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UBALDO RUIZ, JOSE LUIS MARROQUIN, RAFAEL MURRIETA-CID

Center for Mathematical Research (CIMAT)
Jalisco S/N, Valenciana, Guanajuato, C.P. 36240, Mexico

e-mail: {ubaldo,jlm,murrieta}@cimat.mx

In this paper, we address the pursuit-evasion problem of tracking an Omnidirectional Agent (OA) at a bounded variable
distance using a Differential Drive Robot (DDR), in an Euclidean plane without obstacles. We assume that both players
have bounded speeds, and that the DDR is faster than the evader, but due to its nonholonomic constraints it cannot change its
motion direction instantaneously. Only a purely kinematic problem is considered, and any effect due to dynamic constraints
(e.g., acceleration bounds) is neglected. We provide a criterion for partitioning the configuration space of the problem into
two regions, so that in one of them the DDR is able to control the system, in the sense that, by applying a specific strategy
(also provided), the DDR can achieve any inter-agent distance (within an error bound), regardless of the actions taken by
the OA. Particular applications of these results include the capture of the OA by the DDR and maintaining surveillance of
the OA at a bounded variable distance.
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1. Introduction

In this paper, we address the pursuit-evasion problem of
tracking an Omnidirectional Agent (OA) at a bounded
variable distance using a Differential Drive Robot
(DDR), on a Euclidean plane without obstacles. We
assume that both players have bounded speeds, and
that the DDR is faster than the evader, but due to its
nonholonomic constraints it cannot change its motion
direction instantaneously. Only a purely kinematic
problem is considered, and any effect due to dynamic
constraints (e.g., acceleration bounds) is neglected. We
provide a criterion for partitioning the configuration space
of the problem into two regions, so that in one of them the
DDR is able to control the system, in the sense that, by
applying a specific strategy (also provided), the DDR can
achieve any inter-agent distance (within an error bound),
regardless of the actions taken by the OA. Particular
applications of these results include the capture of the OA
by the DDR and maintaining surveillance of the OA at a
bounded variable distance.

In our previous work (Murrieta-Cid et al., 2011),
we presented a solution for the problem of tracking an
omnidirectional mobile evader at a constant distance with
a differential drive robot. In that paper, we obtained

motion strategies for both the players and a long term
solution for the game. The current work represents a
generalization of the research presented there. In this
paper, we provide conditions that establish whether or not
it is possible for a DDR to track an OA at a bounded vari-
able distance, and the DDR’s motion strategies to perform
the task. The pursuer’s control objective is to reach an
inter-player distance within an interval [LG − ε, LG + ε],
where LG is the goal distance for the pursuer, and ε is a
prescribed small tolerance (determined by a positive real
number); ε represents an overshoot or undershoot, due
to the assumption that while one of the players changes
the inter-player distance, the motion direction of the other
player is unknown.

The main difference between the current work and
that presented by Murrieta-Cid et al. (2011) is that
previously we only provided a pursuer motion strategy
that guarantees to maintain a constant distance between
the players, while in this work we provide a pursuer
motion policy that guarantees that it will be able to reach
an inter-player distance within an interval [LG−ε, LG+ε].
This LG distance can be smaller or larger than the initial
distance LI between the players.

We model the pursuer-evader system as a hybrid
control problem combining two motion strategies. The
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first part of the pursuer’s strategy is modeled continuously,
and the goal is to maintain a constant distance between the
players while the DDR aligns its heading with the evader’s
location (cf. Murrieta-Cid et al., 2011). The second
part of the pursuer’s strategy is modeled using a discrete
system, in which the pursuer increases or decreases
the inter-player distance. The DDR switches between
both strategies until the desired condition (distance) is
achieved.

In this work, we define a manifold over the space of
parameters for the game, such that it induces a partition
of this space into two disjoint regions. The DDR will
be able to control the system whenever it is in one of
those regions. By controlling we mean that the DDR can
vary the inter-player distance freely. When the system
is exactly on the manifold, no player controls it and this
can be interpreted as a tied game. The motion strategies
presented in this paper are applicable to several problems
related to surveillance or capture:

• They allow a DDR to maintain an omnidirectional
evader within a limited sensing range defined by
a maximal Lmax and a minimal Lmin sensing
distances.

• They allow a DDR to reduce the distance to the
evader.

In the remainder of the paper, we describe the
conditions that make the tasks listed above possible.

2. Previous work

A lot of work has been done in the area of pursuit-evasion
games (Hájek, 1965; Isaacs, 1965; Başar and Olsder,
1982), and three main problems have received a lot of
attention. They include finding, tracking and capturing
a mobile evader with one or several pursuers.

In the finding problem (Isler et al., 2005; Hollinger
et al., 2009), the objective is to establish some sort of
visibility between the pursuer and the evader. In this
case, the pursuer must sweep the environment so that the
evader is not able to eventually sneak into an area that
has already been explored. Deterministic (Suzuki and
Yamashita, 1992; Guibas et al., 1999; Sachs et al., 2004;
Tovar and LaValle, 2008) and probabilistic (Vidal et al.,
2002; Hespanha et al., 2000; Chung, 2008) algorithms
have been proposed to solve this problem.

In the capturing problem, the pursuer tries to get
closer than a given distance l to the evader. The goal
of the evader is to keep the pursuer at all times farther
from it than this capture distance. A classical problem
is that of the homicidal chauffeur (Isaacs, 1965; Merz,
1971). In that game a faster pursuer (with respect to
the evader) has as its objective to get closer than a given
distance (the capture condition) to a slower but more

agile evader, in order to run it over. The pursuer is
a vehicle with a minimal turning radius. The game
takes place in the Euclidean plane without obstacles, and
the evader aims to avoid the capture condition. The
problem tackled in this paper and its proposed solution
are different to the homicidal chauffeur issue. Note that
the change in the mechanical model for the pursuer (if
this role is taken by the DDR, which can rotate in place)
has as distinctive consequences that both the condition
defining the winner and the motion strategies of the
two players also change with respect to the homicidal
chauffeur solution. Ruiz and Murrieta-Cid (2012) as well
as Ruiz et al. (2013) presented time-optimal strategies
for the game of capturing an omnidirectional evader with
a differential drive robot. The results presented here,
although not time-optimal, have the advantage over those
of Ruiz and Murrieta-Cid (2012) as well as Ruiz et al.
(2013) of allowing solution of two problems: capturing
an OA evader with a DDR pursuer and maintaining
surveillance at a bounded variable distance of an OA with
a DDR.

In the tracking problem, the goal is maintaining
visibility of the evader at all times, usually
in an environment with obstacles (LaValle
et al., 1997; González et al., 2002; Jung and Sukhatme,
2002; Bandyopadhyay et al., 2006; Bhattacharya and
Hutchinson, 2010).

In recent years there has been a growing interest in
related problems within the community of autonomous
robots (Jung and Sukhatme, 2002; Kowalczuk and
Czubenko, 2011), and specifically in robot motion
planning (LaValle et al., 1997; González et al., 2002;
Murrieta-Cid et al., 2007). LaValle et al. (1997) proposed
game theory as a framework to formulate the tracking
problem. Becker et al. (1995) presented an algorithm
that operates by maximizing the probability of future
visibility of the evader. This algorithm is also studied
more formally by LaValle et al. (1997). Fabiani et al.
(2002) present an approach that takes into account the
positioning uncertainty of the robot pursuer.

The approach presented by Murrieta-Cid et al.
(2005) computes a motion strategy by maximizing the
shortest distance to escape, i.e., the shortest distance the
evader needs to move in order to escape the pursuer’s
visibility region. González et al. (2002) propose a
technique to track an evader without the need for a global
map. Instead, a range sensor is used to construct a local
map of the environment, and a combinatorial algorithm
is then employed to compute a motion for the pursuer
at each iteration. In our previous work (Murrieta-Cid
et al., 2007) we specifically considered the case in which
both the pursuer and the evader are omnidirectional;
that led to a sufficient escape condition for the evader.
Then (Murrieta-Cid et al., 2008) we again considered
both players as omnidirectional systems moving in an
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environment containing obstacles. Further (Murrieta-Cid
et al., 2008), we specifically addressed the combinatorial
problem inherent to any strategy that considers visiting
several locations in an environment with obstacles, and
we provided a complexity result for this problem.

Bandyopadhyay et al. (2006) used a greedy approach
for the problem of evading surveillance. To drive the
greedy motion planning algorithm, a local minimum
risk function is applied, called the vantage time. In
the work of O’Kane (2008), a robot has to track an
unpredictable target with bounded speed. The robot’s
sensors are manipulated to record general information
about the target’s movements and avoid the need for
detailed, potentially damaging information about the
target’s position being available if the robot’s sensors are
accessed by other agent.

An interesting version of the problem involves
multiple participants (several pursuers and evaders).
Parker (2002) developed a method which attempts to
minimize the total time in which the evaders escape
surveillance. Jung and Sukhatme (2002) combined the
application of mobile and static sensors. The authors used
a metric for measuring the degree of occlusion, based on
the average mean free path of a random line segment.

Pursuit-evasion can be used in a variety of
applications. For example, Tekdas and Yang (2010)
noticed the similarity between pursuit-evasion games
and mobile routing for networking. Applying this
similarity, they proposed motion planning algorithms
for robotic routers to maintain connectivity between a
mobile user and a base station. That work also includes
a proof-of-concept implementation. Other possible
interesting application of pursuit-evasion is the control
of a team of robots (Skrzypczyk, 2005) with the goal
of achieving a specific robot formation, for example,
tracking the trajectory of an agent designed as the leader
(Prodan et al., 2013).

Our problem consists in determining motion
strategies to always maintain surveillance of the evader
(assuming surveillance at the beginning of the game).
The evader is under pursuer surveillance whenever it
is at a bounded variable distance to the pursuer. It is
interesting to analyze this case because commercially
available sensors have upper and lower range limits. In
particular, even in the absence of obstacles, if the evader is
farther or closer than the sensor range, then its location is
unknown, and the surveillance is broken. Our results are
applicable to problems in which the pursuer is a wheeled
mobile robot tracking a human evader. An example of
those problems is monitoring children with mobile robots
to prevent them straying out-with a prescribed area set
by their guardian. The results can also be applied for
capturing an evader, i.e., moving the pursuer closer than a
given distance to the evader.

3. Preliminaries

3.1. System model. Figure 1 shows the geometric
description of the system. In an Euclidean plane, the
OA’s position is represented by (xe, ye) and the DDR’s
position by (xp, yp). We will refer to the line segment
connecting these positions as the (variable length) rod,
using an analogy with the problem presented by Schwartz
and Sharir (1983). The length L of this rod corresponds to
the distance between both players (it can be interpreted as
the measure of a range sensor). The angle θp denotes the
angle of the pursuer’s wheels with respect to the x-axis,
and φ represents the angle of the rod (sensor’s orientation)
with respect to the x-axis. ψ corresponds to the motion
direction of the evader.
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Fig. 1. Geometric model of the pursuer-evader system.

The evolution of the system is described by the
following equations of motion:

ẋe = u1 cosu2,

ẏe = u1 sinu2,

ẋp = u3 cos θp,

ẏp = u3 sin θp,

θ̇p = u4,

(1)

where u1 ∈ [0, V max
e ] and u2 ∈ [0, 2π) are the

OA’s controls, and they represent its speed and motion
direction, respectively. Note that we assume that u1 takes
only positive values, but since u2 takes any value between
[0, 2π) after a time t the evader can reach any position
inside or in the boundary of a circle with radius u1t
centered at the evader’s initial position. For the DDR
pursuer, we use the usual assignment of control inputs
(Balkcom and Mason, 2002). The DDR controls its linear
velocity u3 ∈ [−V max

p , V max
p ] and the rate of change of

its motion direction u4.

3.2. Previous results. Previously (Murrieta-Cid et al.,
2011) we presented the conditions under which it is
possible for a differential drive robot (the pursuer) to track



374 U. Ruiz et al.

an omnidirectional mobile evader at a constant distance.
To make this paper self-contained, we include here a brief
review of the most important results in that work.

We have that the kinematic equations for a DDR (see
LaValle, 2006) are given by

u3 = Vp =
(wr(t) + wl(t))R

2
, (2)

u4 = θ̇p =
(wr(t) − wl(t))R

2b
, (3)

where u3 is the linear velocity, u4 is its angular velocity,
wi is the angular velocity of the i-th wheel,R is the radius
of the wheels, and b is the distance between the center of
the robot and the wheel location.

Without loss of generality, in what follows we will
assume R = 1. Adding and subtracting Eqns. (2) and (3)
and solving for u4, one obtains

u4 =
1
b
(wr − u3) (4)

and

u4 =
1
b
(−wl + u3). (5)

These equations mean that for a given value of wr

(resp. wl) there is a linear relation between the controls
u3 and u4.

Recalling that R = 1, the absolute value of
the angular velocities wr, wl is bounded by V max

p ,
the maximum attainable linear speed. The maximum
counterclockwise turning speed umax

4 is obtained when
either wr = V max

p or wl = −V max
p . For these values,

one may obtain from Eqn. (4) and (5) respectively

0 ≤ umax
4 =

1
b
(V max

p − u3) (6)

with

u3 =
1
2
(V max

p + wl) ≥ 0, (7)

and

0 ≤ umax
4 =

1
b
(V max

p + u3) (8)

with

u3 =
1
2
(wr − V max

p ) ≤ 0. (9)

Similarly, the maximum clockwise turning speed
umin

4 is obtained when either wr = −V max
p or wl =

V max
p , and one has from Eqns. (4) and (5)

0 ≥ umin
4 =

1
b
(−V max

p − u3) (10)

with

u3 =
1
2
(−V max

p + wl) ≤ 0, (11)

and

0 ≥ umin
4 =

1
b
(−V max

p + u3) (12)

with

u3 =
1
2
(wr + V max

p ) ≥ 0. (13)

Equations (6), (8), (10) and (12) may be combined in
the inequality

|u4| = |θ̇p| ≤ 1
b

(
V max

p − |u3|
)
. (14)

This inequality characterizes the space of valid controls
(control space (u3, u4)) for the DDR, which corresponds
to the boundary and interior of the rhombus depicted in
Fig. 2.
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Fig. 2. Control space (u3, u4).

The relation between the evader and the pursuer
positions is given by

(
xp

yp

)
=
(

xe

ye

)
+ L

(
cosφ
sinφ

)
. (15)

Computing the time derivative of Eqn. (15), and recalling
that L̇ = 0 (Murrieta-Cid et al., 2011), we proved that
the linear speed u∗3 of the pursuer required to maintain a
constant distance L to the evader is in fact fixed: for given
values of u1, u2, θp and φ, u∗3 is given by

u∗3(φ, θp, u1, u2) =
u1 cos(u2 − φ)
cos(θp − φ)

. (16)

The authors also proved that when the pursuer
successfully tracks the evader to a constant distance (i.e.,
when u3 = u∗3), the angular velocity of the rod φ̇ is

φ̇(φ, θp, u1, u2) =
u1 sin(θp − u2)
L cos(θp − φ)

. (17)

Evaluating the expression (14) for u3 = u∗3, we get

max |θ̇p| = max |u4|(u∗3) =
1
b

(
V max

p − |u∗3|
)
. (18)
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Equation (18) gives the maximum rate of rotation for
the pursuer, given a specified linear speed u∗3. In Eqns.
(16) and (17) we can observe that as θp − φ approaches
π/2 the required value for u∗3 increases, requiring an
infinite value at π/2. As θp − φ approaches zero, the
required value of u∗3 and hence φ̇ decrease. A pursuer with
bounded speed must avoid the situation when θp − φ →
π/2, since at some point it will not be able to satisfy the
required value for u∗3 to maintain tracking at a constant
distance. An antagonistic evader will therefore seek to
lead the system to θp − φ = π/2 to break surveillance.
To this end, both players manipulate the change in θp − φ

given by φ̇− θ̇p.
Note that the evader can control φ̇ directly using its

controls u1 and u2 (Eqn. (17)), but also θ̇p indirectly,
through u∗3, since it can maximize the required linear
velocity of the pursuer reducing the maximum feasible
value for u4 (see Eqn. (16)).

Hence, the evader’s optimal motion direction u∗2 is
the one that maximizes the difference |φ̇| −max |θ̇p|. The
equation below establishes u∗2:

u∗2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ4 = atan

(
− sinφ+ b

L cos θp

− cosφ− b
L sin θp

)

if (θp − φ) ∈ [0, π],

ψ3 = atan

(
− sinφ− b

L cos θp

− cosφ+ b
L sin θp

)

if (θp − φ) ∈ (π, 2π).

(19)

The difference |φ̇|−max |θ̇p| = 0 expressed as a function
of the players’ controls is given by

|u∗1 sin(θp − u∗2)|
|L cos(θp − φ)|
︸ ︷︷ ︸

− 1
b

⎛

⎜
⎜
⎜
⎝
V max

p −

u∗∗
3 (u1,u2)

︷ ︸︸ ︷∣
∣
∣
∣
u∗1 cos(u∗2 − φ)
cos(θp − φ)

∣
∣
∣
∣

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

= 0

|φ̇(t)| − |u∗∗4 | = max |θ̇p(t)| = 0, (20)

where u∗1 is the maximal linear velocity of the evader, that
is, u∗1 = V max

e , u∗2 is defined by Eqn. (19), u∗∗3 denotes
the pursuer’s linear velocity that maintains the constant
inter-player distance between the players whenever the
evader applies controls u∗1 and u∗2, and u∗∗4 denotes
the pursuer’s maximal angular velocity that it can use
whenever the evader applies controls u∗1 and u∗2.

Doing some algebraic manipulation of Eqn. (20),
Murrieta-Cid et al. (2011) proved that the condition |φ̇| −

max |θ̇p| = 0 can be written as

V max
p (| cos(θp − φ)|) = |u∗1|g(φ, θp, u

∗
2), (21)

where

g(φ, θp, u
∗
2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− cos(φ− u∗2) − b
L sin(θp − u∗2)

if (θp − φ) ∈ [0, π],

− cos(φ− u∗2) + b
L sin(θp − u∗2)

if (θp − φ) ∈ (π, 2π).
(22)

We stress the fact that the evader’s motion is not
given a priori. In our previous work (Murrieta-Cid
et al., 2011), we presented a worst-case analysis. We
proved that if the evader uses at all times the controls
that maximize the difference |φ̇(t)| − max |θ̇p(t)|, that
is, u∗1 = V max

e and u∗2 defined by Eqn. (19), and this
difference is still negative, then no evader’s control will
make the difference equal to or greater than zero. Hence,
whenever this condition holds, the pursuer can maintain a
constant distance to the evader and it can align its heading
with the evader location in finite time regardless of the
evader motion.

This main result was presented by Murrieta-Cid et al.
(2011) defining the manifold

M(V max
e , V max

p , θp, φ)

= |φ̇(u∗1, u
∗
2)| −

1
b
(V max

p − |u∗∗3 |), (23)

exactly equivalent to

M(V max
e , V max

p , L, θp, φ)

= V max
p (| cos(θp − φ)|) − |u∗1|g(φ, θp, u

∗
2) = 0.

(24)

The manifold M(V max
e , V max

p , θp, φ) = 0 is thus crucial
for determining the behavior of the system, since it divides
the state space into two regions: one (M > 0) in which
the evader can break the constant distance to the pursuer,
and the other (M < 0) in which the pursuer can maintain
the constant distance to the evader and align its heading
with the evader’s location. Note that at the moment the
pursuer’s heading reaches parallelism with the rod (the
pursuer’s heading is pointing to the evader’s location):
it is possible for the pursuer to keep this parallelism by
applying u4 = θ̇p = φ̇.

4. Pursuit-evasion at a bounded variable
distance

In this section, we present the conditions and motion
strategies for both players that allow one to relax the
constant distance constraint as long as the configuration
of the system remains in the initial region.
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Fig. 3. Representation of M(L, δ) in the (L, δ) space.

For simplicity, instead of working with the variables
(V max

e , V max
p , L, θp, φ), we will use the space (L, δ) with

δ = θp − φ, (25)

where V max
e and V max

p are fixed. In this case,
M(V max

e , V max
p , L, θp, φ) = 0 may be written as

M(L, δ) = 0. We can rewrite Eqn. (24) as

M(V max
e , V max

p , L, θp, φ)

= |u∗1|g(φ, θp, u
∗
2) − V max

p (| cos(θp − φ)|) = 0.
(26)

Using some trigonometric identities, in the proof of
Lemma II in the work of Murrieta-Cid et al. (2011) it is
shown that, if δ ∈ [0, π] (including δ ∈ [0, π/2]) and for
u∗2 as defined by Eqn. (19), we have

g(φ, θp, u
∗
2) = g(φ, θp)

=

√

1 +
2b
L

sin(θp − φ) +
(
b

L

)2

. (27)

Substituting g(φ, θp) given by Eqn. (27), u∗1 = V max
e

and Eqn. (25) into Eqn. (26), and recalling that V max
e and

V max
p are fixed, we get

M(L, δ) = V max
e

√

1 +
2b
L

sin(δ) +
(
b

L

)2

− V max
p cos(δ) = 0.

(28)

Figure 3 shows the regions in the (L, δ) space where
M(L, δ) > 0 orM(L, δ) < 0, and the curves (thick lines)
where M(L, δ) = 0 for δ ∈ [−π, π].

In Fig. 3, we can observe that the value of M(L, δ)
has some symmetry properties as the value of δ varies in

[−π, π]. Using these properties, we have that the problem
can always be reduced to the interval [0, π/2], the other
quadrants being analogous.

Figure 4 shows the curve representing M(L, δ) = 0
in this interval. In the upper region of the figure are
those configurations (L, δ) where the OA avoids constant
distance tracking and M(L, δ) > 0. In the bottom
region are those where the DDR maintains tracking and
M(L, δ) < 0. The DDR “maintains tracking” in the
region M < 0, in the sense that, by applying the motion
strategy provided below, the DDR can either maintain a
constant distance to the evader or achieve any inter-agent
distance LG (plus/minus a small value ε), regardless of the
actions taken by the evader.

*

M > 0

M < 0

π/2

o

δ*

δ

LL

Fig. 4. Detail of Fig. 3, for δ ∈ [0, π/2].

As our analysis will be based on the two regions
composing the space (L, δ), it is important to prove some
useful properties of the curve separating those regions.

Lemma 1. Let δ∗(L) be the curve separating the regions
where M(L, δ) < 0 and M(L, δ) > 0.

1. There is a critical value L = L∗
o such that δ∗(Lo) =

0.

2. For L > L∗
o, δ∗(L) is a strictly increasing function.

3. If L→ ∞, then

δ∗(L) → cos−1

(
V max

e

V max
p

)
≤ π

2
.

4. For L <∞,

δ∗(L) < cos−1

(
V max

e

V max
p

)
≤ π

2
.

Proof. From Eqn. (28), and recalling that

M(L, δ∗(L)) = 0,

we have that

M(L, δ∗(L)) = V max
e

√

1 +
2b
L

sin(δ∗(L)) +
(
b

L

)2

− V max
p cos(δ∗(L)) = 0.

(29)
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If δ∗(L) = 0, then

M(L, 0) = V max
e

√

1 +
(
b

L

)2

− V max
p = 0. (30)

From the last expression, and by doing some algebra, we
obtain the value Lo such that δ∗(Lo) = 0:

L∗
o =

V max
e b

√
(V max

p − V max
e )(V max

p + V max
e )

, (31)

which may also be written as

L∗
o =

ρb
√

1 − ρ2
, (32)

where

ρ =
V max

e

V max
p

. (33)

This proves the first part of the lemma.
Note that as ρ → 1, L∗

o → ∞, which implies
that the OA evader can always break constant distance
surveillance, which further means, as shown below, that
the OA can always attain an arbitrary distance to the DDR
pursuer. On the other hand, for ρ ≈ 0, L∗

o → 0. In what
follows it will always be assumed that ρ < 1.

From Eqn. (28), we observe that in order to keep a
constant value of 0 forM(L, δ), if we increase the value of
L, then we have also to increase the value of δ. Therefore,
δ∗(L) is a strictly increasing function with respect to L >
L∗

o, which proves the second part of the lemma. As L →
∞, we have that Eqn. (29) takes the form

M(L, δ∗(L)) = V max
e − V max

p cos(δ∗∞) = 0. (34)

By a straightforward manipulation of Eqn. (34), we obtain

δ∗∞ = cos−1 (ρ) . (35)

Note that δ∗∞ < π/2, and for ρ ≈ 0, δ∗∞ → π/2. This
proves the last part of the lemma. �

This lemma implies that δ∗(L) is a bounded strictly
increasing function with respect to the inter-player
distanceL. These properties allow us to define the regions
in which each player controls the system. The DDR
controls the system in the region M < 0, in the sense
that it can achieve any inter-agent distance L ∈ [LG −
ε, LG + ε], regardless of the actions taken by the evader.
The OA controls the system in the region M > 0, in the
sense that it can break the constant distance between the
players, regardless of the actions taken by the pursuer.

Remark 1. From Lemma 1, we have that there is a
critical value L = L∗

o bounding δ∗(L) from the left. We
have that

L∗
o =

ρb
√

1 − ρ2
,

where

ρ =
V max

e

V max
p

.

In some cases L∗
o < b. The critical value corresponds to

an inter-player distance located inside the robot’s radius.
In those cases, we must assume that the curve δ∗(L) is
bounded by the critical value L∗

o = b, corresponding to
configurations where the robot is in collision with the OA
evader.

In what follows, we will show that from a given
initial configuration LI , δI , the DDR (depending on the
sign of M(LI , δI)) will be able to move in such a way
that any desired inter-player distance LG ± ε (with certain
restrictions) may be obtained in finite time.

4.1. DDR pursuer strategy. The following theorem
establishes a strategy with which the DDR can reach a
distance LC ∈ [LG − ε, LG + ε] (assuming LG − ε ≥ 0)
in finite time for any ε > 0, independently of the strategy
followed by the OA.

Theorem 1. Assume that for the initial configuration
M(LI , δI) < 0. Given ε > 0, define L∗

B = L∗
o + ε > 0.

Let (LI , LG, LC) > L∗
B + ε, be the initial, the goal and

the current distance between the DDR pursuer and the OA
evader, respectively. The DDR can reach a distance LC ∈
[LG − ε, LG + ε] in finite time, repeating the following
strategy:

1. If δ(LC) > 0, move at constant LC , changing the
DDR’s heading until it is parallel to the orientation
of the rod, i.e., make δ(LC) = 0.

2. If δ(LC) = 0, move during a time

T̂ = min(T ∗,
|LC − LG|

2V max
p

)

directly towards or away from the position of the OA
at time t, depending on the sign of LC − LG, with a
velocity V = sgn(LC − LG) · V max

p , where

T ∗ = min
(

ε

2V max
p

,
L∗

B sin(δ∗(L∗
B))

V max
e

)
. (36)

Proof. From the results of Murrieta-Cid et al. (2011) it
follows directly that if M(LC , δ) < 0, the DDR can yield
δ(LC) = 0 in finite time, using the controls u∗3, u∗4. For
the second part of the strategy, one has to show that, if the
DDR moves with a velocity V = sgn(LC − LG) · V max

p

during a time T̂ , |LC − LG| will decrease and the system
will remain in the region where M(LC , δ) < 0. To do
this, we consider the following two cases:
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Fig. 5. Auxiliary constructions for the case LG < LC (see the
text).

Case I: (LG < LC ). In this case, we show that in the
(L, δ) space, after an incremental motion of duration T̂ ,
the new system configuration (L′

C , δ
′) falls inside the

shaded rectangle of Fig. 5, with A = LC − (V max
p −

V max
e )T̂ , B = L∗

B + ε and C = δ∗(L∗
B), which means

thatLC is decreasing as a function of time, and the system
never leaves the region where M(L, δ) < 0.

Since the DDR wants to decrease the inter-player
distance, it moves toward the OA during a time T̂ . In
order to show that L′

C < LC , it is enough to consider the
worst case for the bound A, namely, when the OA moves
directly away from the DDR at maximum speed, in which
caseL′

C = A < LC . We use analogous reasoning in order
to prove the next cases.

To show that L′
C ≥ B, again one considers the worst

case for this bound, namely, when the OA moves directly
towards the DDR at maximum speed. In this case, from
the definitions of T̂ and T ∗, one has that

L′
C = LC − (V max

p + V max
e )T̂

> LC − 2V max
p T̂ > LC − ε > B.

(37)

Finally, for the bound C, the worst case is obtained when
the OA moves perpendicularly to the rod at maximum
speed (see Fig. 6). In this case, the final angle δ′ satisfies

sin(δ′) ≤ V max
e T ∗

L′
C

<
V max

e T ∗

L∗
B

≤ sin(δ∗(L∗
B)), (38)

where the last inequality follows from Eqn. (36). Since
the sin(·) function is increasing in the interval [0, π/2],
from Lemma 1 one gets that δ′ < δ∗(L∗

B) < δ∗(L′
C).

Case II: (LG > LC ). In this case there are only two
bounds to consider for the new configuration (L′

C , δ
′) (see

Fig. 7): D = LC + (V max
p − V max

e )T̂ and C = δ∗(L∗
B).

The first one is obtained when the OA evader moves
directly towards the DDR pursuer at maximum speed, in
which case L′

C = D > LC , and the other when the DDR
moves perpendicularly to the rod at time t, as in Case I, in

’
p ’

Vp
max

T̂

p

Ve
^

x

maxT

y

δ

Fig. 6. DDR moves toward the OA, and the OA moves perpen-
dicularly to the rod at maximum speed.

which

sin(δ′) ≤ V max
e T ∗

L′
C

< sin(δ∗(L∗
B)) < sin(δ∗(L′

C)),
(39)

and therefore δ′ < δ∗(L′
C) as above. This completes the

proof. �

C LLo
* L*

δ (L)
*

δ ε

B
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L D LG

Fig. 7. Auxiliary constructions for the case LG > LC (see the
text).

Note that in both cases, since

T̂ ≤ ε

2V max
p

<
ε

2V max
e

, (40)

the bound on the magnitude of the maximum overshoot
(or undershoot) from the target distance is

(V max
p + V max

e )T̂ < 2V max
p T̂ ≤ ε. (41)

Note also that this overshoot or undershoot is due to the
assumption that while the pursuer changes the inter-player
distance, the motion direction of the evader is unknown.
In the worst case, the evader moves in the opposite
direction to the one assumed to establish the bounds.

The theorem gives a constructive analysis which
yields feasible motions for the DDR pursuer to
accomplish its goals. Namely, to go from LI to LG, the
pursuer strategy is to alternate between two sub-strategies:
(i) move at constant L to make δ = 0 (which takes a finite
amount of time), and (ii) move directly towards (or, away
from) the evader for a finite time interval T̂ .
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In Theorem 1 it is established that each time steps
(i) and (ii) are applied, |LI − LG| will decrease (or resp.
increase) by a finite amount. This implies that the goal
|LI − LG| ≤ ε will be attained after a finite number of
steps consisting in sub-steps (i) and (ii).

In the second part of the pursuer motion strategy, it
moves a discrete time T̂ . Thus, the number of sub-motions
means the number of times the pursuer moves a finite time
T̂ to achieve the desired inter-player distance.

Remark 2. In step (ii) of the proposed strategy, LC

represents the inter-player distance at the instant where
T̂ is computed. The strategy then dictates that the DDR
moves during time T̂ at maximum speed in a direction
that depends on the sign of LC − LG. During this time
interval the instantaneous value of LC − LG may change
sign, but according to the proposed strategy this will not
affect the DDR motion until T̂ is re-computed, which will
not happen until the current incremental motion of step
(ii) is completed, and if needed, δ(LC) is made equal to
zero using step (i). Once LC is inside the interval LG ± ε,
i.e., once the control goal has been achieved, depending
on the application, it may be more convenient to change
the strategy and apply only step (i) to maintain a constant
inter-player distance L′

G ∈ [LG − ε, LG + ε].
In the theorem, ε is a parameter which represents the

tolerance of reaching the desired inter-player distance. It
allows one to determine a safety margin for not crossing
the manifold defining the space partition (recall that the
regions of the partition define the winner of the game).

Remark 3. On the one hand, a small ε allows
reaching a distance that is closer to the desired inter-player
distance LG between the players. But on the other hand,
as ε decreases, the number of sub-motions necessary
to reach a given configuration increases. Here ε may
be set according to the user requirements, that is, the
precision of the desired inter-player distance between the
players versus the number of sub-motion (equivalent to
the number of pursuer controls’ switches) to reach a
desired inter-player distance.

4.2. Combining continuous and discrete modeling
for reaching LC ∈ [LG − ε, LG + ε]. As mentioned
above, we model the pursuer-evader system as a hybrid
one combining continuous and discrete motion strategies.

The first part (continuous) of the pursuer’s strategy is
used to maintain a constant distance between the players
and to align the pursuer’s heading with the evader’s
location. Murrieta-Cid et al. (2011) proved that if M < 0
then

|φ̇(t, u∗1, u
∗
2)| < max |θ̇p(t, u∗∗3 )|, ∀t.

Therefore, the pursuer aligns its heading with the evader’s
location in finite time. Recall that φ̇ represents the

rate of change of φ, the direction between the pursuer
and evader locations, u∗1 and u∗2 denote respectively the
evader’s speed and the evader’s motion direction that
maximizes the difference |φ̇| −max |θ̇p|, and u∗∗3 denotes
the pursuer’s linear velocity that maintains a constant
inter-player distance between the players whenever the
evader applies controls u∗1 and u∗2.

Regarding the stability for the second (discrete)
part of the pursuer’s strategy, in which the pursuer
increases or decreases the inter-player distance, consider
the following.

An equilibrium point xG ∈ X is called Lyapunov
stable if for any open neighborhood O1 there exists
another open neighborhood O2 of xG such that xI ∈ O2

implies that x(t) ∈ O1 for all t > 0. If X = R
n,

an equivalent definition that is expressed in terms of the
Euclidean metric is as follows: An equilibrium point
xG ∈ R

n is called Lyapunov stable if, for any t > 0, there
exists some λ1 > 0 such that ||xI −xg|| < λ1 implies that
||x(t) − xG|| < λ2 (see LaValle, 2006).

In the second part of the pursuer’s strategy, the
motions are executed in discrete time T̂ . In Theorem
1, we prove that |LC − LG| decreases and the system
remains in the region M(L, δ) < 0. Hence, LG ± ε
is reached in a finite number of sub-motions. There are
direct equivalences between λ1 and the region delimited
by M < 0, and also between λ2 and ε. Therefore, the
system is stable.

5. Simulations

In this section, we present some simulations showing the
players’ strategies described before. The first simulation
corresponds to the case when the DDR pursuer wants to
reduce the inter-player distance. The initial parameters of
the system are V max

p = 1 m/s, V max
e = 0.5 m/s, b = 1

m, xe = 1 m, ye = 0 m, L = 2 m, θp = 40◦, φ = 0◦,
ε = 0.20, Lo = 1 m, and LG = 1.25 m.

Figure 8 shows the system trajectory in the space
(L, δ). The trajectories followed by the players in the
Euclidean plane are shown in Fig. 9. In this case, the DDR
pursuer first aligns its heading with the rod’s orientation,
and then it moves directly towards the OA evader. The
OA tries to move directly away from the DDR. We must
point out the fact that in this example the DDR moves
backwards, and the value of u3 is negative.

In Fig. 10, we can observe the variation of the
inter-player distance L with respect to time, when the
DDR wants to get closer to the OA. Initially, the DDR is
aligning its heading with the rod orientation. During this
time interval, the distance between both players remains
constant. Once the DDR has aligned its heading, it starts
moving toward the OA, while this player moves away
from the DDR. Both players move in the same direction,
but as the DDR is faster than the OA, the inter-player
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Fig. 8. Representation in (L, δ) of the case when the DDR de-
creases the inter-player distance. The thick curve corre-
sponds to M(L, δ) = 0, and the thick dashed line to the
value of LB . The system is initially at the point (2, 40◦).
The thin lines show the trajectory followed by the sys-
tem. At the end, the system is at the point (1.25, 0◦).

distance decreases.

Figures 11 and 12 show the values of the evader’s
controls u1 and u2 during the game. From Fig. 11, we
have that the evader moves always at maximum speed.
In Fig. 12, and also in the trajectory in Fig. 9, we can
note that, as part of the evader’s strategy to escape from
tracking at a constant distance, the evader is reducing the
angle of its motion direction. From this simulation u2

approaches a value close to π/2. When the DDR aligns
its heading with the evader’s position and starts to move
towards the evader, the evader also starts to move with
u2 = φ+ π, trying to increase its distance to the DDR.

In Figs. 13 and 14, we show the pursuer’s inputs u3

and u4. In Fig. 13, we can note how the value of u3

necessary to maintain tracking at a constant distance is
decreasing as the DDR aligns its heading with the evader’s
position. Once the DDR’s heading is aligned, it moves at
u3 = V max

p . Note that, as the heading is pointing in the
opposite direction of the evader’s position (see Fig. 9), the
DDR moves backward to reduce the distance. In Fig. 14,
the value of u4 increases as the DDR aligns its heading
with the evader’s position. This behavior is explained
by the fact that, as the value of u3 is decreasing, the
maximum feasible value of u4 is increasing, and therefore
the DDR is able to use a large value of u4 as time elapses.
Note that once the DDR’s heading is parallel to the rod,
the DDR stops its rotation and u4 = 0.

In Fig. 15, we can observe how the required value
of φ̇ is decreasing until the players switch to that part
strategy. Note that for the second part of the strategy, in
this simulation the players move following straight lines,
and therefore φ̇ = 0. Figure 16 shows the variation of δ
during the game.
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Fig. 9. Representation of the trajectories of the players corre-
sponding to the system in Fig. 8. The DDR pursuer de-
creases the inter-player distance. The trajectories of the
players were sub-sampled to show the motion direction
of the players.

The second simulation corresponds to the case when
the DDR pursuer increases the inter-player distance. The
parameters are the same that in the first simulation, but
with the goal distance LG = 3.0 m.

Figure 17 shows the system trajectory in the space
(L, δ). The trajectories followed by the players in the
Euclidean plane are shown in Fig. 18. The DDR pursuer
first aligns its wheels with the rod’s orientation, then it
moves away from the evader, and the OA evader tries to
get closer to the DDR.

In Fig. 19, we can observe the variation of the
inter-player distance L with respect to time, when the
DDR gets farther to the OA.

0 1 2 3 4 5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t(s)

L
(m

)

Fig. 10. Variation of L as time elapses, corresponding to the
system trajectory in Fig. 8. DDR decreases the inter-
player distance.
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Fig. 11. Variation of the control input u1, corresponding to the
system trajectory of Fig. 9.

0 1 2 3 4 5
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

t(s)

u
2
(r
a
d
)

Fig. 12. Variation of the control input u2, corresponding to the
system trajectory of Fig. 9.

Figures 20 and 21 show the values of the evader’s
controls u1 and u2 during the game. We can observe that,
as in the previous simulation, the evader moves always
at full speed. When the DDR aligns its heading with the
evader’s position and starts to move away the evader, the
evader also starts to move with u2 = φ, trying to decrease
its distance to the DDR.

In Figs. 22 and 23, we show the pursuer’s inputs
u3 and u4. Also, as in the previous simulation, in both
figures we can note that during the first part of the game
the pursuer is changing the values of both inputs to align
its heading with the position of the evader. Once the
pursuer’s heading is parallel to the evader’s position, the
pursuer moves at full linear speed u3 towards the evader.

Figures 24 and 25 show the variation in φ̇ and δ,
respectively, during the game.

6. Discussion and conclusions

This work proposes an extension of the research presented
by Murrieta-Cid et al. (2011). The motion strategies
presented in this paper are applicable to several problems
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Fig. 13. Variation of the control input u3, corresponding to the
system trajectory of Fig. 9.
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Fig. 14. Variation of the control input u4, corresponding to the
system trajectory of Fig. 9.

related to surveillance or capture.

1. They allow a DDR pursuer to maintain an
omnidirectional evader within a limited sensing
range defined by a maximal Lmax and a minimal
Lmin sensing distances, provided that the limited
sensing range satisfies the restriction imposed by
Lmin > L∗

o + 2ε.

2. They allow a DDR pursuer to reduce the distance to
the omnidirectional evader, again provided that the
desired inter-player distance satisfies the restriction
LG > L∗

o + 2ε. Indeed, the problem of capturing an
evader can be established in terms of this inter-player
distance. That is, the capture condition is defined as
moving the DDR closer than a given distance to the
omnidirectional evader.

To our knowledge, this is the first time that a solution is
proposed for both problems: tracking and capturing an
omnidirectional evader with a differential drive robot.



382 U. Ruiz et al.

0 1 2 3 4 5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

t(s)

φ̇
(r
a
d
/
s
)

Fig. 15. Variation of φ̇, corresponding to the system trajectory
of Fig. 9.
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Fig. 16. Variation of the control input δ, corresponding to the
system trajectory of Fig. 9.

It is important to stress that, if M(L, δ) < 0, then
the DDR can obtain in finite time an inter-player distance
L ∈ [LG − ε, LG + ε], which satisfies M(L, δ) < 0, and
such that LG > L∗

o + 2ε. In order to obtain the desired
inter-player distance LG (within a tolerance ε), the DDR
performs the motion strategy described in Theorem 1.

The main drawback of the motion strategies
presented in this paper is that they are not necessarily
optimal in time. However, note that the presented analysis
gives constructive proofs which yield feasible motions for
the players to obtain their goals in finite time.

In future work, we will consider acceleration bounds
on the pursuer and the evader.
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