
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 1, 111–122
DOI: 10.2478/amcs-2014-0009

A DIFFERENTIAL EVOLUTION APPROACH TO DIMENSIONALITY
REDUCTION FOR CLASSIFICATION NEEDS

GORAN MARTINOVIĆ, DRAŽEN BAJER, BRUNO ZORIĆ

Faculty of Electrical Engineering
J.J. Strossmayer University of Osijek, Kneza Trpimira 2b, 31000 Osijek, Croatia

e-mail: goran.martinovic@etfos.hr

The feature selection problem often occurs in pattern recognition and, more specifically, classification. Although these
patterns could contain a large number of features, some of them could prove to be irrelevant, redundant or even detrimental
to classification accuracy. Thus, it is important to remove these kinds of features, which in turn leads to problem dimen-
sionality reduction and could eventually improve the classification accuracy. In this paper an approach to dimensionality
reduction based on differential evolution which represents a wrapper and explores the solution space is presented. The
solutions, subsets of the whole feature set, are evaluated using the k-nearest neighbour algorithm. High quality solutions
found during execution of the differential evolution fill the archive. A final solution is obtained by conducting k-fold cross-
validation on the archive solutions and selecting the best one. Experimental analysis is conducted on several standard test
sets. The classification accuracy of the k-nearest neighbour algorithm using the full feature set and the accuracy of the
same algorithm using only the subset provided by the proposed approach and some other optimization algorithms which
were used as wrappers are compared. The analysis shows that the proposed approach successfully determines good feature
subsets which may increase the classification accuracy.

Keywords: classification, differential evolution, feature subset selection, k-nearest neighbour algorithm, wrapper method.

1. Introduction

The problem of selecting the features to use during
the classification of patterns is very common. When
a problem originates from the real world, it is often
very hard to tell the difference between the necessary
and differentiating features from the ones that are not.
At a first glance, it may seem that a higher number
of features guarantees a better classification accuracy,
but that is often not the case. Through the use of
all available features, some redundant, unnecessary or
even detrimental ones could be included, which would
eventually cause poor classification results and reduce
the classification accuracy. It is not always possible to
know up-front which features should be included in the
classification process and which should be left out. For
the stated reason, various methods have been developed
which evaluate the features. These approaches can be
divided into Ranked Selection (RS) methods (e.g., Wu
et al., 2009; Balakrishnan et al., 2008), and into Feature
Subset Selection (FSS) methods that use either filters
(Ferreira and Figueiredo, 2012) or wrappers, where search
methods such as Differential Evolution (DE) (Khushaba

et al., 2008), Genetic Algorithms (GAs) (Yusof et al.,
2012), ant colony optimization (Kubir et al., 2012) and
particle swarm optimization (Chuang et al., 2011) are
applied.

This paper proposes a wrapper based FSS approach.
The classifier used is the k-Nearest Neighbour (k-NN)
algorithm and the DE algorithm adapted for binary space
operation is used as a wrapper. The proposed approach
includes an archive which stores a selected number of
solutions obtained through the process of optimization,
i.e., good quality solutions found during the DE run.
A final solution is then obtained from the archive by
performing a k-fold cross-validation of its solutions and
selecting the best one. This process is expected to yield a
more refined subset selection. The archive alongside with
the k-fold cross-validation attempts to ensure the selection
of the most salient features from the set.

The remainder of the paper is organized as follows.
In Section 2 the classification problem is defined, the
method of feature selection is described and a brief
overview of related work is given. It also describes the
k-NN algorithm, which is used as a classifier due to its

goran.martinovic@etfos.hr

112 G. Martinović et al.

simplicity and good performance. A brief description of
DE, as well as a couple of approaches to its adaptation
to binary optimization problems, is given in Section 3.
The proposed approach, which combines DE, adapted for
operation in the binary space, and the k-NN algorithm,
is described in Section 4. Section 5 presents the
experiment set-up and the results of the experimental
analysis conducted on several standard datasets.

2. Classification and feature selection

Classification belongs to the area of pattern recognition
and it is its typical representative. The classification
problem can be defined as follows. If a pattern set S =
{(X1, L1), . . . , (Xm, Lm)} is given, where m = |S|,
Xi is the sample of the i-th set element, and Li is a
designation, i.e., the class of the i-th set element, then it is
necessary to determine the class for an incoming sample
of an unknown class based on its features and based on a
known set S (Duda et al., 2001). Usually the samples are
represented with feature vectors containing n elements, as
in

X = [x1, . . . , xn]T . (1)

Methods used for classification vary from Bayes
classifiers and k-NN algorithms (Jain et al., 2000),
Artificial Neural Networks (ANNs) (Debska and
Guzowska-Swider, 2011; Gocławski et al., 2012)
and Support Vector Machines (SVMs) (Hsu and
Lin, 2002; Jeleń et al., 2008) to classifier ensembles
(Woźniak and Krawczyk, 2012),

The classification accuracy depends greatly on the
method used, but also on the underlying problem, i.e.,
the characteristics of the data on which the classification
method is applied. Since each feature vector is
represented by n values, xi ∈ X for i = 1, . . . , n,
where every value represents one of the features of
the input data, we can observe feature vectors as
points in an n-dimensional space. Features can be of
different types, which could, for example, be integral
(picture width in pixels), real (width in centimetres in
measurements) or categorical (“Africa” or “Asia” for
a continent, “0” or “AB” for blood type). As the
number of features increases, the dimensionality of the
problem proportionally expands and with it the calculation
complexity of the relation between feature vectors.

An increased number of features does not always
guarantee a better classification quality nor does it
improve differentiation between the classes. Additional
features are often introduced in order to better describe
the problem, and one of the consequences could be the
introduction of irrelevant, redundant and even features
that are detrimental to classification accuracy (Dash and
Liu, 1997). To avoid this problem, an attempt is made to
reduce the number of features used in classification and
this process is called feature selection (Javed et al., 2012).

The selection is performed through four formal steps:
generating a subset, subset evaluation, the break criterion
and result evaluation (Dash and Liu, 1997), and two ways
of conducting this process are commonly used. The first
one, RS, is the process of selection where weights are
given to all of the features. After that, they are ranked
and a predetermined number of the most highly ranked
features is used. The second one, FSS, is the process of
selection where various methods are used to determine
the best subset of the full feature set. In this paper, an
FSS approach is used, and the goal is to determine one
subset of the feature set that maximizes the result of the
fitness function. An attempt is made to find a binary
vector o∗ which is used as a mask on the full feature
vector to yield a reduced feature set that will be used
for the classification. The yielded reduced feature set
must achieve the highest possible classification accuracy
as described by an objective function f , which is formally
shown in

o∗ ∈ O = arg max
b∈{0,1}n

f(S, I,b) . (2)

Here O represents the set of binary vectors that yield
a reduced feature vector for which the objective function
f(S, I, b) reaches a global maximum, where I is the set
of input patterns to be classified. It is clear that this
problem can also be treated as a minimization problem
if the classification error is observed. Additionally, it is
important to mention that FSS methods are commonly
divided into filter and wrapper ones. Filter methods are
somewhat faster and represent a form of preprocessing
that incorporates subset or individual feature evaluation
without the inclusion of a classifier. Ferreira and
Figueiredo (2012) gave an example of filter usage where
they showed filter effectiveness on feature vector sets
of up to 105 features. They used two different filters.
The first one is based on the idea that the importance
of a particular feature is proportional to its dispersion.
The second one uses a redundancy measure between the
features.

In wrapper methods the algorithm that selects the
features uses a classification algorithm for evaluation.
Accordingly, wrapper methods are more precise but
computationally more complex (Wang et al., 2011),
and they also heavily depend on the data selected for
classifier development. Since these data guide the
selection, they can lead to over-fitting (Loughrey and
Cunningham, 2004). A broad spectrum of various
wrappers is used in today’s approaches. For example,
the forward and the backward floating search and their
combinations are commonly used, where one feature is
added or reduced at a time, depending on the classification
accuracy, but also some advanced methods based on
the aforementioned ones which take into account feature
dependencies (Michalak and Kwaśnicka, 2006).

A differential evolution approach to dimensionality reduction for classification needs 113

Evolutionary algorithms are also used. For instance,
Raymer et al. (2000) employed a GA as a wrapper and
a k-NN algorithm as a classifier. The dimensionality
reduction problem was approached by these authors
by using weight factors and one or more bit masks
for feature selection. Kubir et al. (2011) presented a
hybrid GA for feature selection. To enable a more
refined search space exploration, they built a local search
algorithm based on the difference and informative nature
of features calculated based on correlation information
in the GA. The classifier used was an ANN. Currently,
hybrid approaches combining filter and wrapper methods
or even RS and FSS are becoming more and more
popular. One such method was presented by Hsu et al.
(2011). Firstly they combined the F-Score filter, which
calculates discriminatory possibilities of each feature, and
the information gain filter, which selects features that
contain more information. Through this filter combination
they select the candidates and create a new, reduced
feature set. After that a wrapper method is used for FSS.
Sequential floating search is used as a wrapper and an
SVM with a radial basis function kernel as the classifier.

The k-nearest neighbour algorithm is a classifier
that works based on the classes of k nearest vectors
from S, which are nearest to the input vector based on
some distance measure (Zhua et al., 2007). Distance
measures used to determine the relation between two
samples can be distance functions such as Euclidean,
Mahalanobis, Minkowski, Manhattan and others. In
this paper the Euclidean distance is used as the distance
measure. The algorithm parameter k determines the
number of neighbours from S to be used when the label
of the input vector is chosen. As stated by Garcia et al.
(2010), the most common way to determine the value
of k is through the process of cross-validation. Most
often, k is selected as an odd number between 1 (where
the classifier is reduced to the Nearest Neighbour (NN)
classifier) and several tens. The k-NN algorithm is one
of simpler classifiers, but due to its simplicity and good
performance it is often used in classification problems.
In time it has been improved and enhanced according to
the needs of various problems. An overview of different
versions is given by, e.g., Bhatia and Vandana (2010) or
Jiang et al. (2007).

3. Differential evolution

Differential Evolution, or briefly DE (Storn and Price,
1997; Price et al., 2005; Xinjie and Mitsuo, 2010), is
a simple but effective search method for continuous
optimization problems. According to Xinjie and Mitsuo
(2010), DE represents a direction based search that
maintains a vector population of candidate solutions.
Like other usual Evolutionary Algorithms (EAs), it uses
mutation, crossover and selection. The key part of DE,

which differentiates it from standard EAs, is the mutation
operator that perturbs the selected vector according to
the scaled difference of the other two members of
the population. The operation of DE is shown with
pseudo-code as Algorithm 1.

Algorithm 1. DE in pseudo-code.
1: Initialization and parameter setting
2: while termination condition not met do
3: for all population member—vector vi do
4: create mutant vector ui

5: crossover vi and ui to create trial vector ti

6: end for
7: for all population member—vector vi do
8: if f(ti) ≤ f(vi) then
9: vi ← ti

10: end if
11: end for
12: end while

The population of size NP contains vectors and each
vector vi, of dimensionality D, consists of real-valued
parameters, vi = (v1

i , . . . , vD
i) ∈ R

D, for i =
1, . . . , NP . Usually the population is initialized with
vectors of values obtained randomly in the interval
[vlb, vub), where vlb and vub represent the lower and upper
bound, respectively. In each generation, a new population
is created through mutation and crossover. This new
population is composed of the so-called trial vectors ti.
For each member of the current population, vi (called
the target vector), a new corresponding mutant vector ui

is formed using mutation. The mutation is conducted
according to

ui = vr1 + F · (vr2 − vr3) . (3)

Here ui is a mutant while vr1, vr2 and vr3 are
population vectors selected randomly with the condition
i �= r1 �= r2 �= r3, and F ∈ [0,∞) is the scale factor
which represents a parameter of the algorithm. After the
mutation, crossover occurs between the target vector vi

and the corresponding mutant ui creating a trial vector ti.
The crossover is done as follows:

tj
i =

{
uj

i if U [0, 1) ≤ CR or j = rj ,

vj
i otherwise

(4)

for j = 1, . . . , D. Here ti is a trial vector obtained
through crossover, U [0, 1) is a variable with its value
randomly selected from the interval [0, 1) with uniform
distribution, rj is a random variable with the value from
the set {1, . . . , D}, while CR ∈ [0, 1) is the crossover
rate and represents a parameter of the algorithm. The
described crossover is called the binomial crossover.

Once the trial vector population has been created,
vectors that transfer over to the next generation, i.e., which

114 G. Martinović et al.

will constitute the new population, are selected. A given
trial vector ti replaces the corresponding target vector
vi if it is of equal or lesser cost, according to the given
objective/fitness function.

Due to its simplicity, DE is a very popular search
method that has been successfully applied to various
problems. Here, the classic DE is described that is
commonly denoted by DE/rand/1/bin (Storn and Price,
1997). However, various other variants/strategies are
presented in the literature. A very comprehensive
overview of different DE strategies, as well as application
areas, is given by Das and Suganthan (2011).

3.1. Differential evolution within the binary space.
Differential evolution was originally proposed for solving
continuous optimization problems. Primarily, because of
the nature of the mutation operator, DE is not directly
applicable to discrete optimization problems. Still,
it is possible to use it for discrete optimization, and
the literature (e.g., Lichtblau, 2012; Vegh et al., 2011;
Zhang et al., 2008) proposes different ways of achieving
the aforementioned. Several different approaches for
applying DE to binary optimization problems have been
proposed (Engelbrecht and Pampara, 2007).

Angle Modulated DE (AMDE), proposed by
Pampara et al. (2006), boils down the basic problem
(in the binary space) to a simpler one in the continuous
space. AMDE optimizes the coefficients of a function
h(x), given in (5), in the continuous space which will
be used for the creation of a binary vector. AMDE
reduces the D-dimensional problem in the binary space
to a 4-dimensional problem in continuous space,

h(x) = sin(2π(x− a) · b · cos(2π(x− a) · c)) + d. (5)

Here x is an independent variable while a, b, c, and
d are the function coefficients that determine its shape
(usually constrained to the range [−1, 1]). The binary
vector is obtained by sampling the given function in equal
intervals. If the function has a positive value in the given
interval, a 1 is inserted, and a 0 otherwise.

An alternative, simple and intuitive approach is to
use vectors of D dimensions, i.e., vectors of the same
size as the problem in the binary space. The real-valued
parameters are constrained to the range [0, 1] and a binary
vector is then derived from it by setting a 0 if the
corresponding real-valued parameter is less than 0.5, or,
otherwise, by setting a 1. We adopt this approach in the
proposed algorithm since it proved, in our preliminary
analysis, to yield better solutions than AMDE. Also, it
resulted in a more stable algorithm.

In both of the aforementioned approaches the
quality of each solution, i.e., the population member, is
determined based on the evaluation of the obtained binary
vector, using a fitness function that is defined in the binary
space.

DE Bin. Vec.
Generation

k-NN

Archive

Final Solution

Storage of
Optimized Sol.

k-Fold
Cross Validation

Fig. 1. Mode of operation of DE-kNN.

4. Proposed approach

As mentioned earlier, in this paper an approach is
proposed based on FSS using a wrapper method.
Accordingly, the proposed approach, hereinafter referred
to as DE-kNN, combines the DE and k-NN algorithms.
The former is used as a wrapper in the search for a
subset of the given feature set of good quality, and
the latter is used for the needs of evaluating found
solutions. The employed DE for FSS, DE-kNN, is based
on DE/rand/1/bin as previously described in Section 3.
In DE-kNN the scale factor F is varied randomly as
proposed by Das et al. (2005). More precisely, the scale
factor used during mutation of a particular vector has
a uniform random value in the range [0.5, 1] – F =
0.5 · (1 + U [0, 1)). According to Das et al. (2005), the
randomly varied scale factor should help maintain the
population diverse throughout the search. Also, DE-kNN
incorporates an archive of fixed size which is used to
store good quality solutions found during the optimization
process, i.e., search. The mode of operation of DE-kNN
is shown in Fig. 1.

The archive size was set to 50 to include a variety
of good quality solutions found during the search. The
population is initialized randomly in DE-kNN with vj

i =
U [0, 1) for every i = 1, . . . , NP and j = 1, . . . , n. Also,
the first 50 solutions are copied to the archive, unless
the population is smaller, in which case all population
members are copied to the archive and the rest (50−NP)
is randomly generated. The population of trial vectors is
created according to the selected strategy, DE/rand/1/bin.
During the selection of vectors that will comprise the
new population, a new binary vector is formed using the
process described in Section 3.1 for each member of the
current population and the trial vector population. The
size of the binary vector corresponds to the number of
features for the given classification problem. The binary
vector, bi = (b1

i , . . . , b
n
i) ∈ {0, 1}n, determines which

features will be used (1), and which will not (0) during
classification. This vector is evaluated with the following
negative value fitness function (Yang et al., 2011),

g(bi) = o(bi)− λ · p(bi), (6)

where o(bi) is the percentage of the classification
accuracy using the k-NN algorithm, p(bi) is the feature

A differential evolution approach to dimensionality reduction for classification needs 115

subset size, i.e., the number of features used, and λ is a
penalty factor which has, in this paper, a value of 0.001.
Larger values of g(b) indicate small feature subsets that
yield high classification accuracy.

If any of the binary vectors contains only 0s, it is
penalized, i.e., its fitness is set to a relatively very high
constant value (in our case this value is 1000) to ensure
the elimination of such a solution from transferring into
the next generation,

Each time a trial vector is generated, it is considered
for inclusion in the archive. A trial vector enters the
archive only if it is better than the current worst and
different from all the vectors present in the archive. The
vectors in the archive are differentiated via the Hamming
distance, which must be at least 1 (between the considered
vector and each archive vector) for a vector to be granted
access.

Once the DE execution is finished, a final solution
is obtained from the archive. The motivation for using
the archive is the fact that the optimization process tends
to over-fit to training data resulting in loss of generality.
As described, the archive contains distinct solutions of
good quality, and the final solution is chosen from among
them. The choice is made based on the quality of
each solution obtained from a k-fold cross-validation.
The k-fold cross-validation is a commonly employed
cross-validation method that makes clever use of the
available data. Thus, it should provide a more general
evaluation of feature subsets compared with a single
k-NN run. The archive solution that performed best in
the cross-validation is chosen as the final solution. A
motivation for this approach stems from the fact that it
is possible to achieve similar classification quality with
various feature subsets. Adding cross-validation and
forcing the archive to hold only distinct feature vectors,
but only those of high quality, provides an option to
deduce which of them performs best on various test sets
generated by the cross-validation. A solution that prevails
should prove to be good in general. This way, the
knowledge about the feature vectors that perform best
is maintained throughout the search, and only a step of
post-evaluation is added. It is worth mentioning that
using the k-fold cross-validation during the optimization
process would be computationally too demanding, but
applying it to the archive solutions does not produce a
significant computational overhead since the archive is
relatively small.

5. Experimental analysis

With the purpose of evaluating the effectiveness of
the proposed approach, DE-kNN, an experimental
analysis was conducted on several datasets. All
datasets were obtained from the UCI machine learning
repository (Frank and Asuncion, 2010), except the Texture

Table 1. Datasets used in the experimental analysis.
Dataset Data-type # inst. # feat. # class

Breast Can. Wis. (Or.) Int. 683 9 2
Dermatology Cat., Int. 358 34 6

Glass id. Real 214 9 6
Image seg. Real 2310 19 7
Ionosphere Int., Real 351 34 2

Musk version 1 Int. 476 166 2
Libras Mov. Real 360 90 15
Parkinsons Real 197 22 2

100 plant sp. leaves Real 1600 64 100
Spambase Int., Real 4597 57 2

Statlog (Veh. Silh.) Int. 946 18 4
Texture Int., Real 5500 40 11

(Alcalá-Fdez et al., 2011) dataset. The analysis is based
on the evaluation of classification accuracy applying the
k-NN algorithm with the full feature set and using the
same measure and classifier with the use of the reduced
feature set.

The selected datasets and their characteristics after
preprocessing are shown in Table 1. The sets were chosen
to cover various parameter values in order to test different
input pattern cases, i.e., the influence of the number
of instances, feature set size and similar on the feature
selection process results. The datasets were preprocessed
to remove the features that are known to have no meaning
for the classification, such as the instance name, the
ordinal number of an instance and similar. Instances with
missing features were not considered.

5.1. Genetic algorithm used for comparison.
Genetic algorithms (Xinjie and Mitsuo, 2010) are
optimization and search methods inspired by genetics
and natural selection, originally proposed for binary
optimization problems. GAs have been successfully
applied to a wide variety of problems (Yan et al.,
2013; Martinović and Bajer, 2011). In order to better
evaluate the performance of DE-kNN, it was compared
to a GA. A generational GA with binary tournament
selection, one-point crossover and bit-flip mutation was
implemented. Also, elitism was incorporated. A
high-level outline of the GA used is given in Algorithm 2.

Binary tournament selection without replacement
was chosen because it is easy to implement, has a small
time complexity and exhibits a relatively small selection
pressure. One-point crossover and bit-flip mutation
were chosen since they are employed in the simple GA
(Eiben and Smith, 2003; Xinjie and Mitsuo, 2010); also,
according to Eiben and Smith (2003), bit-flip mutation is
the most common mutation operator for binary encodings.
Elitism was incorporated since it can significantly enhance
GA performance, and it was implemented as follows. The
best individual in the current population replaces the worst
in the new (offspring) population if it does not contain an
equally good or better individual.

In the GA, the population is initialized randomly, i.e.,

116 G. Martinović et al.

every individual in population is a randomly generated
binary vector. The fitness of very individual is calculated
as in Eqn. (6).

Algorithm 2. GA: high-level outline.
1: Initialization and parameter setting
2: while termination condition not met do
3: while offspring population not complete do
4: select 2 distinct parents form current population
5: cross over parents with probability pc to produce

2 offspring
6: mutate offspring with probability pm

7: evaluate offspring
8: end while
9: replace current population with offspring

population
10: apply elitism
11: end while

5.2. Experiment set-up. The experimental analysis
was carried out on a computer with a dual core processor
(Intel E5800 @ 3.20 GHz), 4 GB of RAM and Windows 7
OS. Due to the sequential algorithm implementation only
one core was utilized during algorithm execution. The
performance of DE-kNN was compared with a number
of optimization algorithms which were used as wrappers.
More precisely, it was compared with a GA (as described
in Section 5.1), DE/rand/1/bin (adapted for the binary
space the same way as DE-kNN, and hereinafter referred
to as stdDE) and AMDE. The aforementioned algorithms
were implemented in the C# programming language.

Before the start of the experiment, all data were
normalized as

Nj
i =

⎧⎨
⎩

1 if Δ = 0

1 +
9
Δ

(
Xj

i − min
s=1,...,m

Xj
s

)
otherwise,

(7)
where

Δ = max
s=1,...,m

Xj
s − min

s=1,...,m
Xj

s,

and Nj
i is the normalized value of the feature Xj

i , where
i = 1, . . . , m and j = 1, . . . , n. If the difference between
the maximum and minimum values is 0, then it is clear
that the value of this feature is equal for all feature vectors
in the dataset. The normalized value is then set as 1
(for all feature vectors in the set) and it does not have
any influence on the classification. Accordingly, it is
expected that such a feature will be eliminated. Through
normalization the values of all features were converted
to values from the interval [1, 10], which reduced the
influence of the difference between different features on
the classification results, as described by Raymer et al.
(2000). In other words, the prevailing influence of one

feature is disabled if the only reason for this influence
is the range of its values. For instance, the influence
of human height would be greater than that of width
just because a person is usually taller than wider. In
the case of non-numerical data, other distance measures
can be employed (Li and Li, 2010), or several binary
attributes can be added (1 representing the existence and 0
non-existence of the attribute), enabling the normalization
of the feature and creating the same distance among
categories. Once normalized, the dataset is divided into
three proper subsets. The first subset contains 50% of the
total feature vectors and represents the training set. These
are the feature vectors with known class labels based on
which the classification is performed. The second set
contains 25% of the total feature vectors and represents
the tuning set. These are the feature vectors used by
the algorithms to determine which features are rejected,
i.e., this set enables the k-NN algorithm to determine the
quality of the solutions found by the wrapper algorithms.
The third subset is the test subset which contains 25%
of the vectors from the dataset. This subset is used to
evaluate the final solution, i.e., the feature subset obtained
by the one of the algorithms. Feature vectors selected
for any of these sets are chosen from the initial dataset
of feature vectors randomly, while maintaining the class
distribution of the original set.

The parameter values for all algorithms used in the
experimental analysis, obtained through extensive
preliminary analysis, are displayed in Table 2.
Furthermore, even though the proposed approach
was designed with the general case in mind, the value
of parameter k for the k-NN algorithm for a given
input dataset is 1, thus creating its special case, the
nearest neighbour algorithm. This parameter was used to
alleviate the influence of parameter determination on the
achieved results, since it should be determined through
experimentation and the focus of this research was not
classifier performance.

The value of k used in the k-fold cross-validation of
archive solutions was set based on the size of the dataset
used. Accordingly, its value was 3 for datasets containing
less than 500 instances, 5 for datasets containing less than
1000 instances, and 10 for datasets containing 1000 or
more instances. This way, the folds were of reasonable
size. The union of both the training and tuning subsets was
used for the creation of the folds in order to provide the
largest possible number of data for the cross-validation.

The population size and the maximum iteration
number were 50 and 300, respectively, and were the
same for all algorithms. Also, the termination condition
was the same for all algorithms. More precisely, the
algorithm execution is terminated if it reaches the assumed
maximum number of iterations or earlier, if in 30
consecutive runs a solution of higher quality was not
found. Relatively small values were used to keep the total

A differential evolution approach to dimensionality reduction for classification needs 117

number of evaluations on a reasonable level since each
evaluation is time consuming. Since all the employed
algorithms are stochastic search methods, ten independent
runs were carried out for each algorithm and dataset. For
each of these solutions (feature subsets), as well as for the
full feature set, the NN algorithm was executed only once
because it is a deterministic one.

5.3. Results and discussion. The first part of the
experimental analysis results is presented in Table 3 and
Fig. 2. The results show the datasets used, and display
the mean classification accuracy (μ) that each of the
employed algorithms achieved. The table also displays the
standard deviation (σ), maximum (bst), minimum (wst)
and range (calculated as bst −wst) of the classification
accuracy for each algorithm. Also, a statistical analysis of
the pairwise comparison of the performance in terms of
the resulting classification accuracy of DE-kNN with the
other wrappers considered is shown in Table 4. The table
includes the sum of ranks (W), the obtained p-value, and
the corresponding 95% confidence interval. The statistical
analysis was performed using the Mann-Whitney U
(Wilcoxon rank-sum test) test—two-sided test, provided
by the R software environment for statistical computing
(R Core Team, 2013). This test was chosen since,
according to Trawiński et al. (2012), it is more sensible
than the t-test when the number of observations is small
(10 in our case).

As can be seen from the table, the proposed approach
shows promising results. In most (7 out of 12) test
cases it outperforms the other feature selection algorithms
(wrappers considered) and yields a higher classification
accuracy than the NN algorithm. According to Table 4,
the higher performance of DE-kNN compared with the
other wrappers is in most cases statistically significant.
The performance improvements are most notable on the
Breast Can. Wis. (Or.), Glass identification, and Image
segmentation datasets. The improvements are shown to
be statistically significant. In several cases (e.g., Spam-
base and Parkinsons), considerably higher performance
is achieved compared with the other wrappers, and it is
shown to be statistically significant compared with two of
the three utilized wrapper methods. In several cases the
deterministic NN algorithm shows the best performance,
but even then the difference is small and DE-kNN
outperforms other tested wrappers. The accuracy it

Table 2. Algorithm parameters used.
Algorithm Parameters

DE-kNN CR = 0.95, F = 0.5 · (1 + U [0, 1))

GA pc = 0.9, pm = 0.03

stdDE CR = 0.95, F = 0.3

AMDE CR = 0.95, F = 0.25

Table 3. Classification accuracy.
Dataset NN GA stdDE AMDE DE-kNN

B.C.W. Or.

μ 0.9647 0.9176 0.9217 0.9176 0.9518
bst 0.9647 0.9176 0.9588 0.9176 0.9588
wst 0.9647 0.9176 0.9176 0.9176 0.9353
σ 0.0000 0.0000 0.0130 0.0000 0.0082

range 0.0000 0.0000 0.0412 0.0000 0.0235

Dermatology

μ 0.9659 0.9295 0.9239 0.9488 0.9443
bst 0.9659 0.9545 0.9659 0.9545 0.9773
wst 0.9659 0.8864 0.8977 0.9318 0.8977
σ 0.0000 0.0238 0.0215 0.0080 0.0265

range 0.0000 0.0681 0.0682 0.0227 0.0796

Glass

μ 0.6731 0.7115 0.7134 0.7115 0.7596
bst 0.6731 0.7115 0.7308 0.7115 0.8269
wst 0.6731 0.7115 0.7115 0.7115 0.7115
σ 0.0000 0.0000 0.0061 0.0000 0.0437

range 0.0000 0.0000 0.0193 0.0000 0.1154

Image seg.

μ 0.9460 0.9469 0.9464 0.9526 0.9606
bst 0.9460 0.9469 0.9464 0.9526 0.9606
wst 0.9460 0.9443 0.9443 0.9460 0.9547
σ 0.0000 0.0040 0.0019 0.0039 0.0038

range 0.0000 0.0121 0.0052 0.0104 0.0122

Ionosphere

μ 0.8391 0.8656 0.8587 0.8690 0.8793
bst 0.8391 0.8966 0.8966 0.9425 0.9080
wst 0.8391 0.8276 0.8161 0.8161 0.8391
σ 0.0000 0.0217 0.0282 0.0364 0.0225

range 0.0000 0.0690 0.0805 0.1264 0.0689

Musk 1

μ 0.8390 0.8339 0.8356 0.8441 0.8585
bst 0.8390 0.8983 0.8729 0.8898 0.8983
wst 0.8390 0.7627 0.8051 0.7966 0.8220
σ 0.0000 0.0400 0.0230 0.0247 0.0256

range 0.0000 0.1356 0.0678 0.0932 0.0763

Libras Mov.

μ 0.8778 0.8489 0.8600 0.8533 0.8700
bst 0.8778 0.8889 0.8889 0.9000 0.9000
wst 0.8778 0.8111 0.8222 0.8111 0.8444
σ 0.0000 0.0217 0.0175 0.0309 0.0158

range 0.0000 0.0778 0.0667 0.0889 0.0556

Parkinson

μ 0.9375 0.9292 0.9333 0.9458 0.9500
bst 0.9375 0.9583 0.9583 0.9583 0.9583
wst 0.9375 0.9167 0.9167 0.9167 0.9375
σ 0.0000 0.0145 0.0132 0.0145 0.0107

range 0.0000 0.0416 0.0416 0.0416 0.0208

100 plants

μ 0.5950 0.5910 0.5905 0.5948 0.5900
bst 0.5950 0.6050 0.6000 0.6050 0.6050
wst 0.5950 0.5750 0.5750 0.5750 0.5775
σ 0.0000 0.0094 0.0067 0.0083 0.0080

range 0.0000 0.0300 0.0250 0.0300 0.0275

Spambase

μ 0.8895 0.9065 0.9036 0.8844 0.9169
bst 0.8895 0.9234 0.9112 0.8956 0.9304
wst 0.8895 0.8825 0.8903 0.8747 0.8999
σ 0.0000 0.0136 0.0067 0.0074 0.0113

range 0.0000 0.0409 0.0209 0.0209 0.0305

Statlog

μ 0.6381 0.6871 0.6881 0.6852 0.7081
bst 0.6381 0.6952 0.7143 0.7286 0.7476
wst 0.6381 0.6714 0.6619 0.6381 0.6524
σ 0.0000 0.0093 0.0168 0.0232 0.0313

range 0.0000 0.0238 0.0524 0.0905 0.0952

Texture

μ 0.9855 0.9820 0.9835 0.9838 0.9839
bst 0.9855 0.9855 0.9862 0.9862 0.9884
wst 0.9855 0.9789 0.9775 0.9796 0.9818
σ 0.0000 0.0018 0.0030 0.0026 0.0020

range 0.0000 0.0066 0.0087 0.0066 0.0066

achieves is close to that of the NN but is attained with
far fewer features. Since classifier development has to
be performed only once, the cost should prove its worth
in the long run since using fewer features use less time
to classify an unknown sample. It should be noted that
the costs involved might not only be related to time
consumption, so the performance and speed should be
weighted on the case-to-case basis. The performance of
the wrapper depends on the fitness function guiding the
search process, and the over-fitting occurring due to the
adaptation of the solutions to the data used in classifier
development could lead to under-performance on the
independent set of data used for testing. Based on these
remarks, it can be concluded that, as discussed in Section
1, each of the datasets used contains some irrelevant or
redundant features and/or some that are detrimental to the
classification accuracy.

The second part of the results is shown in Table 5
and Fig. 3. They represent feature reduction results and
display the mean number of features (μ) that each of

118 G. Martinović et al.

Fig. 2. Comparison of the classification accuracy of the NN al-
gorithm using the full feature set and the average classi-
fication accuracy of the NN using the solutions found by
wrapper algorithms.

the employed algorithms reduced the full set to. The
table also contains the standard deviation (σ), minimum
(bst), maximum (wst) and range (bst − wst) of the
number of features for each algorithm. Since the goal
of the proposed approach is not to achieve the minimum
amount of features, but to generate the best general
solution, it is understandable that the proposed approach
is not producing feature vectors with minimum features.
However, it still gives reasonable reduction and in some
cases (e.g., Statlog Vehicle Silhouettes) even achieves
the best results with the smallest feature subset. When
compared with the full feature set, the result is substantial
for each of the wrappers considered since the average
feature number across all datasets is more than halved.
All datasets display a high degree of feature reducibility,
and that fact is even more evident on datasets with higher
dimensional data (e.g., Libras Movement).

It is interesting to observe that the ratio of feature
set size and the average size of the feature subset found
by the DE-kNN and other algorithms varies for different
datasets. If the dataset is quite large, DE-kNN will not
necessarily discard a substantial amount of the features
and vice versa, which is noticeable from the Glass identi-
fication, Parkinsons and Libras Movement datasets. This
is understandable since the reduction can be pursued
up to a certain level that depends on the data in the
dataset and the fitness function that determines the quality
of an individual feature subset, which is given in (6)
for the proposed approach, and for the other considered
wrappers as well. Furthermore, the proposed approach
evaluates candidates not based on the reduction, but on
their performance on k-fold cross-validation. Although
the candidates are all fairly reduced, it is quite possible
that although the most reduced feature set performs
exquisitely on the tuning set, it is not so good in general.
Therefore the additional features included in the solution
by DE-kNN in regard to the sets provided by other
tested wrappers is justified, since the achieved accuracy is

Table 4. Statistical analysis of the pairwise comparison of DE-
kNN with the other wrappers.

Dataset W p-Value 95% Confidence interval Significance

GA–DE-kNN
B.C.W. Or. 0 <0.0001 -0.0412 to -0.0295 Extremely significant

Dermatology 34 0.2199 -0.0342 to 0.0112 Not significant
Glass 5 0.0002 -0.0962 to -0.0193 Extremely significant

Image seg. 2 0.0002 -0.0174 to -0.0104 Extremely significant
Ionosphere 32.5 0.18 -0.0345 to 0.0115 Not significant

Musk 1 32 0.172 -0.0593 to 0.0085 Not significant
Libras Mov. 20.5 0.0233 -0.0335 to -2.5207e-05 Significant
Parkinson 15 0.0048 -0.0415 to -6.9761e-05 Very significant
100 plants 55.5 0.6757 -0.0076 to 0.01 Not significant
Spambase 27 0.0818 -0.0235 to 0.0009 Weakly significant

Statlog 26 0.0678 -0.0477 to 0.0095 Weakly significant
Texture 22 0.0326 -0.0031 to -0.00002 Significant

stdDE–DE-kNN
B.C.W. Or. 8 0.0008 -0.0411 to -0.0236 Extremely significant

Dermatology 27.5 0.0862 -0.0454 to 4.7788e-05 Weakly significant
Glass 7.5 0.0005 -0.0962 to -0.0193 Extremely significant

Image seg. 0 0.0001 -0.01745 to -0.012 Extremely significant
Ionosphere 28 0.0883 -0.04601 to 3.6177e-05 Weakly significant

Musk 1 25 0.0577 -0.0508 to 7.3172e-5 Weakly significant
Libras Mov. 33.5 0.1988 -0.0223 to 0.011 Not significant
Parkinson 19 0.0101 -0.0209 to -5.9978e-05 Significant
100 plants 55 0.702 -0.005 to 0.0076 Not significant
Spambase 20 0.0232 -0.0218 to -0.0034 Significant

Statlog 27 0.081 -0.0477 to 0.0094 Weakly significant
Texture 53.5 0.7899 -0.0022 to 0.0022 Not significant

AMDE–DE-kNN
B.C.W. Or. 0 <0.0001 -0.0412 to -0.0295 Extremely significant

Dermatology 53 0.8138 -0.0227 to 0.0228 Not significant
Glass 5 0.0002 -0.0962 to -0.0193 Extremely significant

Image seg. 6 0.0007 -0.0105 to -0.0052 Extremely significant
Ionosphere 37.5 0.3318 -0.0344 to 0.0115 Not significant

Musk 1 35.5 0.2707 -0.0339 to 0.0085 Not significant
Libras Mov. 30.5 0.1349 -0.0444 to 0.0111 Not significant
Parkinson 43 0.5469 -0.0208 to 0.00006 Not significant
100 plants 70 0.128 -0.0025 to 0.0125 Not significant
Spambase 0 <0.0001 -0.0435 to -0.0226 Extremely significant

Statlog 27.5 0.0879 -0.0524 to 0.0095 Weakly significant
Texture 54.5 0.7311 -0.0022 to 0.0022 Not significant

higher for the independent test set containing previously
unknown data.

It is worth noting that it is possible to achieve
the same classification accuracy with feature subsets of
different sizes, and also different classification accuracy
with subsets of the same size. In the latter case,
even though these solutions have the same amount of
features, they are not necessarily the same features. The
aforementioned is not strange since the search is guided by
the samples contained in the tuning subset of the dataset
which are different than the ones in the independent test
subset. That signifies the possibility of different feature
subsets achieving the same or very similar classification
accuracy on the tuning subset, but a different accuracy on

Fig. 3. Number of employed features per algorithm for each of
the datasets used.

A differential evolution approach to dimensionality reduction for classification needs 119

Table 5. Feature reduction analysis.
Dataset NN GA stdDE AMDE DE-kNN

B.C.W. Or.

μ 9.00 4.00 4.10 4.00 5.20
bst 9.00 4.00 4.00 4.00 4.00
wst 9.00 4.00 5.00 4.00 7.00
σ 0.00 0.00 0.32 0.00 0.92

range 0.00 0.00 -1.00 0.00 -3.00

Dermatology

μ 34.00 14.50 14.80 25.40 18.00
bst 34.00 10.00 14.00 19.00 16.00
wst 34.00 17.00 16.00 30.00 19.00
σ 0.00 1.90 0.92 4.62 1.15

range 0.00 -7.00 -2.00 -11.00 -3.00

Glass

μ 9.00 5.00 4.90 5.00 5.30
bst 9.00 5.00 5.00 5.00 7.00
wst 9.00 5.00 4.00 5.00 4.00
σ 0.00 0.00 0.32 0.00 1.06

range 0.00 0.00 1.00 0.00 3.00

Image seg.

μ 19.00 9.50 10.10 13.00 11.00
bst 19.00 8.00 9.00 11.00 10.00
wst 19.00 11.00 11.00 15.00 14.00
σ 0.00 1.08 0.99 1.41 1.41

range 0.00 -3.00 -2.00 -4.00 -4.00

Ionosphere

μ 34.00 7.90 9.00 7.10 11.00
bst 34.00 6.00 7.00 3.00 8.00
wst 34.00 10.00 12.00 10.00 13.00
σ 0.00 1.20 1.56 2.64 1.41

range 0.00 -4.00 -5.00 -7.00 -5.00

Musk 1

μ 166.00 68.00 58.00 61.20 77.50
bst 166.00 54.00 48.00 45.00 71.00
wst 166.00 81.00 67.00 101.00 85.00
σ 0.00 8.71 5.87 18.52 4.77

range 0.00 -27.00 -19.00 -56.00 -14.00

Libras Mov.

μ 90.00 28.40 28.80 19.70 35.60
bst 90.00 24.00 18.00 9.00 28.00
wst 90.00 34.00 37.00 35.00 41.00
σ 0.00 3.69 5.20 8.31 4.12

range 0.00 -10.00 -19.00 -26.00 -13.00

Parkinson

μ 22.00 6.10 6.20 10.30 7.20
bst 22.00 8.00 8.00 15.00 8.00
wst 22.00 5.00 5.00 7.00 6.00
σ 0.00 1.37 1.03 2.54 0.79

range 0.00 3.00 3.00 8.00 2.00

100 Plants s. l.

μ 64.00 30.30 31.00 45.80 31.80
bst 64.00 26.00 24.00 40.00 27.00
wst 64.00 33.00 37.00 52.00 38.00
σ 0.00 2.00 3.65 4.29 3.71

range 0.00 -7.00 -13.00 -12.00 -11.00

Spambase

μ 57.00 27.40 29.60 44.60 28.30
bst 57.00 23.00 26.00 38.00 23.00
wst 57.00 32.00 32.00 49.00 35.00
σ 0.00 2.99 1.65 3.41 3.23

range 0.00 -9.00 -6.00 -11.00 -12.00

Statlog V.S.

μ 18.00 8.70 8.20 8.10 7.90
bst 18.00 7.00 6.00 6.00 5.00
wst 18.00 10.00 10.00 13.00 10.00
σ 0.00 1.34 1.40 2.18 1.45

range 0.00 -3.00 -4.00 -7.00 -5.00

Texture

μ 40.00 20.30 19.70 23.30 21.20
bst 40.00 19.00 17.00 19.00 17.00
wst 40.00 23.00 23.00 28.00 26.00
σ 0.00 1.34 2.00 2.67 2.86

range 0.00 -4.00 -6.00 -9.00 -9.00

the test subset.

The final part of the analysis is given in Table 6 and
Fig. 4. The results represent the execution time of each
of the algorithms per dataset. Both show the average
time while the table simultaneously presents the standard
deviation (σ), minimum (bst), maximum (wst) and range
(bst−wst) of the execution time for each algorithm.

As can be deduced from the presented data, the
proposed approach has a slightly longer execution time.
This is most evident on datasets with most instances. The
reason lies in the fact that DE-kNN efficiently explores
the search space for candidate solutions and then evaluates
each candidate from the archive. This puts a strain on
execution time as the number of available data increases
(i.e., as the number of instances rises). On several datasets
it was still the fastest of the wrappers compared, which
indicates that it could be adjusted and improved to reduce
the time. It could be possible to reduce the maximum
number of wrapper evaluations (since it archives top
solutions, it could still find good candidates), reduce the

Table 6. Execution time analysis.
Dataset NN GA stdDE AMDE DE-kNN

B.C.W. Or.

μ - 2.80 3.00 4.10 3.00
bst - 2.00 2.00 3.00 3.00
wst - 3.00 4.00 6.00 3.00
σ - 0.42 0.47 0.88 0.00

range - -1.00 -2.00 -3.00 0.00

Dermatology

μ - 7.30 7.50 5.60 8.10
bst - 4.00 5.00 3.00 4.00
wst - 11.00 10.00 10.00 11.00
σ - 2.16 1.58 2.01 2.08

range - -7.00 -5.00 -7.00 -7.00

Glass

μ - 0.00 0.00 0.00 0.00
bst - 0.00 0.00 0.00 0.00
wst - 0.00 0.00 0.00 0.00
σ - 0.00 0.00 0.00 0.00

range - 0.00 0.00 0.00 0.00

Image seg.

μ - 40.60 39.60 26.40 29.20
bst - 12.00 11.00 1.00 1.00
wst - 58.00 57.00 53.00 56.00
σ - 16.01 12.95 14.05 17.29

range - -46.00 -46.00 -52.00 -55.00

Ionosphere

μ - 9.30 6.90 5.80 9.00
bst - 6.00 5.00 3.00 5.00
wst - 13.00 10.00 9.00 14.00
σ - 2.16 1.45 2.10 3.27

range - -7.00 -5.00 -6.00 -9.00

Musk 1

μ - 32.50 23.40 40.00 25.10
bst - 17.00 2.00 14.00 5.00
wst - 51.00 42.00 59.00 56.00
σ - 10.68 14.54 14.97 17.85

range - -34.00 -40.00 -45.00 -51.00

Libras Mov.

μ - 33.80 38.40 16.70 31.00
bst - 21.00 25.00 9.00 1.00
wst - 47.00 58.00 29.00 56.00
σ - 9.44 11.30 7.39 14.71

range - -26.00 -33.00 -20.00 -55.00

Parkinson

μ - 0.90 0.70 0.20 1.00
bst - 1.00 1.00 1.00 1.00
wst - 0.00 0.00 0.00 1.00
σ - 0.32 0.48 0.42 0.00

range - 1.00 1.00 1.00 0.00

100 Plants s. l.

μ - 25.20 27.10 38.90 40.90
bst - 0.00 5.00 9.00 22.00
wst - 45.00 57.00 58.00 60.00
σ - 16.03 18.69 17.69 12.05

range - -45.00 -52.00 -49.00 -38.00

Spambase

μ - 24.30 31.80 31.10 43.00
bst - 0.00 2.00 7.00 17.00
wst - 54.00 56.00 55.00 65.00
σ - 17.99 15.11 16.47 16.94

range - -54.00 -54.00 -48.00 -48.00

Statlog V.S.

μ - 16.70 14.30 13.50 17.80
bst - 12.00 11.00 10.00 10.00
wst - 22.00 22.00 26.00 30.00
σ - 3.16 3.47 5.25 6.49

range - -10.00 -11.00 -16.00 -20.00

Texture

μ - 24.40 38.00 27.00 49.00
bst - 6.00 11.00 7.00 19.00
wst - 52.00 55.00 55.00 67.00
σ - 13.73 14.02 16.17 17.01

range - -46.00 -44.00 -48.00 -48.00

number of instances for post evaluation (use just a part of
the development portion of the dataset), or find some other
sort of compromise that would not jeopardize the quality
of the final solution. AMDE proved to be the fastest, but
on average it also yielded the largest feature subsets.

6. Conclusion

In this paper, an approach to dimensionality reduction
in pattern classification was proposed. Feature subset
selection using a wrapper method was used. A differential
evolution algorithm was employed as a wrapper, while
the nearest neighbour algorithm was applied as a
classifier. The proposed approach, DE-kNN, consists of
the classifier, the wrapper, the archive for storing solutions
and a voting system. Differential evolution finds feature
subsets of high quality from the full feature set which
are then evaluated by the k-NN algorithm. A designated
number of solutions found throughout DE execution is
archived and a method of post-evaluation using k-fold
cross-validation is used to generate the final solution.

120 G. Martinović et al.

Fig. 4. Execution times per algorithm for each of the datasets
used.

Experimental analysis was carried out on several
standard datasets of varying sizes and numbers of features.
The results of the analysis show the usefulness of this
approach because in almost every case the results are
better than the ones of the full feature set and achieve
higher accuracy than other tested wrapper methods.
The promising results achieved by the proposed method
were statistically evaluated by a pairwise comparison
between it and the other utilized wrappers using the
Mann–Whitney U test. It was shown that the differences
in performance were in most cases statistically significant.
This means that, alongside the problem complexity
reduction (through the reduction of features used),
classification accuracy is improved.

Future work includes potential improvements of the
proposed solution through combining it with some filter
method to discard some features up-front and to reduce
the execution time or by using a more advanced classifier
such as an artificial neural network. It should also
focus on adjusting the solution using other methods of
post-evaluation, other than k-fold cross-validation and
parameter optimization to achieve reduced running times
while maintaining the solution quality.

Acknowledgment

This work was supported by the research project grant
no. 165-0362980-2002 of the Ministry of Science,
Education and Sports of the Republic of Croatia. The
authors would like to thank the anonymous reviewers for
their useful comments that helped improve this paper.

References

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J. and
Garcı́a, S. (2011). KEEL data-mining software tool: Data
set repository, integration of algorithms and experimental
analysis framework, Multiple-Valued Logic and Soft Com-
puting 17(2–3): 255–287.

Balakrishnan, S., Narayanaswamy, R., Savarimuthu, N. and
Samikannu, R. (2008). SVM ranking with backward
search for feature selection in type II diabetes databases,
Proceedings of the IEEE International Conference On Sys-
tem, Man and Cybernetics, Singapore, pp. 2628–2633.

Bhatia, N. and Vandana, A. (2010). Survey of nearest neighbor
techniques, International Journal of Computer Science and
Information Security 8(2): 302–305.

Chuang, L.-Y., Tsai, S.-W. and Yang, C.-H. (2011). Improved
binary particle swarm optimization using catfish effect
for feature selection, Expert Systems with Applications
38(10): 12699–12707.

Das, S., Konar, A. and Chakraborty, U.K. (2005). Two improved
differential evolution schemes for faster global search, Pro-
ceedings of the 2005 Conference on Genetic and Evolu-
tionary Computation, Washington DC, USA, pp. 991–998.

Das, S. and Suganthan, P.N. (2011). Differential evolution: A
survey of the state-of-the-art, IEEE Transactions on Evo-
lutionary Computation 15(1): 4–31.

Dash, M. and Liu, H. (1997). Feature selection for classification,
Intelligent Data Analysis 1(1–4): 131–156.

Debska, B. and Guzowska-Swider, B. (2011). Application of
artificial neural network in food classification, Analytica
Chimica Acta 705(1–2): 283–291.

Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification,
2nd Edition, Wiley and Sons Inc., New York, NY.

Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary
Computing, Springer-Verlag, Berlin/Heidelberg.

Engelbrecht, A.P. and Pampara, G. (2007). Binary
differential evolution strategies, Proceedings of the IEEE
Congress on Evolutionary Computation 2007, Singapore,
pp. 1942–1947.

Ferreira, A.J. and Figueiredo, M.A.T. (2012). Efficient feature
selection filters for high-dimensional data, Pattern Recog-
nition Letters 33(13): 1794–1804.

Frank, A. and Asuncion, A. (2010). UCI machine learning
repository, http://archive.ics.uci.edu/ml.

Garcia, E.K., Feldman, S., Gupta, M.R. and Srivastava, S.
(2010). Completely lazy learning, IEEE Transactions on
Knowledge and Data Engineering 22(9): 1274–1285.

Gocławski, J., Sekulska-Nalewajko, J. and Kuźniak, E. (2012).
Neural network segmentation of images from stained
cucurbits leaves with colour symptoms of biotic and
abiotic stresses, International Journal of Applied Math-
ematics and Computer Science 22(3): 669–684, DOI:
10.2478/v10006-012-0050-5.

Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for
multiclass support vector machines, IEEE Transactions on
Neural Networks 13(2): 415–425.

Hsu, H.-H., Hsieh, C.-W. and Lu, M.-D. (2011). Hybrid feature
selection by combining filters and wrappers, Expert Sys-
tems with Applications 38(7): 8144–8150.

Jain, A.K., Duin, R.P.W. and Mao, J. (2000). Statistical pattern
recognition: A review, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 22(1): 4–37.

A differential evolution approach to dimensionality reduction for classification needs 121

Javed, K., Babri, H. and Saeed, M. (2012). Feature selection
based on class-dependent densities for high-dimensional
binary data, IEEE Transactions on Knowledge and Data
Engineering 24(3): 465–477.

Jeleń, L., Fevens, T. and Krzyżak, A. (2008). Classification
of breast cancer malignancy using cytological images of
fine needle aspiration biopsies, International Journal of
Applied Mathematics and Computer Science 18(1): 75–83,
DOI: 10.2478/v10006-008-0007-x.

Jiang, L., Cai, Z., Wang, D. and Jiang, S. (2007). Survey of
improving k-nearest-neighbor for classification, Proceed-
ings of the 4th International Conference on Fuzzy Systems
and Knowledge Discovery, Haikou, Hainan, China, Vol.1,
pp. 679–683.

Khushaba, R.N., Al-Ani, A. and Al-Jumaily, A. (2008).
Differential evolution based feature subset selection, Pro-
ceedings of the 19th International Conference on Pattern
Recognition, Tampa, FL, USA, pp. 1–4.

Kubir, M.M., Shahajan, M. and Murase, K. (2011). A new local
search based hybrid genetic algorithm for feature selection,
Neurocomputing 74(17): 2914–2928.

Kubir, M.M., Shahajan, M. and Murase, K. (2012). A
new hybrid ant colony optimization algorithm for
feature selection, Expert Systems with Applications
39(3): 3747–3763.

Li, C. and Li, H. (2010). A survey of distance metrics for
nominal attributes, Journal of Software 5(11): 1262–1269.

Lichtblau, D. (2012). Differential evolution in discrete
optimization, International Journal of Swarm Intelligence
and Evolutionary Computation 1(2012): 1–10.

Loughrey, J. and Cunningham, P. (2004). Overfitting in
wrapper-based feature subset selection: The harder you try
the worse it gets, in M. Bramer, F. Coenen and T. Allen
(Eds.), The Twenty-fourth SGAI International Conference
on Innovative Techniques and Applications of Artificial In-
telligence, Springer, Berlin/Heidelberg, pp. 33–43.

Martinović, G. and Bajer, D. (2011). Impact of double operators
on the performance of a genetic algorithm for solving
the traveling salesman problem, in B.K. Panigrahi, P.N.
Suganthan, S. Das and S.C. Satapathy (Eds.), Proceedings
of the Second International Conference on Swarm, Evolu-
tionary, and Memetic Computing Part I, Springer-Verlag,
Berlin/Heidelberg, pp. 290–298.

Michalak, K. and Kwaśnicka H. (2006). Correlation-based
feature selection strategy in classification problems, Inter-
national Journal of Applied Mathematics and Computer
Science 16(4): 503–511.

Pampara, G., Engelbrecht, A.P. and Franken, N. (2006).
Binary differential evolution, Proceedings of the IEEE
Congress on Evolutionary Computation 2006, Vancouver,
BC, Canada, pp. 1873–1879.

Price, K.V., Storn, R.M. and Lampinen, J.A. (2005). Differential
Evolution. A Practical Approach to Global Optimization,
Springer-Verlag, Berlin/Heidelberg.

R Core Team (2013). R: A Language and Environment for Statis-
tical Computing, R Foundation for Statistical Computing,
Vienna, http://www.R-project.org.

Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A. and
Jain, A.K. (2000). Dimensionality reduction using genetic
algorithms, IEEE Transactions on Evolutionary Computa-
tion 4(2): 164–171.

Storn, R. and Price, K. (1997). Differential evolution—a
simple and efficient heuristic for global optimization
over continuous spaces, Journal of Global Optimization
11(4): 341–359.

Trawiński, B., Sm ↪etek, M., Telec, Z. and Lasota, T. (2012).
Nonparametric statistical analysis for multiple comparison
of machine learning regression algorithms, International
Journal of Applied Mathematics and Computer Science
22(4): 867–881, DOI: 10.2478/v10006-012-0064-z.

Vegh, V., Pierens, G.K. and Tieng, Q.M. (2011). A variant of
differential evolution for discrete optimization problems
requiring mutually distinct parameters, International Jour-
nal of Innovative Computing, Information and Control
7(2): 897–914.

Wang, G., Jian, M. and Yang, S. (2011). IGF-bagging:
Information gain based feature selection for bagging, In-
ternational Journal of Innovative Computing, Information
and Control 7(11): 6247–6259.

Woźniak, M. and Krawczyk, B. (2012). Combined classifier
based on feature space partitioning, International Jour-
nal of Applied Mathematics and Computer Science
22(4): 855–866, DOI: 10.2478/v10006-012-0063-0.

Wu, O., Zuo, H., Zhu, M., Hu, W., Gao, J. and Wang, H. (2009).
Rank aggregation based text feature selection, Proceedings
of the IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Tech, Milano, Italy,
Vol. 1, pp. 165–172.

Xinjie, Y. and Mitsuo, G. (2010). Introduction to Evolutionary
Algorithms, Springer-Verlag, London.

Yan, F., Dridi, M. and Moudni, A.E. (2013). An autonomous
vehicle sequencing problem at intersections: A genetic
algorithm approach, International Journal of Applied
Mathematics and Computer Science 23(1): 183–200, DOI:
10.2478/amcs-2013-0015.

Yang, W., Li, D. and Zhu, L. (2011). An improved
genetic algorithm for optimal feature subset selection from
multi-character feature set, Expert Systems with Applica-
tions 38(3): 2733–2740.

Yusof, R., Khairuddin, U. and Khalid, M. (2012). A
new mutation operation for faster convergence in
genetic algorithm feature selection, International Jour-
nal of Innovative Computing, Information and Control
8(10(B)): 7363–7379.

Zhang, J., Avasarala, V., Sanderson, A.C. and Mullen, T.
(2008). Differential evolution for discrete optimization:
An experimental study on combinatorial auction problems,
Proceedings of the IEEE Congress on Evolutionary Com-
putation 2008, Hong Kong, China, pp. 2794–2800.

Zhua, M., Chena, W., Hirdes, J.P. and Stolee, P. (2007).
The k-nearest neighbor algorithm predicted rehabilitation
potential better than current clinical assessment protocol,
Journal of Clinical Epidemiology 60(10): 1015–1021.

122 G. Martinović et al.

Goran Martinović is a full professor of com-
puter science. He obtained his B.Sc.E.E. de-
gree from the Faculty of Electrical Engineering,
J.J. Strossmayer University of Osijek, in 1996.
In 2000 and 2004, he obtained his M.Sc. and
Ph.D. degrees in computer science, both from
the Faculty of Electrical Engineering and Com-
puting, University of Zagreb. His research inter-
ests include distributed computer systems, fault-
tolerant systems, real-time systems, artificial in-

telligence and medical informatics. He is a member of the IEEE, ACM,
IACIS, Cognitive Science Society, KOREMA and IEEE SMC Technical
Committee on Distributed Intelligent Systems.

Dražen Bajer received the Bachelor and Master
degrees in computer engineering from the Fac-
ulty of Electrical Engineering, J.J. Strossmayer
University of Osijek in 2008 and 2010, respec-
tively. He is currently pursuing the Ph.D. de-
gree at the Faculty of Electrical Engineering. His
research interests are computational intelligence
methods and their applications, and unsupervised
classification. He is an IEEE graduate student
member.

Bruno Zorić received the Bachelor and Master
degrees in computer engineering from the Fac-
ulty of Electrical Engineering, J.J. Strossmayer
University of Osijek in 2008 and 2011, respec-
tively. He is currently pursuing the Ph.D. degree
at the Faculty of Electrical Engineering. His re-
search interests are supervised classification and
affective computing. He is an IEEE graduate stu-
dent member.

Received: 6 January 2013
Revised: 20 August 2013
Re-revised: 27 November 2013

	Introduction
	Classification and feature selection
	Differential evolution
	Differential evolution within the binary space

	Proposed approach
	Experimental analysis
	Genetic algorithm used for comparison
	Experiment set-up
	Results and discussion

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

