ R

n, s =
1, . . . , k, is known, we are going to look for the next
approximation θ(t+1) =

(
c1(t + 1), . . . , ck(t + 1)

) ∈
R

kn, cs(t+1) ∈ R
n, s = 1, . . . , k, where cs(t+1) is the

weighted median of the data-point set A with appropriate
weights, i.e.,

cs(t + 1) = med
(
ws(θ(t)),A

)
, s = 1, . . . , k, (13)

where

ws(θ(t)) = (ws
1(θ

(t)), . . . , ws
m(θ(t))),

s = 1, . . . , k, and

ws
i (θ

(t))

=
exp(− 1

ε‖cs(t) − ai‖1)
k∑

j=1

exp(− 1
ε‖cj(t) − ai‖1)

, i = 1, . . . , m.

According to Definition 1, the weighted median (13)
is some point from the convex hull conv(A) of the set
A, and its representative from the set A ⊂ conv(A) can
always be chosen. Thus we further assume that a sequence(
θ(t)

)
is contained in the set A.

By Proposition 1 we can assume that each component
cs(t + 1) of the next approximation θ(t+1) is obtained as
a solution of the following optimization problem:

cs(t + 1) = arg min
ζ∈Rn

gs(ζ; θ(t)), (14)

where gs : R
n → R+,

gs(ζ; θ(t)) =
m∑

i=1

ws
i (θ

(t))‖ζ − ai‖1.



156 K. Sabo

Note that gs are continuous, but non-differentiable
convex functions. Let g( · ; θ(t)) : R

kn → R+ be a convex
function defined by

g(θ; θ(t)) =
k∑

s=1

gs(cs; θ(t)), θ = (c1, . . . , ck). (15)

Because of the convexity of the function g, there exists
(see, e.g., Boyd and Vandenberghe, 2004)

θ(t+1) = arg min
θ∈Ikn

g(θ; θ(t)), (16)

whereby

cs(t + 1) = arg min
ξ∈In

gs(ξ; θ(t))

= med
(
w(s)(θ(t)),A

)
, (17)

s = 1, . . . , k. In that way we defined the iterative process
which associates the kn-tuple θ(t) with the kn-tuple
θ(t+1).

Remark 2. Since we supposed that θ(t) ∈ Ak, i.e.,
cs(t) ∈ A for all s = 1, . . . , k, the iterative process is
defined in such a way that it searches for stationary points
of Φε among the points of the set Ak.

Because of symmetry properties of Φ and Φε, if
θ̂ =

(
ĉ1, . . . , ĉk

)
minimizes the functions Φε and θ̃ is

an arbitrary componentwise permutation of θ̂, then also
θ̃ minimizes Φε and therefore the function Φε attains its
global minimum in at least k! points.

Note also that iterative procedure (16) can be
constructed as a Gauss–Seidel iterative procedure, and in
this way it will accelerate the process even more.

4.1. Convergence of the iterative process. The
following proposition can be easily checked (see also
Sabo et al., 2012).

Proposition 2.

(i) For every i = 1, . . . , m and an arbitrary θ ∈ R
kn,

the sequence of weights ws
i (θ), s = 1, . . . , k, satis-

fies 0 < ws
i (θ) < 1.

(ii) For an arbitrary θ(0) ∈ Ikn, the sequence
(
θ(t)

)
,

defined by the iterative process (16), remains in Ak ⊂
Ikn, and hence it is bounded.

Proposition 3. Let θ(0) ∈ R
kn be an arbitrary point. Let

the sequence
(
θ(t)

)
be given by the iterative process (16),

and let Φε : Ikn → R+ be the function given by (6). If
θ(t+1) �= θ(t), then Φε(θ(t+1)) < Φε(θ(t)).

Similarly to a one-dimensional center-based
l1-clustering method described by Sabo et al. (2012), the
following holds.

Theorem 1. Let θ(0) ∈ R
kn be an arbitrary point, let the

sequence
(
θ(t)

)
be defined by the iterative process (16),

and let Φε : Ikn → R+ be the function given by (6). Then

(i) the sequence
(
θ(t)

)
has an accumulation point;

(ii) the sequence
(
Φ(t)

ε

)
, where Φ(t)

ε := Φε(θ(t)), co-
nverges;

(iii) every accumulation point θ̂ of the sequence
(
θ(t)

)
is

a stationary point of the function Φε, and it is ob-
tained by the iterative process (16) in finitely many
steps, i.e., there exists a μ ∈ N, such that θ(μ+1) =
θ(μ) = θ̂;

(iv) if θ̂1 and θ̂2 are two accumulation points of the sequ-
ence

(
θ(t)

)
, then Φε(θ̂1) = Φε(θ̂2).

Proof. We shall prove each part separately.

(i) By Proposition 2, the sequence
(
θ(t)

)
is bounded, and

therefore it has an accumulation point.

(ii) By Proposition 3 the sequence
(
Φ(t)

ε

)
is

monotonously decreasing, and by Lemma 1 the
function Φε is bounded below. Therefore, there exists a
Φ�

ε , such that

Φ�
ε = lim

t→∞Φ(t)
ε .

(iii) Since the sequence Φε(θ(t)) converges and θ(t)

belongs to Ak, which is a finite set, there exists a
μ ∈ N such that Φε(θ(μ+1)) = Φε(θ(μ)). According to
Proposition 3, we have

θ(μ+1) = θ(μ) = θ̂. (18)

Because

θ(μ+1) = arg min
θ∈Ikn

g(θ; θ(μ)),

we conclude that

0 ∈ ∂g(θ(μ+1); θ(μ)),

where ∂g(θ; θ(t)) is a Clarke generalized subdifferential
of the function g at the point θ = (c1, . . . , ck),

∂g(θ; θ(t)) =
{
(u1, . . . , uk) ∈ R

kn :

us =
m∑

i=1

ws
i (θ

(t))
(
σλ1 (c

s
1, a

i
1),

. . . , σλn(cs
n, ai

n)
)
, λj ∈ [−1, 1]

}
, (19)



Center-based l1-clustering method 157

where the function σζ is given by (9). From (18) it follows
that

0 ∈ ∂g(θ(μ+1); θ(μ))

= ∂g(θ(μ); θ(μ))

=
{
(u1, . . . , uk) ∈ R

kn :

us =
m∑

i=1

ws
i (θ

(μ))
(
σλ1 (c

s
1(μ), ai

1),

. . . , σλn(cs
n(μ), ai

n)
)
, λj ∈ [−1, 1]

}
,

which coincides with the Clarke generalized
subdifferential ∂Φε(θ(μ)) of the function Φε given
by (8), at the point θ(μ). Therefore, θ(μ) = θ̂ is a
stationary point of the functionΦε.

(iv) Let
(
θ
(t)
1

)
and

(
θ
(t)
2

)
be two subsequences of the

sequence
(
θ(t)

)
, such that

θ̂1 = lim
t→∞ θ

(t)
1 , θ̂2 = lim

t→∞ θ
(t)
2 .

Since the sequence
(
Φ(t)

ε

)
converges, we have

Φε(θ̂1) = lim
t→∞Φε(θ

(t)
1 ) = lim

t→∞ Φ(t)
ε

= lim
t→∞Φε(θ

(t)
2 ) = Φε(θ̂2).

�

4.2. l1-clustering algorithm. Theorem 1 shows that,
given an initial approximation θ(0) ∈ R

kn, the iterative
process (16) always converges to some stationary point
which is not unique. In addition, Theorem 1(iii) gives a
criterion for terminating the iterative process (16). The
corresponding algorithm is given by Algorithm 1.

Remark 3. Let us mention one possibility for the
choice of the smoothing parameter ε > 0 (see also
Malinen and Fränti, 2012). If we want a relative deviation
Φ(θ(0)) − Φε(θ(0))/Φ(θ(0)) between the function Φ and
Φε in the initial approximation θ(0) to be less than the
number δ > 0 set in advance, then by using Lemma 1
we obtain

ε ≤ δ
Φ(θ(0))
m ln k

.

Since numbers exp(− 1
ε‖cs − ai‖1) are negligible when

the point ai is not close to the center cs, in that case
the weights ws

i from Step 2 are also negligible, so that in
that sense Algorithm 1 can speed up. In accordance with
Kogan (2007) and Teboulle (2007), the corresponding
l2-clustering algorithm can also be defined analogously.

Algorithm 1. l1-clustering.

Step 1. Input m ≥ 1, 1 ≤ k ≤ m, ε > 0, A = {ai ∈
R

n : i = 1, . . . , m}. Choose an initial approximation of
centers θ(0) = (c1, . . . , ck).
Step 2. For all s = 1, . . . , k define vectors ws with
components

ws
i =

exp(− 1
ε‖cs − ai‖1)

k∑
j=1

exp(− 1
ε‖cj − ai‖1)

, i = 1, . . . , m.

Step 3. Set θ(1) = (c1, . . . , ck), where

cs = med (ws,A) , s = 1, . . . , k.

Step 4. If θ(1) = θ(0), set θ(0) = (c1, . . . , ck) and go to
Step 2. Otherwise, go to Step 5.

Step 5. According to the minimal distance principle,
define a partition Π = {π1, . . . , πk} with centers
c1, . . . , ck:

π1 = {ai ∈ A : ‖ai − c1‖1 ≤ ‖ai − cl‖1, l = 1, . . . , k},

πj = {ai ∈ A \
j−1⋃

s=1

πs : ‖ai − cj‖1 ≤ ‖ai − cl‖1,

∀ l = 1, . . . , k}, j = 2, . . . , k.

5. Numerical examples

In this section, the proposed method and Algorithm 1 are
tested and compared with several clustering algorithms.
Special attention is paid to the comparison with the
l2-clustering algorithm (Kogan, 2007; Teboulle, 2007).
In accordance with Kogan (2007), the n-dimensional
data-points can be reduced to one-dimensional data by
orthogonal projection onto the best line that corresponds
to the main principal direction associated with data-points.
In this context, the proposed method and Algorithm 1
are also compared with the one-dimensional l1-clustering
algorithm (Sabo et al., 2011).

Algorithm 1 gives stationary points of the function
Φε and can be used for searching for locally optimal
partition of the set A ⊂ R

n. In order to find a good
approximation of the global minimum of the function Φε

and also a good approximation of the globally optimal
partition of the set A, in accordance with Leisch (2006),
Algorithm 1 should be run multiple times with various
random initializations. This approach will be used in
numerical examples that are given in this section.

Alternatively, it is important to have a good initial
approximation. This can be achieved (see, e.g., Pintér,
1996) by using some of global optimization methods, such



158 K. Sabo

as the DIRECT method for Lipschitz global optimization
(Finkel and Kelley, 2006; Grbić et al., 2012; Jones et al.,
1993). Even after a few iterations this method will give
a good initial approximation, and after that Algorithm 1
can very quickly find the global minimum of the function
Φε and the globally optimal partition. Useful numerical
methods for searching for a good approximation of a
globally optimal partition can be found in the works
of Bagirov and Ugon (2005), Bagirov et al. (2011) or
Scitovski and Scitovski (2013).

In order to evaluate the accuracy of the proposed
method and corresponding Algorithm 1, we will briefly
describe several well-known indices on the basis of which
it is possible to compare two different partitions of the set
A. For this purpose let us denote by Π̂ = {π̂1, . . . , π̂k}
and Π̄ = {π̄1, . . . , π̄k} two partitions of the set A into k
clusters. The confusion matrix K = (κij), i, j = 1, . . . , k

of the pair (Π̂, Π̄) is a k × k matrix whose ij-th entry
equals the number of elements in the intersection of the
clusters π̂i and π̄j , i.e.,

κij = |π̂i ∩ π̄j |, 1 ≤ i, j ≤ k.

The adjusted Rand index (Hubert and Arabie, 1985)
R(Π̂, Π̄) is defined as follows:

R(Π̂, Π̄) =

k∑
i=1

k∑
j=1

(
κij

2

) − τ3

1
2 (τ1 + τ2) − τ3

,

where

τ1 =
k∑

i=1

(|π̂i|
2

)
, τ2 =

k∑

j=1

(|π̄j |
2

)
,

τ3 =
2τ1τ2

m(m − 1)
.

In general, R(Π̂, Π̄) ∈ [−1, 1] and R(Π̂, Π̄) = 1 if the
matching between the two partitions Π̂ and Π̄ is perfect.

The Jaccard index (Kogan, 2007) J (Π̂, Π̄) is defined as
follows:

J (Π̂, Π̄) =

k∑
i=1

k∑
j=1

(
κij

2

)

τ1 + τ2 −
k∑

i=1

k∑
j=1

(
κij

2

) .

Similarly to the case of the adjusted Rand index,
J (Π̂, Π̄) ∈ [0, 1] and J (Π̂, Π̄) = 1 if the matching
between the two partitions Π̂ and Π̄ is perfect.

Distance between cluster centers (Äyrämö, 2006). Let
{Ĉ1, . . . , Ĉk} and {C̄1, . . . , C̄k} be the centers of the
clusters π̄j and π̂j , with j = 1, . . . , k, respectively. The

distance between the sets Ĉ = {Ĉ1, . . . , Ĉk} and C̄ =
{C̄1, . . . , C̄k} can be defined by

DC(Ĉ, C̄) = min
p∈Per({1,...,k})

k∑

j=1

‖Ĉj − C̄p(j)‖2
2,

where Per({1, 2, . . . , k}) is the set of all permutations of
the set {1, 2, . . . , k}. Note that DC(Ĉ, C̄) = 0 if and only
if Ĉ = C̄.

The misclassification error (Kogan, 2007) E(Π̂, Π̄) is
defined as follows:

E(Π̂, Π̄) =
m −

k∑
i

κiri

m
,

where

κiri = max{κi1, . . . , κik}, i = 1, . . . , k.

The misclassification error indicates a measure of
disagreement between Π̂ and Π̄. When the partitions
coincide, E(Π̂, Π̄) vanishes. Values of E(Π̂, Π̄) near 1
indicates a high degree of disagreement between the
partitions.

Let us mention that for ε < 0.005, l1 and
l2-clustering algorithms become numerically unstable.
For that reason, in all of our numerical examples we take
ε = 0.05.

Example 2. Let us choose four points C1 = (5, 4), C2 =
(4, 6), C3 = (3, 2), C4 = (6, 6) ∈ R

2. Similarly as in the
work of Iyigun (2007), in the neighborhood of these four
points, m′ points are generated from normal distributions
N (C1, σ), N (C2, σ), N (C3, σ) and N (C4, σ), where

σ =
(

.5 0
0 .5

)
.

Twenty outliers are also added to every subset. In that way,
the set A = {ai ∈ R

2 : i = 1, . . . , m} = π1∪π2∪π3∪π4

is defined which consists of m = 4(m′ + 20) points.

1 2 3 4 5 6 7

2

4

6

8

Fig. 2. 500 data points and their projections to the main princi-
pal axes.



Center-based l1-clustering method 159

2000 4000 6000 8000 10 000

0.6

0.7

0.8

0.9

1.0

l1

l2

one-dimensional l1

one-dimensional l2

2000 4000 6000 8000 10 000

0.6

0.7

0.8

0.9

1.0

l1

l2

one-dimensional l1

one-dimensional l2

2000 4000 6000 8000 10 000

0.2

0.4

0.6

0.8

1.0

l2
l1

one-dimensional l2

one-dimensional l1

(a) (b) (c)

2000 4000 6000 8000 10 000

0.05

0.10

0.15

0.20

l2

l1

one-dimensional l1

one-dimensional l2

2000 4000 6000 8000 10 000

5000

10 000

15 000

20 000

25 000

l1

l2

one-dimensional l2

one-dimensional l1

(d) (e)

Fig. 3. Clustering algorithm comparison for a different number of data-points: adjusted rand index (a), Jaccard index (b), distance
between cluster centers (c), misclassification error (d), CPU (e).

Let us write Π = {π1, π2, π3, π4} and C =
{C1, C2, C3, C4}. For ε = 0.05, Algorithm 1 is initiated
with 100 different randomly generated initial centers. The
set of centers C� = {c1�, c2�, c3�, c4�}, i.e., the partition
Π� = {π�

1 , π�
2 , π�

3 , π�
4} that gives the smallest value of the

objective function is taken as a solution. The experiment
was repeated for a different number of data points m ∈
{500, 1500, 2500, 3500, 4500, 5500, 6500, 7500, 8500,
9500, 10500}.

The quality of the corresponding partition is
compared with the partitions obtained by (analogously
with 100 various random initializations) the l2-clustering
algorithm (Kogan, 2007; Teboulle, 2007), the
one-dimensional l1-clustering algorithm (Sabo
et al., 2012) applied to the data obtained by orthogonal
projection of the original data to the principal axes, the
one-dimensional l2-clustering algorithm applied to the
data obtained by orthogonal projection of the original
data to the principal axes.

Data-points for m = 500, the line that corresponds to
the main principal axes and the projected data are shown
in Fig. 2. Figure 3 (e) shows the overall CPU1 time in
seconds for the different clustering algorithms when m ∈
{500, 1500, 2500, 3500, 4500, 5500, 6500, 7500, 8500,
9500, 10500}. The values of the adjusted Rand index
R(Π, Π�), Jaccard index J (Π, Π�), distance between
clusters centers D(C, C�) and misclassification error
E(Π, Π�) are shown in Figs. 3(a)–(d), respectively.
All of these measures show that the n-dimensional

1All calculations were done on a Pentium M processor with 1.4 GHz.

l1-clustering method is superior in comparison with
the other clustering methods mentioned. Note that the
one-dimensional l1-clustering algorithm is faster, but
inferior in relation to the corresponding n-dimensional
algorithm. Table 1 shows the number of randomly
generated initial approximations converging to the
solution and illustrates that the l1-clustering algorithm is
less sensitive to the initial approximation in comparison
with other methods. This means that the probability
of a random choice of a good initial approximation
is significantly larger in the case of the l1-clustering
algorithm.

Table 1. Number of the initial approximation converging to the
solution.

Method m = 500 m = 2000 m = 10000

l1-clustering 88 82 75
l2-clustering 8 7 3

one-dimensional
l1-clustering 45 40 39

one-dimensional
l2-clustering 3 5 1

�

Example 3. (Incomplete data set) The IRIS data2

consist of 150 four-dimensional points A = {ai =
(ai

1, a
i
2, a

i
3, a

i
4) ∈ R

4 : i = 1, . . . , 150}, with 50 points
for each of three physically labeled classes π1, π2 and

2UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/datasets/Iris.

http://archive.ics.uci.edu/ml/datasets/Iris.


160 K. Sabo

π3. Let Π = {π1, π2, π3}, Cj
med := med(1, πj) and

Cj
mean := 1/|πj |

∑
ai∈πj

ai, j = 1, 2, 3 be the medians
and the means of these classes, and

Cmean = {C1
mean, C2

mean, C3
mean},

i.e.,
Cmed = {C1

med, C2
med, C3

med}.
In order to examine the sensitivity of l1 and

l2-clustering algorithms, we will consider the incomplete
data set (see Hathaway and Bezdek, 2001; Simiński,
2012). Suppose that in the set A there are data in
which there is no information about all attributes, i.e.,
components. In that case, the l1-clustering algorithm will
be modified in the following way:

Step 2’. For all s = 1, . . . , k define vectors ws with
components

ws
i =

exp(− 1
ε

n∑
l=1

ηi
l |cs

l − ai
l|)

k∑
j=1

exp(− 1
ε

n∑
l=1

ηi
l |cj

l − ai
l |)

=

exp(− 1
ε

n∑
i = 1

ηi
l ∈ K

ηi
l |cs

l − ai
l|)

k∑
j=1

exp(− 1
ε

n∑
i = 1

ηi
l ∈ K

ηi
l |cj

l − ai
l|)

,

i = 1, . . . , m.

Step 3’: For all s = 1, . . . , k solve the weighted median
problem3

gs(ζ) =
m∑

i=1

w
(s)
i

n∑

l=1

ηi
l |ζl − ai|

=
m∑

i=1

w
(s)
i

n∑

i = 1
ηi

l ∈ S

ηi
l |ζl − ai| → min

ζ
,

and set θ(1) = (c1, . . . , ck), where

cs = argmin gs(ζ)

and

ηi
l := η(ai

l) =

{
0 if ai

l is missing,

1 otherwise,

i = 1, . . . , m, l = 1, . . . , n,

and S = {ηi
l �= 0 : i = 1, . . . , m, l = 1, . . . , n}.

3Mathematica-code for solving a weighted median problem is availa-
ble at http://www.mathos.hr/seminar/Software.html.

An analogous modification can also be done for the
l2-clustering algorithm.

Now we consider the clustering problem for the
incomplete data set. For this purpose, in the data set
considered we remove 10%, 20%, 30% and 40% of
randomly chosen second and fourth components of
the Iris data set. For such data the modification of
Algorithm 1 is initiated with 100 different randomly
generated initial centers, and the set of centers C� =
{c1�, c2�, c3�}, i.e., the partition Π� = {π�

1 , π�
2 , π�

3}
that gives the smallest value of the objective function,
is taken as a solution. The result is compared with
the corresponding l2-clustering algorithm. The values of
the adjusted Rand index R(Π, Π�), the Jaccard index
J (Π, Π�), the distance between sets of cluster centers
D(Cmed, C�) (i.e.,D(Cmean, C�)) and the misclassification
error E(Π, Π�) as the percent of removed data increased
and are shown in Fig. 4. A numerical experiment
described in this example illustrates that the l1-clustering
method is significantly less sensitive to the incomplete
data set compared with the l2-clustering method. �

Table 2. Comparison of clustering methods on the Wine data.
R: adjusted Rand index, J : Jaccard index, D: distan-
ce between cluster centers, E : misclassification error,
CPU: overall time in seconds necessary for the execu-
tion of the algorithm.

Method R J D E CPU

l1-clustering 0.88 0.88 0.17 0.04 270.59
l2-clustering 0.89 0.91 0.63 0.03 810.07

one-dimensional
l1-clustering 0.52 0.61 0.84 0.19 30.44

one-dimensional
l2-clustering 0.50 0.58 0.85 0.20 75.00

complete link 0.58 0.60 – 0.16 0.02
single link -0.01 0.33 – 0.60 0.02

average link -0.01 0.34 – 0.60 0.02
Ward method 0.79 0.81 – 0.07 0.02

Example 4. (Wine recognition data4) The Wine data
consists of 178 thirteen-dimensional points

A = {ai ∈ R
13 : i = 1, . . . , 178}

with 59 points in class π1, 71 points in class π2 and 48
points in class π3. Let Π = {π1, π2, π3},

Cj
med := med(1, πj)

Cj
mean :=

1
|πj |

∑

ai∈πj

ai, j = 1, 2, 3

be the medians and the means of these classes,
and Cmean = {C1

mean, C2
mean, C3

mean}, i.e., Cmed =
4UCI Machine Learning Repository,

http://archive.ics.uci.edu/ml/datasets/Wine.

http://www.mathos.hr/seminar/Software.html.
http://archive.ics.uci.edu/ml/datasets/Wine


Center-based l1-clustering method 161

� � �
�

�

�
�

� �

�

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

l1

l2

� � � � �
�

�
�

�

�

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

l1

l2

(a) (b)

� � � � �

�

�

�

�
�

0 10 20 30 40

1

2

3

4

l2

l1

� � �
�

�

�

�

� �
�

0 10 20 30 40

0.05

0.10

0.15

0.20

0.25

0.30

l1

l2

(c) (d)

Fig. 4. Clustering algorithms comparison for a different percent of removed data: adjusted Rand index (a), Jaccard index (b), distance
between cluster centers (c), misclassification error (d).

{C1
med, C

2
med, C3

med}. Algorithm 1 is initiated with 100
different randomly generated initial centers, and the set
of centers C� = {c1�, c2�, c3�}, i.e., the partition Π� =
{π�

1 , π�
2 , π�

3} that gives the smallest value of the objective
function, is taken as a solution. The algorithm is compared
with the l2-clustering algorithm, one-dimensional l1 and
l2-clustering algorithms, and also with several hierarchical
clustering methods. The corresponding results are shown
in Table 2. A significant difference between the l1 and
the l2-algorithm with respect to the reconstruction quality
is not indicated, but the l1-clustering algorithm is faster.
Note that the reconstruction quality for the Ward method
is very similar to the l1 and the l2-algorithm. �

Example 5. (Haberman survival data set5) The
Haberman survival data set contains cases from the study
conducted on the survival of patients who had undergone
breast cancer surgery. There are two classes of survival
status, i.e., the patient survived 5 years or longer and the
patient died within 5 years. The data set consists of 306
examples with 3 attributes. Algorithm 1 is initiated with
100 different randomly generated initial centers, and the
set of centers C� = {c1�, c2�}, i.e., the partition Π� =
{π�

1 , π�
2} that gives the smallest value of the objective

function, is taken as a solution. The algorithm is compared
with the l2-clustering algorithm, one-dimensional l1 and

5UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/datasets/
Haberman’s+Survival

Table 3. Comparison of clustering methods on Haberman’s su-
rvival data set. R: adjusted Rand index, J : Jaccard in-
dex, D: distance between cluster centers, E : misclassi-
fication error, CPU: overall time in seconds necessary
for the execution of the algorithm.

Method R J D E CPU

l1-clustering -0.14 0.60 11.34 0.31 130.59
l2-clustering -0.14 0.38 12.13 0.31 620.18

one-dimensional
l1-clustering -0.14 0.38 11.71 0.31 30.44

one-dimensional
l2-clustering -0.14 0.38 12.42 0.31 75.00

complete link -0.14 0.41 – 0.31 0.02
single link -0.36 0.60 – 0.31 0.01

average link -0.35 0.60 – 0.31 0.03
Ward method -0.19 0.39 – 0.31 0.02

l2-clustering algorithms, and also with several hierarchical
clustering methods. Corresponding results are shown in
Table 3. Note that the quality of a reconstructed partition
obtained by the l1-clustering method is slightly better than
that of other partitions, but none of these methods are able
to identify clusters efficiently. �

6. Conclusions

In this paper, we considered the iterative n-dimensional
data clustering algorithm based on the l1-optimality
criterion. Robustness was shown experimentally when

http://archive.ics.uci.edu/ml/datasets/
Haberman's+Survival


162 K. Sabo

outliers were to be expected among the data or data-points
were incomplete, i.e., they contain data in which one or
more components were missing. Experiments show that in
this case the proposed algorithm is faster and superior in
comparison with the corresponding l2-algorithm (Kogan,
2007; Teboulle, 2007). The proposed iterative procedure
gives stationary points of the objective function and can be
used only for searching for the locally optimal partition.
In order to find a good approximation of the globally
optimal partition, Algorithm 1 should be run multiple
times with various random initializations. Numerical
experiments also show that the probability of a random
choice of a good initial approximation is significantly
larger in the case of the l1-clustering algorithm. The
proposed center-based l1-clustering method has three
disadvantages: (i) there is no theoretical guarantee that
the globally optimal partition is found, (ii) the appropriate
number of clusters should be given in advance, (iii) it is
not possible to identify clusters having irregular shape.

Acknowledgment

The author would like to thank the anonymous referees
and Prof. Rudof Scitovski (University of Osijek, Croatia)
for their careful reading of the paper and very useful
comments that significantly helped improve the paper.
This work was supported by the Ministry of Science,
Education and Sport, Republic of Croatia, through
research grants 235-2352818-1034.

References
Angulo, J. and Serra, J. (2007). Modelling and segmentation of

colour images in polar representations, Image and Vision
Computing 25(4): 475–495.

Äyrämö, S. (2006). Knowledge Mining Using Robust Clustering,
Ph.D. thesis, University of Jyväskylä, Jyväskylä.

Bagirov, A.M. and Ugon, J. (2005). An algorithm
for minimizing clustering functions, Optimization
54(4–5): 351–368.

Bagirov, A.M., Ugon, J. and Webb, D. (2011). Fast
modified global k-means algorithm for incremental cluster
construction, Pattern Recognition 44(4): 886–876.

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objec-
tive Function Algorithms, Kluwer Academic Publishers,
Norwell, MA.

Boyd, D.L. and Vandenberghe, L. (2004). Convex Optimization,
Cambridge University Press, Cambridge.

Chaovalitwongse, W.A., Butenko, S. and Pardalos, P.M., (Eds.)
(2009). Clustering Challenges in Biological Networks,
World Scientific, London.

Choulakian, V. (2001). Robust q-mode principal component
analysis in L1, Computational Statistics & Data Analysis,
37(2): 135–150.

Clarke, F. H., (1990). Optimization and Nonsmooth Analysis,
SIAM, Philadelphia, PA.

Cominetti, R. and Michelot, C. (1997 ). Sufficient conditions for
coincidence in l1-minisum multifacility location problems,
Operations Research Letters 20(4): 179–185.

Cord, A., Ambroise, C. and Cocquerez, J.-P. (2006 ). Feature
selection in robust clustering based on Laplace mixture,
Pattern Recognition Letters 27(6): 627–635.

Cupec, R., Grbić, R., Sabo, K. and Scitovski, R. (2009).
Three points method for searching the best least absolute
deviations plane, Applied Mathematics and Computation
215(3): 983–994.

Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification,
Wiley, New York, NY.

Finkel, D.E. and Kelley, C.T. (2006). Additive scaling and
the DIRECT algorithm, Journal of Global Optimization
36(4): 597–608.

Floudas, C.A. and Gounaris, C.E. (2009). A review of recent
advances in global optimization, Journal of Global Opti-
mization 45(4): 3–38.

Frąckiewicz, M. and Palus, H. (2011). KHM clustering
techique as a segmentation method for endoscopic
colour images, International Journal of Applied Ma-
thematics and Computer Science 21(1): 203–209, DOI:
10.2478/v10006-011-0015-0.

Gan, G., Ma, C. and Wu, J. (2007). Data Clustering: Theory,
Algorithms, and Applications, SIAM, Philadelphia, PA.

Grbić, R., Nyarko, E.K. and Scitovski, R. (2012). A modification
of the direct method for Lipschitz global optimization for
a symmetric function, Journal of Global Optimization,
57(4): 1193–1212, DOI: 10.1007/s10898-012-0020-3.

Grbić, R., Scitovski, K., Sabo, K. and Scitovski, R. (2013).
Approximating surfaces by the moving least absolute
deviations method, Applied Mathematics and Computation
219(9): 4387–4399.

Gurwitz, C. (1990). Weighted median algorithms for l1
approximation, BIT 30(2): 301–310.

Hathaway, R.J. and Bezdek, J.C. (2001). Fuzzy c-means
clustering of incomplete data, IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics
31(5): 735–744.

Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal
of Classification 2(1): 193–218.

Jain, A. (2010). 50 years beyond k-means, Pattern Recognition
Letters 31(8): 651–666.

Jajuga, K. (1987). A clustering method based on the L1-norm,
Computational Statistics & Data Analysis 5(4): 357–371.

Jajuga, K. (1991). L1-norm based fuzzy clustering, Fuzzy Sets
and Systems 39(1): 43–50.

Iyigun, C. (2007). Probabilistic Distance Clustering, Ph.D.
thesis, Graduate School, Rutgers, New Brunswick, NJ.

Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993).
Lipschitzian optimization without the Lipschitz constant,
Journal of Optimization Theory and Applications
79(1): 157–181.



Center-based l1-clustering method 163

Jörnsten, R. (2004). Clustering and classification based on
the L1 data depth, Journal of Multivariate Analysis
90(1): 67–89.

Kogan, J. (2007). Introduction to Clustering Large and
High-Dimensional Data, Cambridge University Press,
Cambridge.

Leisch, F. (2006). A toolbox for k-centroids cluster analysis,
Computational Statistics & Data Analysis 51(2): 526–544.

Li, X. Hu, W., Wang, H. and Zhang, Z. (2010). Linear
discriminant analysis using rotational invariant L1 norm,
Neurocomputing 73(13–15): 2571–2579.

Scitovski, R. and Scitovski, S. (2013). A fast partitioning
algorithm and its application to earthquake investigation,
Computers and Geosciences 59(1): 124–131.

Simiński, K. (2012). Neuro-rough-fuzzy approach for regression
modelling from missing data, International Journal of Ap-
plied Mathematics and Computer Science 22(2): 461–476,
DOI: 10.2478/v10006-012-0035-4.

Späth, H. (1976). L1-cluster analysis, Computing
16(4): 379–387.

Späth, H. (1987). Using the L1-norm within cluster analysis,
in Y. Dodge (Ed.), Proceedings of the First Internatio-
nal Conference on Statistical Data Analysis Based on the
L1-Norm and Related Methods, University of Neucha-
tel/Switzerland, August 31–September 04, 1987, Elsevier,
Amsterdam, pp. 427–434.

Malinen, M.I. and Fränti, P. (2012). Clustering by analytic
functions, Information Sciences 217(1): 31–38.

Meng, D., Zhao, Q and Xu, Z. (2012). Improve robustness of
sparse PCA by L1-norm maximization, Pattern Recogni-
tion 45(1): 487–497.

Pintér, J.D. (1996). Global Optimization in Action (Continu-
ous and Lipschitz Optimization: Algorithms, Implemen-
tations and Applications), Kluwer Academic Publishers,
Dordrecht.

Ruszczynski, A (2006). Nonlinear Optimization, Princeton
University Press, Princeton/Oxford, NJ.

Sabo, K. and Scitovski, R. (2008). The best least absolute
deviations line—properties and two efficient methods, AN-
ZIAM Journal 50(2): 185–198.

Sabo, K., Scitovski, R. and Vazler, I. (2011). Searching
for a best LAD-solution of an overdetermined system
of linear equations motivated by searching for a best
LAD-hyperplane on the basis of given data, Journal of
Optimization Theory and Applications 149(2): 293–314.

Sabo, K., Scitovski, R. and Vazler, I. (2012). One-dimensional
center-based l1-clustering method, Optimization Letters
7(1): 5–22

Sabo, K., Scitovski, R., Vazler, I. and Zekić-Sušac, M. (2011).
Mathematical models of natural gas consumption, Energy
Conversion and Management 52(3): 1721–1727.

Teboulle, M. (2007). A unified continuous optimization
framework for center-based clustering methods, Journal of
Machine Learning Research 8(1): 65–102.

Vardi, Y., Zhang, C. H. (2000). The multivariate L1-median
and associated data depth, Proceedings of the Natio-
nal Academy of Sciences, United States of America
97(4): 1423–1426.

Vazler, I., Sabo, K. and Scitovski, R. (2012). Weighted
median of the data in solving least absolute deviations
problems, Communications in Statistics—Theory and Me-
thods 41(8): 1455–1465.

Zhang, J., Peng, L., Zhao, X. and Kuruoglu E.E. (2012 ). Robust
data clustering by learning multi-metric lq-norm distances,
Expert Systems with Applications 39(1): 335–349.

Kristian Sabo, an associate professor at the Department of Mathema-
tics, University of Osijek, was born in 1975. He obtained his Ph.D. de-
gree in 2007 from the Department of Mathematics, University of Zagreb,
in the field of applied and numerical mathematics. His fields of interest
are cluster analysis, least absolute deviations problems and applications.

Received: 5 April 2013
Revised: 27 July 2013


	Introduction
	Properties of the function Φ�
	Weighted median of the data-point set
A⊂ Rn
	Method for finding stationary points of
the function Φ�
	Convergence of the iterative process
	l1-clustering algorithm

	Numerical examples
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




