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The paper presents the training problem of a set of neural nets to obtain a (gain-scheduling, adaptive) multivariable neural
controller for control of a nonlinear MIMO dynamic process represented by a mathematical model of Low-Frequency (LF)
motions of a drillship over the drilling point at the sea bottom. The designed neural controller contains a set of neural nets
that determine values of its parameters chosen on the basis of two measured auxiliary signals. These are the ship’s current
forward speed measured with respect to water and the systematically calculated difference between the course angle and the
sea current (yaw angle). Four different methods for synthesis of multivariable modal controllers are used to obtain source
data for training the neural controller with parameters reproduced by neural networks. Neural networks are designed on the
basis of 3650 modal controllers obtained with the use of the pole placement technique after having linearized the model
of LF motions made by the vessel at its nominal operating points in steady states that are dependent on the specified yaw
angle and the sea current velocity. The final part of the paper includes simulation results of system operation with a neural
controller along with conclusions and final remarks.
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1. Introduction

Control of multivariable dynamic nonlinear systems is
still the subject of intense study and the source of many
unresolved issues. For instance, complex motions and/or
complex-shaped bodies moving in the case of ships at the
boundary between water and air give rise to hydrodynamic
forces dependent in a nonlinear way on velocities and
positions, thus causing the floating bodies to become
strongly nonlinear dynamic plants.

In general, there are two basic approaches to solve
the control problem for nonlinear plants. The first
one, called “nonlinear”, assumes making synthesis of a
nonlinear controller that would meet certain requirements
over the entire range of control signals variability (Khalil,
2001; Tomera, 2010; Witkowska et al., 2007). The
second approach, called “linear”, consists in designing
an adaptive linear controller with varying parameters to
be systematically tuned up in keeping with changing
plant operating conditions determined by system nominal
operating points (Åström and Wittenmark, 1995; Zhai
and Xu, 2010). Such operating points are usually defined
in steady states of the plant. Usually, for linear models

obtained by linearization of a given nonlinear model,
an appropriate identification method should be used to
improve the knowledge of parameter values at actual
operating points of the ship. If the description of the
nonlinear plant is known, then it is possible to make
use of systems with linear controllers prepared earlier for
possibly all operating points of the plant. Such controllers
can create either a set of controllers with switchable
outputs from among which one controller designed for
the given system operating point (Bańka et al. 2010a;
2010b) is chosen, or multi-controller structures whose
control signal components are formed, for example, as
weighted means of outputs of a selected controller group
according to Takagi–Sugeno rules, i.e., with weights
being proportional to the degree of their membership of
appropriately fuzzified areas of plant outputs and/or other
auxiliary signals (Tatjewski, 2007).

What all the above-mentioned multi-controller
structures (where not all controllers are at the moment
utilized in a closed-loop system) have in common is that
all controllers employed in these structures must be stable
by themselves, in contrast to a single adaptive controller
with varying (tuned) parameters (Vidyasagar, 1985).
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Another approach is to use effective Methods
of Predictive Control (MPC) employing nonlinear or
on-line linearized models of the plant (Maciejowski,
2002; Rawlings and Mayne, 2009; Limon et al.,
2005; Qin and Badgwell, 2003). However, in the
case of MIMO nonlinear processes such nonlinear
control algorithms are too complex for computations
to be performed on-line. Such tasks are particularly
difficult when additional constraints on the control
signals are considered, which demands using some
numerical procedures to solve optimization problems
with constraints. When a nonlinear description of the
plant is not known accurately, predictive controllers
employing artificial intelligence, for example, neural
networks (Akesson and Tojvonen, 2006; Ławryńczuk,
2010; Chen and Yea, 2002; van der Boom et al., 2005) or
modern versatile neuro-approximators (Tzirkel-Hancock
and Fallside, 1992; Fabri and Kadrikamanathan, 2001;
Pedro and Dahunsi, 2011) can be used.

In the present paper another approach, which could
be seen as a kind of combination of the previously
mentioned approaches, is presented. In this solution,
controller parameters for each operating point are easily
and quickly determined by using a set of neural networks
given for controller parameters. The neural networks,
whose number equals that of controller parameters, are
designed in advance on the basis of the modal controller
parameters calculated for possibly all operating points
of the plant using the “linear” approach. Such nets
allow determining parameters not only at all operating
points used in design but also between them, generalizing
the parameter values to untrained (unknown) values.
In this solution, controller parameters are changeable
but changing them frequently enough due to changes
in operating point produces no impact on the plant
outputs. Such a neural controller could be seen as a
solution that consists of only one controller with internal
functionality of continuously changing parameters. The
neural networks could be designed using parameter values
of modal controllers (based on the Luenberger observer or
the Kalman filter) obtained by four different methods of
the “linear” approach (Bańka, 2007; 2012; Bańka et al.,
2013).

The first attempt to use this approach was made by
Bańka et al. (2011). They used the EigenVectors Method
(EVM) for synthesis of modal controllers in time domain
to obtain a data source for training the neural controller,
only. But the obtained results of synthesis turned out very
inconvienient for training neural nets mainly because of
very complicated “surface” shapes generated for varying
parameters, especially at the ship’s velocities near to Vs =
0 and/or at course angles corresponding to yaw angles
close to 00, 900, 1800 and 2700. Fortunately, using other
methods, especially the Polynomial Matrix Equations
(PMEs) method, for synthesis of modal controllers gives

better results, more convenient for training neural nets for
the same data assumed for synthesis without excessive
loss of process control quality.

The organization of this paper is as follows. In
Section 2 the structure of the proposed control system
is presented. In Section 3 we give a mathematical
description of the adopted nonlinear control plant chosen
as an example to show the design process for the
neural controller. In Section 4 we give a survey of
results of synthesis for multivariable modal controllers
obtained in both time and frequency domains using four
methods named the eigenvalues method, the eigenvectors
method, the polynomial method and the polynomial
matrix equations method. On the basis of obtained 3650
modal controllers, a set of 36 neural nets is trained.
The operation of the neural controller found is tested in
Section 5 by system simulation with the nonlinear plant
model. We end the paper in Section 6 with conclusions.

2. Description of the proposed control
system structure

The mathematical description of the plant is given in the
form of nonlinear state space and output equations:

ẋ(t) = f(x(t),u(t),d(t)), (1)

y(t) = g(x(t)),

where d(t) represents the disturbance. According to the
linear approach adopted in the paper, the linearization of
the model (1) is performed for the nominal values of the
plant state vector xo, control signals uo and disturbances
do that can be calculated from the system of nonlinear
algebraic equations:

0 = f(xo,uo,do), (2)

yo = g(xo).

As a result of linearization, the following linear
state-space models are obtained:

ẋ(t) = A[x(t) − xo] + B[u(t) − uo], (3)

y(t) − yo = C[x(t) − xo].

Their matrix transfer functions in the s-domain (s ∈
C) can be presented in the form of a relatively right prime
(r.r.p.) polynomial Matrix Fraction Description (MFD)

T(s) = C(sIn − A)−1B = B1(s)A−1
1 (s). (4)

The general block diagram of the proposed control
system structure for the plant (1) is depicted in Fig. 1.
It is a structure with a neural controller, which replaces
an adaptive gain-scheduling controller with measured
auxiliary signals xam(t) that can be any measured
signal like some components of the plant state vector
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or their functions. It is commonly known (Åström and
Wittenmark, 1995) that adaptation of control systems
can be implemented directly or indirectly (through
identification of parameters of the plant model), as well
as by on-line tuning the values of controller parameters
using the above-mentioned auxiliary measured signals
xam(t). As has been observed (Bańka, 2010a; 2010b;
2013), it can also be realized as a single adaptive
controller with stepwise tuned parameter values or as
a set of controllers with a common input e(t) and
switchable outputs ũ(t). The above control system for
the nonlinear MIMO plant with specified set points yref

consists of a neural controller designed on the basis of a
bank of multivariable linear modal controllers synthesized
for possibly all operating points of the plant. Modal
controllers being a basis for making up the above structure
are designed for different linear plant models obtained for
possibly all operating points of the plant.
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controller

d( )t

Plant
u( )t

+
+

u
o

e( )t

+
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y( )t

-

x
am
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Fig. 1. Block diagram of the general control system structure
with an adaptive gain-scheduling neural controller.

In the proposed structure the values of neural
gain-scheduling controller parameters determined by a set
of neural nets are chosen on the basis of auxiliary variables
xam(t). During the system operation the incremental
values ũ(t) generated by the neural controller are added
to the nominal values uo calculated from the Eqns. (2) for
each actual nominal value yo = yref .

All synthesized (single) modal controllers are
multivariable dynamic systems with (variable) parameters
defined in the time domain by the linear state equations

ẋr(t) = Arxr(t) + Bre(t), (5)

ũ(t) = Crxr(t) + Dre(t).

These can be presented in their natural form, which is
called “standard”, with the following matrices:

Ar = A− BF − LC, Br = L, (6)

Cr = −F, Dr = 0,

where F is the feedback matrix related to state vector
components (reconstructed by the observer) of the plant
linear models, and L is the gain matrix of full order
Luenberger observers that reconstruct the state vector

of the plant linear models (3). Another possibility (if
the polynomial approach with solving polynomial matrix
equations is employed) is to present Eqns. (5) in an
appropriate canonical form (most common an observable
one) with the matrices

Aro, Bro, Cro and Dr = 0. (7)

Unlike the matrices in the “standard” form, they are
characterized by a minimal number of parameters
different from “0” and “1”. The above controllers
represent strictly causal dynamic systems with Dr = 0.
In the s-domain they are described by strictly proper
matrices of rational transfer functions in the form of
relatively left prime (l.r.p.) polynomial matrix fractions

Tc(s) = Cr(sIn − Ar)
−1Br (8)

= Cro(sIn − Aro)
−1Bro

= M−1
2 (s)N2(s),

with the following polynomial matrices: M2(s) ∈
R[s]m×m is the nonsingular row-reduced denominator
matrix and N2(s) ∈ R[s]m×l is the numerator matrix that
fulfills the strict inequalities

degrjN2(s) < degrjM2(s), j = 1, 2, . . . , m. (9)

The static properties of MIMO modal controllers
under discussion depend directly on their gain matrices:

Kc = Cr(−Ar)
−1Br = M−1

2 (0)N2(0), (10)

and the dynamic properties are determined by poles
defined by the eigenvalues of the matrix Ar of each
of the controllers, which represent the zeroes of the
determinants:

detM2(s) = det [sIn − Ar] = 0. (11)

In general, the controllers considered can be stable
or unstable. By definition, they cannot exhibit integration
properties. In the case under discussion these will be
stable multivariable MIMO controllers whose behavior
is close to that of PD ones with time lag (Bańka and
Latawiec, 2009).

The designed modal controllers were calculated
using the following methods: the eigenvalues method,
the eigenvectors method, the polynomial method and
the polynomial matrix equations method (Bańka, 2012;
Bańka et al., 2013). As might be expected, the use of
different synthesis methods for modal controllers yielded
different results for the same data taken for calculations.
The differences in results obtained are fundamental both
in terms of construction of neural controllers and also
operation quality provided by these controllers in the
designed control system.
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As the neural controller approximates parameters
of the modal controllers, each of them leads to a
stable closed-loop of given dynamics. The so constructed
neural controller should yield a stable closed loop for
each working point. Thus a fluent change in controller
parameters may be regarded as switching between an
infinite number of controllers. To show the stability
of the above-described closed loop system with a
neural (gain-scheduled) controller, the stability theory of
nonsmooth systems given by Shevitz and Paden (1994)
and used successfully, e.g., by Lee et al. (2001) may been
utilized.

3. Description of the control system for
a drilling vessel

The designing process of the neural modal controller
will be exemplified by the controller synthesized for
a positioning control system for the MIMO nonlinear
dynamic model of the drillship Wimpey Sealab (Wise
and English, 1975). The adaptive control system structure
considered is studied by means of a 3DOF nonlinear
mathematical model of a ship’s slow-varying motions
described in detail by Bańka and Latawiec (2009) as well
as Bańka (2010a; 2010b; 2013). The yaw angle and the
ship’s position in DSP are defined in an Earth-based fixed
reference system whose axes are directed Northwards (N)
and Eastwards (E), and whose origin is located over the
drilling point on the seabed. In contrast, force and speed
components with respect to water are determined in a
moving system related with the ship’s body with the axes
directed to the front and the starboard of the ship with
the origin placed in its gravity center. These are shown in
Fig. 2.

The mathematical description of the plant is given
in the form of nonlinear state space and linear output
equations

ẋ1 = x4 cosx3 − x5 sinx3 + Vc cosΨc,

ẋ2 = x4 sin x3 + x5 cosx3 + Vc sinΨc,

ẋ3 = x6,

ẋ4 = 0.088x2
5 − 0.132x4Vs + 0.958x5x6 (12)

+ 0.958u1,

ẋ5 = −1.4x5Vs − 0.978x3
5/Vs − 0.543x4x6

+ 0.037x6 |x6| + 0.544u2,

ẋ6 = (0.258x5Vs − 0.764x4x5

− 0.162x6 |x6| + u3)/a,

y1 = x1, y2 = x2, y3 = x3,

where state variables x1, . . . , x6 represent the ship
position and the course angle over the drilling point
as well as her longitudinal, transversal and angular
velocities, while Vs =

√
x2

4(t) + x2
5(t) is the translational

velocity of the ship measured with respect to water. The
coefficient a = k2

zz + 0.0431 describes the ship’s inertia
moment together with water associated with the angle
motion of the ship around her vertical axis. k2

zz is the
square of the relative inertia radius referenced to the ship’s
length Lpp, and the Vc and Ψc are respectively the velocity
and direction of the sea current as indicated in Fig. 2. All
the signals appearing in Eqns. (1) are dimensionless, i.e.,
related to the ship’s dimensions and displacement together
with the dimensionless time t = tr/

√
Lpp/g ≈ 0.32 tr.

x y1 1=

vc

�c

x =y3 3

x ,u6 3

x ,u5 2

x ,u4 1

N

S
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x y2 2=

Fig. 2. Ship’s co-ordinate systems.

In the proposed structure the controller parameter
values are chosen on the basis of auxiliary variables
measured. These are the ship’s current transitional
velocity Vs(t) measured with respect to water (it is
negative if the ship sails astern, i.e., at x4(t) < 0) and
the systematically calculated difference between the sea
current angle and the ship’s course angle Ψc − x3(t). The
other components of disturbance induced by the wind and
wave are omitted here for simplicity of presentation.

The block diagram of the control system for the
ship’s course and position over the drilling point is
depicted in Fig. 3. This system consists of an adaptive
(gain scheduling) neural controller with their parameters
defined by a set of neural nets chosen during the system
operation on the basis of measured auxiliary signals xam

that are the ship’s actual speed Vs measured in reference
to the water and the systematically calculated difference
between the sea current and course (yaw) angles Ψc −
x3(t). For the given plant the nominal values xo and
uo depend exclusively on the course angle set point
yref = y30 = x30, as well as on the velocity and the sea
current angle. The additional saturation block visible in
Fig. 3. is used to protect against exceeding the maximal
values of calculated control signals u(t) = ũ(t) + u0.
In a real positioning system (DP) it is usually replaced
by the allocation block of calculated control signals u(t)
(components of longitudinal and lateral forces and turning
moment) on the main engine and the propellers installed
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on the ship. This is a separate problem that requires
application of advanced methods for solution of static
optimization tasks with constraints not considered here at
all.

As far as the block u0 is concerned, this part of the
system in real DP systems may be used for adjusting the
values of steady-state errors est ≈ 0 caused frequently by
unmeasured sea disturbances so as to eliminate (or reduce)
any deviations resulting in heading and/or position of
the vessel in a steady state. If the values of u0 are
exactly known, it is theoretically possible to achieve zero
steady-state errors est(t) → 0 together with ũ(t) → 0
(Bańka and Latawiec, 2009). In fact, due to the presence
of unmeasured sea disturbances (caused by wind and
wave) as well as possible incompatibility with the nominal
values u0 and x0 adopted for linearization of Eqns. (12),
the steady-state errors will frequently tend to the values
est �= 0. Then the output signals of the neural controller
will produce (in steady states) values ũ(t) �= 0.

In the case of linear models obtained in the form
of the state-space equations (3) or the transfer function
matrices (4) for the drillship Wimpey Sealab given by
nonlinear state-space equations (12) with the effects of
wind gusts and wave action having been neglected for
clarity, each of the above-discussed synthesis methods
leads to yielding strict causal modal full-order controllers
described by the space-state equations (5) with matrices
Dr = 0, which are defined by the strict proper transfer
function matrices (8) in the s-domain. In order to obtain
solutions with the minimal number of parameters whose
values are different than “0” and “1”, the state-space
equations for all controllers to be derived will be presented
exclusively in canonical forms with matrices (7) in
the second Luenberger–Brunovsky canonical observable
form:

Aro =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0 a12 0 a14 0 a16

1 a22 0 a24 0 a26

0 a32 0 a34 0 a36

0 a42 1 a44 0 a46

0 a52 0 a54 0 a56

0 a62 0 a64 1 a66

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Bro =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 b52 b53

b61 b62 b63

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Cro =

⎡

⎣
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎦ , (13)
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Fig. 3. Block diagram of the proposed control system structu-
re with an adaptive gain-scheduling neural controller for
the drilling vessel.

Dro =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ .

This is a minimal realization (in time domain) of the
matrix transfer function (8) when the PME method is used
for their synthesis.

They have 36 variable entries: aij , i = 1, 2, . . . , 6,
j = 2, 4, 6, and bij , i = 1, 2, . . . , 6, j = 1, 2, 3, dependent
on the ship’s velocity Vs = sign(x4)

√
x2

4 + x2
5 and on

deviations of the ship’s yaw angle y30 = x30 from the sea
current angle Ψc. The controllers have been synthesized
for velocities lying in the range Vs ∈ [−4.9 ÷ 4.9] knots
with the resolution of 0.2 knot over the entire range of the
round angle, that is, over the range Ψc−x30 ∈ [0÷3600]
with the resolution of 50 (0.0873 rad), for the adopted
ship relative “radius of gyration” kzz = 1/4. Thus values
of each parameter aij , bij may be stored in matrices

ai,j =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

aij1,1 · · · aij1,l
· · · aij1,73

...
. . .

...
...

aijk,1 · · · aijk,l
· · · aijk,73

...
...

. . .
...

aij50,1 · · · aij50,l
· · · aij50,73

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

(14)

and

bi,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

bij1,1 · · · bij1,l
· · · bij1,73

...
. . .

...
...

bijk,1 · · · bijk,l
· · · bijk,73

...
...

. . .
...

bij50,1 · · · bij50,l
· · · bij50,73

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

whose size depends on the number of assumed operating
points, here 50 × 73. Such generated data were used
to train neural networks presented in detail in the next
section. For the validation purpose another set of data
was also generated. The validation set was obtained for
velocities lying in the range Vs ∈ [−5.05 ÷ 5.05] knots
with the resolution of 0.1 knot over the entire range of the
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round angle Ψc −x30 ∈ [0÷ 3600] with the resolution of
10 (0.0175 rad).

Remark 1. It should be noted that dividing by a signal
representing the ship’s translational velocity Vs(t) with
respect to water takes place in the above nonlinear ship
motion model. This accounts for indeterminate behavior
of the nonlinear model at zero-valued ship velocity, i.e.,
when dividing by Vs(t) = 0 occurs. The nonlinear ship
model (12) loses physical meaning and this has definite
consequences not only during the system simulation, but
also for the control system synthesis, since linear models
become indeterminate at Vs = 0. Such a situation takes
place when the ship is carried along by currents or when
the ship stands still over the drilling point in calm water
at Vc = 0. Such a problem would not exist for neural
controller.

4. Neural controller synthesis

Due to the complexity of a variety of values of parameters
aij and bij of the controller described by (13), the
proposed neural controller consists of a group of neural
networks, each designed for an approximation of a
specific parameter aij or bij on the basis of multivariable
modal controllers obtained for possibly all operating
points of the plant. As all networks are independent of
each other, the structure of each of them depends on the
complexity of a variety of the approximated parameter
only. Examples of the variability of the same controller
parameters a34 of matrix Aro and b22 of matrix Bro

vs. ship’s velocity and yaw angle obtained by different
methods of synthesis are presented in form of surfaces in
Figs. 4 and 5, respectively.

The most promising results of designing neural
networks were expected from a method that is
characterized by the smoothest surface of the parameter
change. At the first glance the smoothest surfaces are
obtained using the polynomial matrix equations method.
The smoothens of variety of the given parameter aij and
bij can be also evaluated in a more quantitative way by a
factor defined by the following relationship:

si,j =
( 49∑

k=1

73∑

l=1

∣∣pi,jk,l
− pi,jk+1,l

∣∣

+
50∑

k=1

72∑

l=1

∣
∣pi,jk,l

− pi,jk,l+1

∣
∣
)

(16)

×
( 50∑

k=1

73∑

l=1

pi,jk,l

)−1

,

where pi,jk,l
stands for elements of the matrices ai,j

and bi,j , defined in (14) and (15), respectively. The
lowest values of coefficient (16) were achieved for modal

controllers calculated using the polynomial matrix equ-
ations method.

Considering the complexity of the surfaces, many
different types and structures of neural networks were
proposed and taken into account during the design
process. For each parameter obtained by each method,
one specific net was designed. At the very beginning,
four types of neural networks were taken into account:
feed-forward back propagation, cascade-forward back
propagation, radial basis with fewer neurons and radial
basis exact fit. Although it is well known that RBF nets are
good interpolators or approximators, the main problem is
that their size (the number of neurons) in the first (radial)
layer is at most equal to the number of training points. As,
in our case, we have a big training pattern, we have to give
up designing the RBF function due to the lack of memory
in the MATLAB environment. The design process was
conducted using the MATLAB/Simulink environment.
Structures of the back propagation networks designed are
presented in Table 1.

All designed back propagation networks have two
inputs due to the signals affecting changes in controller
parameters, and one output calculated by the net as the
current value of the controller parameter. What is more,
“tansig” transfer functions were used in all hidden layers
and the “purelin” transfer function was used in each output
layer; the Levenberg–Marquardt optimization algorithm
(TRAINLM) was employed and the “MSE” criterion was
employed as a performance function as well. Using a
high-end computer, designing such a huge number of
back propagation nets (20 net structures × 36 controller
parameters × 4 synthesis methods = 2880 nets) took a
long time, yet it turned out to be possible.

In searching for the best controller, at the very
beginning, the most suitable nets were investigated. It was
assumed that the most similar shape and values of the
surfaces at known points would be pointed out due to the
one of three calculated criteria:

1. The sum of the differences between the values of
points on the original surface and those estimated by
the net, described by

ei,j =
50∑

k=1

73∑

l=1

(pi,jk,l
− ynet

k,l ), (17)

where pijk,l
stands for elements of matrices ai,j and

bi,j while ynet
k,l for the values estimated by the net.

2. The sum of the absolute values of the differences
between values of the points on the original surface
and those estimated by the net, described by

ei,j =
50∑

k=1

73∑

l=1

∣
∣pi,jk,l

− ynet
k,l

∣
∣, (18)
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Fig. 4. Variability of the parameter a34 of matrix Aro vs. the ship’s velocity and yaw angle obtained by different synthesis methods.
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Fig. 5. Variability of the parameter b22 of matrix Bro vs. the ship’s velocity and yaw angle obtained by different synthesis methods.

where pijk,l
stands for elements of matrices ai,j and

bi,j while ynet
k,l for the values estimated by the net.

3. The sum of the squared average values of the
differences between values of the points on the
original surface and those estimated by the net,
described by

ei,j =
50∑

k=1

73∑

l=1

(pi,jk,l
− ynet

k,l )2, (19)

where pijk,l
stands for elements of matrices ai,j and

bi,j while ynet
k,l for values estimated by the net.

What is more, the evaluation of the nets was done
by a visual assessment of the obtained surfaces. Using the
above criteria, generally, the nets designed on the basis of
the data for the PME type of synthesis were pointed out
as those whose outputs produce signals most fitted to the
original one, which confirms the results obtained using the
formula (16).

Selection of specific net structures from among
the ones designed for the PME type of synthesis was
conducted according to the former numerical criterion.
The criterion (17) was taken into consideration as most
suitable during the evaluation process. However, the
remaining criteria often pointed out at the same structures
as the best ones. The summary of error values for the net
designed on the basis of PME synthesis is presented in
Tables 2 and 3.

In the next two figures (Figs. 6 and 7) a comparison
of network responses with the original surface for all
synthesis methods exemplified by the parameters a34

and b22 is presented. As may be noticed, mainly due
to their simplicity, the obtained surfaces (produced by
neural networks) are most similar to their origins in the
case of the PME synthesis method. The differences are
almost imperceptible. All surfaces of variable entries of
matrices Aro, Bro versus the ship’s velocity Vs and yaw
angle Ψc − x30 obtained by the PME method have been
illustrated in our previous work (Bańka et al., 2013).
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Table 1. Structures of the trained back propagation networks.
Number of neurons in the layer

No. Input Hidden Output

1st 2nd 3rd 4th

1 2 3 1
2 2 6 1
3 2 9 1
4 2 12 1
5 2 15 1
6 2 18 1
7 2 6 3 1
8 2 9 3 1
9 2 9 6 1

10 2 12 6 1
11 2 12 9 1
12 2 15 9 1
13 2 9 6 3 1
14 2 12 6 3 1
15 2 12 9 3 1
16 2 12 9 6 1
17 2 15 9 6 1
18 2 15 12 3 1
19 2 15 12 6 1
20 2 12 9 6 3 1

Table 2. Summary of error values for elements of Aro.
Aro net Best structure Choice due to the absolute error criterion

No. Type and number Value of the Value of the absolute Value of the mean square
of neurons in layers error criterion error criterion error criterion

12 Cascade-forward 12-9-3 0.77 2.38 3.51 e-04
14 Cascade-forward 15-12-6 0.40 2.68 3.81 e-04
16 Cascade-forward 12-9-6-3 -0.15 0.31 3.82 e-06
22 Feed-forward 15-12-6 -0.88 5.10 1.39 e-03
24 Cascade-forward 15-12-6 -0.37 1.39 8.83 e-05
26 Cascade-forward 9-6 -0.25 0.44 9.04 e-06
32 Cascade-forward 12-9-6 -0.30 13.75 9.25 e-03
34 Cascade-forward 12-9-6 0.48 13.99 1.20 e-02
36 Cascade-forward 12-9-6 -0.08 1.14 7.96 e-05
42 Cascade-forward 15-12-6 -0.39 6.45 2.37 e-03
44 Cascade-forward 15-12-6 -0.59 8.91 5.86 e-03
46 Cascade-forward 12-9-6-3 0.029 0.04 7.76 e-08
52 Cascade-forward 12-9-6-3 0.21 0.93 6.01 e-05
54 Cascade-forward 15-12-3 -1.23 2.29 2.77 e-04
56 Cascade-forward 15-12-6 -0.42 5.08 1.37 e-03
62 Cascade-forward 12-9-6 -0.08 0.92 5.08 e-05
64 Cascade-forward 12-9-6-3 0.36 2.33 3.09 e-04
66 Feed-forward 15-12-3 1.44 e-12 1.53 e-11 1.121 e-26

All of this makes quite a complex picture of
problems connected with implementation of the proposed
multi-controller structures of linear modal controllers
designed for steady states, but actually utilized to control
transients. This is possible, as evidenced below, by results
of simulations carried out with the ship’s nonlinear model
(12) for all obtained sets of modal controllers realized as

a single adaptive controller with tuned parameters.

5. Results of simulation tests

All simulation tests were carried out without regard to the
effect produced by wind and wave action in the presence
of sea current of Vc = 2 knots at Ψc = 1800 with the
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Table 3. Summary of error values for elements of Bro.
Bro net Best structure Choice due to the absolute error criterion

No. Type and number Value of the Value of the absolute Value of the mean square
of neurons in layers error criterion error criterion error criterion

11 Cascade-forward 9-6 -5.10 e-02 6.60 e-02 2.03 e-07
12 Cascade-forward 9-6 8.61 e-03 0.18 1.19 e-06
13 Cascade-forward 12-9-6-3 -1.38 9.62 4.82 e-03
21 Cascade-forward 15-9-6 8.24 e-02 2.11 3.24 e-04
22 Cascade-forward 12-9-3 4.19 e-02 1.18 9.03 e-05
23 Cascade-forward 9-6-3 0.28 2.59 3.52 e-04
31 Cascade-forward 15-12-6 1.91 6.59 2.10 e-03
32 Cascade-forward 12-9-6-3 1.44 8.88 4.44 e-03
33 Cascade-forward 15-12-3 -0.18 4.67 1.37 e-03
41 Cascade-forward 12-9-6-3 3.38 e-02 10.88 6.70 e-03
42 Cascade-forward 15-12-3 -0.62 13.03 9.66 e-03
43 Cascade-forward 15-9-6 3.52 e-02 0.48 1.12 e-05
51 Cascade-forward 3 0 0 0
52 Cascade-forward 3 0 0 0
53 Cascade-forward 15-12-6 4.63 11.00 5.58 e-03
61 Cascade-forward 15-12-3 -0.30 4.36 1.17 e-03
62 Cascade-forward 15-9 -1.32 3.25 6.60 e-04
63 Cascade-forward 12-9-6 2.29 6.46 2.42 e-03
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Fig. 6. Comparison of selected surfaces of the same parameter a34 for different methods of synthesis.

use of the ship’s nonlinear model (12) that describes slow
varying ship motions in 3DOF. All presented results of
simulation tests for stepwise tuned controllers and a neural
controller were carried out in the Hardware in the Loop
(HiL) environment. The HiL test stand consists of two
1104 dSpace R&D controller boards, which allows one
to simulate independently the Wimpey Sealab model (12)
and the controller in real time.

The ship’s and controller inputs and outputs as well
as the current ship velocity were transmitted between
cards by wires with the use of 12 bit independent AQ
and AI. The maximum sampling period for the described

neural controller with the use of the 1104 dSpace R&D
controller board is 100 ms, which is much more than
necessary for the ship model given.

Yet the controller has also been tested to work in an
industrial PLC controller X20 CP 1585 of B&R, where
its recorded average scan period is 1013 µs with the
size of the function block 188 936 B. For comparison,
the Takagi–Sugeno fuzzy controller built on all sets of
synthesized 3650 local linear controllers in X20 CP
1585 needs 1 686 732 B of memory and its average
scan period equals 141 µs. Taking into account the
so-called “curse of dimensionality", implementation of
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Fig. 7. Comparison of selected surfaces of the same parameter b22 for different methods of synthesis.

the fuzzy Takagi–Sugeno MIMO controller for a great
number of the auxiliary signals may be difficult (if
possible) with its scan periods rapidly rising. The neural
controllers described in the paper should not be such space
consuming with almost the same scan periods.

The tests were conducted for many different initial
states defined by appropriate ship positions, course angles
and ship initial velocities. In typical situations, that is,
when the ship sailed bow on against the current at Vs �=
0, all controllers behaved quite correctly yielding time
responses without excessive oscillations experienced by
the control signals u(t). In that case the ship could always
be brought to the drilling point with the assumed preset
course angle, and then she could be moved to any specified
position. This is demonstrated by time responses depicted
in Fig. 8, obtained with adaptive (stepwise tuned) and neu-
ral controllers found by the polynomial matrix equations
method.

During the simulations the ship was brought to the
drilling point from a position about 100 m (r = 1)
distant situated on the left below the drilling point with
the adopted initial course angle x3(0) = 350 and velocity
components x4(0) and x5(0), which corresponds to the
ship’s sailing bow on against the current Vs(0) = Vc = 2
knots. After reaching the drilling point with the specified
course angle equal to y3ref = x30 = 00, the course angle
was changed to y3ref = x30 = 600, and then the reference
values were changed stepwise for both ship’s position
coordinates so that the ship move through a distance of
about 100 m from the right over the drilling point and
come to a standstill at a distance of 100 m with a velocity
of Vs = Vc = 2 knots relative to water and bringing
the ship’s course angle y3(t) = x3(t) to the preset value
y3ref = x30 = 600.

However, more interesting and instructive are

responses obtained for atypical situations when the ship
sails stern first against the current, especially at changes
in the sign of the linear ship velocity Vs in the vicinity
of Vs = 0. This may happen when the ship is brought
to the drilling point with the current (conditioned, for
example, by an unfavorable direction of the wind or sea
waves being in opposition to the sea current direction Ψc)
or when changing the ship’s yaw angle over the drilling
point caused by a change in wind or wave direction.

To investigate the matter, the remaining simulations
were performed for the ship situated initially about 100 m
on the left over the drilling point with the initial course
angle x3(0) = 1250 and velocity components x4(0) and
x5(0), which corresponds at the beginning of simulations
to moving astern at Vs(0) = −Vc = −2 knots. In these
simulations, the preset ship course angles y3ref = x30 over
the drilling point, as well as making later changes in the
yaw angle and ship final positions, were performed just
in the same way as earlier, keeping as far as possible the
same time conditions for manoeuvring. Simulation results
obtained for this scenario for sets of controllers designed
by the polynomial matrix equations method are shown in
Fig. 9.

It may bee seen in Figs. 7 and 9 that a neural
controller eliminates problems with switching between
controllers in a set and makes the control signals
smoother. Moreover, there is no need to calculate (search
for) the appropriate number of such controller set, which
would demand estimation of, e.g., levels of steady-state
errors as the neural controller covers all possible working
points.

6. Concluding remarks

It follows from the simulation tests carried out that the
proposed concept of control system realization with the
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Fig. 8. Plots of the ship’s position and yaw angle and control signals u(t) vs. time in the process of bringing the ship to the drilling
point bow on against the current.
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Fig. 9. Plots of controlled variables and control signals u(t) obtained for the ship’s approaching the drilling point with the current.

use of a MIMO neural-modal controller is feasible. In
contrast to stepwise tuned controllers, the responses of

control signals u(t) are smoother and more possible
to be realized by the propellers and the main engine
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of a real ship. The approximation of the surfaces by
means of artificial neural networks provides “smoother”
system operation (without any switching over) and also
generalizes the parameter values of matrices Aro and
Bro to untrained (unknown) values following from the
quantization of signals Vs and Ψc − x3(t) with an
acceptable resolution, and eliminates the problem of an
ambiguity in the operation of controllers, which assume
different parameter values in the process of switching
over depending on whether the auxiliary signals Vs and
Ψc − x3(t) increase or decrease.
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