
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 3, 453–470
DOI: 10.2478/amcs-2014-0034

FITTING TRAFFIC TRACES WITH DISCRETE CANONICAL PHASE TYPE
DISTRIBUTIONS AND MARKOV ARRIVAL PROCESSES
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Kassai út 26, 4028 Debrecen, Hungary

Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov Arrival Processes
(MAPs) promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing
analysis. After introducing basics of these sets of stochastic models, the paper discusses the following subjects in detail:
(i) PHs and MAPs have different representations. For efficient use of these models, sparse (defined by a minimal number
of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to
as canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs.
(ii) The canonical representation allows a direct mapping between experimental moments and the stochastic models, re-
ferred to as moment matching. Explicit procedures are provided for this mapping. (iii) Moment matching is not always the
best way to model the behavior of traffic traces. Model fitting based on appropriately chosen distance measures might result
in better performing stochastic models. We also demonstrate the efficiency of fitting procedures with experimental results.
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1. Introduction

Stochastic models with underlying Markov chains
are known for being flexible in modelling general
stochastic behaviour and for allowing efficient numerical
analysis through matrix analytic methods (Neuts, 1981).
These nice properties make phase type distributions
(PHs) and Markov Arrival Processes (MAPs) promising
candidates for modelling the traffic load of computer and
communication systems.

For a period of time, continuous time stochastic
models were more often applied in performance
modelling of computer and communication systems.
Later on, with the rise of slotted time telecommunication
protocols (e.g., ATM), discrete time models became
primary modelling tools (for recent surveys, see Alfa,
2002; Lakatos et al., 2013). In this paper we focus
on discrete time models and present some results whose
continuous time counterparts are already available. It

turns out that discrete time models with strictly positive
eigenvalues are practically identical with their continuous
time counterparts, but discrete time models containing
also negative eigenvalues pose new problems.

One main problem of PHs and MAPs is the
non-uniqueness and over-parametrization of their general
matrix form (see, e.g., the work of Telek and Horváth
(2007) for more details). Specifically, there are
descriptions with a minimal number of parameters for
describing these processes, but those descriptions are
hard to use in practice because they do not indicate
the feasibility of the associated stochastic model (for
example, the moments of a random variable of a given
class might define the random variable fully, but it is not
easy to check if a set of moments is feasible, i.e., if there
exists a random variable in the given class with those
moments). On the other hand, over-parametrised matrix
descriptions give a direct mapping to Markov chains,
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which ensures the feasibility of the model. However,
the over-parametrization causes significant problems in
fitting methods. The above obstacle can be eliminated
by finding unique matrix representations with a minimal
number of parameters. These representations are referred
to as canonical representations. Apart from the benefits
in fitting methods, canonical representations also enable
parameter matching, i.e., a direct mapping of important
traffic parameters (moments, autocorrelation) to these
models.

In this paper we present new results on the canonical
representation of second- and third-order discrete PHs
(DPH(2) and DPH(3), respectively) as well as on
second-order discrete MAPs (DMAP(2)). We provide
explicit formulae for parameter matching using these
canonical forms, give moments and correlation bounds for
these models, and show their efficiency in fitting through
numerical examples.

The rest of the paper is organized as follows. In
Section 2 we survey the necessary definitions and essential
properties of existing Markov chain driven stochastic
processes and their non-Markovian generalizations. The
discussion of canonical forms for DPH(2), DPH(3)
and DMAP(2) can be found in Sections 3, 4, and 5,
respectively. Section 2 gives formulae for parameter
matching. Section 6 presents moments based matching
methods for approximating discrete PHs and MAPs. The
numerical examples for trace fitting are presented in
Section 7. Section 8 concludes the paper.

2. Markov chain driven point processes and
their non-Markovian generalizations

The following subsections summarize the main properties
of simple stochastic models with a background
discrete state Markov chain and their non-Markovian
generalizations. If the background chain is a discrete
time Markov chain, we obtain discrete (time) stochastic
models, and if it is a continuous time Markov chain, we
obtain continuous (time) stochastic models. The main
focus of the paper is on discrete models, but some results
are related to their continuous counterparts. Accordingly,
we introduce both of them.

2.1. Discrete phase type and matrix geometric
distributions. The following stochastic models define
discrete distributions on the positive integers.

Definition 1. Let X be a discrete random variable on N
+

with probability mass function (pmf)

PX (i) = Pr(X = i)

= αAi−1(�− A�), ∀i ∈ N
+,

(1)

where α is a row vector of size n, A is a square matrix
of size n × n, and � is the column vector of ones of

size n. If the pmf has this matrix geometric form, then
we say that X is a matrix geometrically distributed with
representation (α,A) or, briefly, MG(α,A) distributed.

The size of A is also referred to as the order of the
associated distribution. In this and the subsequent models,
scalar quantities are obtained as a product of a row vector,
a given number of square matrices and a column vector. In
the sequel, we refer to the row vector as an initial vector
and to the column vector as a closing vector. It is an
important consequence of Definition 1 that α and A have
to be such that (1) is non-negative.

Definition 2. If X is an MG(α,A) distributed random
variable, where α and A have the following properties:

• αi ≥ 0,

• Aij ≥ 0, A� ≤ �,

then we say that X is discrete phase type distributed with
representation (α,A) or, shortly, DPH(α,A) distributed.

The vector-matrix representations satisfying the
conditions of Definition 2 are called Markovian.

In this paper we focus on distributions on the positive
integers. Consequently, α� = 1. The cumulative density
function (cdf), the moment generating function, and the
factorial moments of X are

FX (i) = Pr(X ≤ i) = 1 − αAi
�, (2)

fn = E(X (X − 1) . . . (X − n+ 1))

= n!α(I − A)−nAn−1
�. (3)

A DPH has infinitely many different Markovian
and non-Markovian representations (matrix–vector pairs,
which fulfill (1)). One way to get a different
representation of a DPH(α,A) with the same size is the
application of the similarity transformation

B = T−1AT , β = αT , (4)

where T is an arbitrary non-singular matrix for which
T� = �. If a DPH has an (α,A) Markovian
representation, for which A is upper triangular, we call
the distribution acyclic DPH (shortly ADPH) distribution,
and the specific representation an ADPH representation.

2.2. Discrete Markov arrival processes and dis-
crete rational arrival processes. Let X (t) be a point
process on N

+ with a joint probability mass function of
inter-event times PX (t)(x0, x1, . . . , xk) for k = 1, 2, . . .
and x0, . . . , xk ∈ N

+.

Definition 3. X (t) is called a rational arrival process if
there exists a finite (H0,H1) square matrix pair such that
(H0 + H1)� = �,

π(I − H0)−1H1 = π, π� = 1 (5)



Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes 455

has a unique solution, and

PX (t)(x0, x1, . . . , xk)

= πH0
x0−1H1H0

x1−1H1 . . .H0
xk−1H1�. (6)

In this case we say that X (t) is a discrete rational
arrival process with representation (H0,H1) or, shortly,
DRAP(H0,H1).

The size of the H0 and H1 matrices is also referred
to as the order of the associated process. For brevity
we will denote n-th order MGs, DPHs, DRAPs, etc. by
MG(n), DPH(n), DRAP(n) etc., respectively.

An important consequence of Definition 3 is that H0

and H1 have to be such that (6) is always non-negative.

Definition 4. If X (t) is a DRAP(H0,H1), where H0

and H1 are non-negative, we say that X (t) is a discrete
Markov arrival process with representation (H0,H1) or,
shortly, DMAP(H0,H1).

The matrix pairs satisfying the conditions of
Definition 4 are called Markovian and the matrix pairs
violating Definition 4 are called non-Markovian.

Definition 5. The correlation parameter γ of a
DRAP(H0,H1) is the eigenvalue of (I−H0)−1H1 with
the second largest absolute value.

One of the eigenvalues of (I − H0)−1H1 is 1,
because (H0 + H1)� = �, and the other eigenvalues
are on the unit disk. If γ is real, it is between −1 and
1. This parameter is especially important in the case of
second-order DRAPs, as their ρk lag-k autocorrelation
coefficient can be given as ρk = γkc0, where c0 depends
only on the stationary inter-arrival time distribution of the
process.

Similarly to DPHs, a DMAP has infinitely many
different Markovian and non-Markovian representations
(matrix pairs that satisfy (6)). One way to get a different
representation of a DMAP(D0,D1) with the same size is
the application of the similarity transformation

H0 = T−1D0T , H1 = T−1D1T , (7)

where T is an arbitrary non-singular matrix for which
T� = �.

The (stationary) marginal distribution of the
inter-event time of DRAP(H0,H1) is MG(π,H0),
where π is the unique solution of (5). Similarly, the
(stationary) marginal distribution of the inter-event time
of DMAP(H0,H1) is DPH(π,H0), where π is the
unique solution of (5).

2.3. Continuous phase type and matrix exponential
distributions. The continuous counterparts of the above
introduced models are defined as follows.

Definition 6. Let X be a continuous random variable
with support on R

+ and cumulative distribution function
(cdf)

FX(x) = Pr(X < x) = 1 − αeAx
�, (8)

where α is a row vector of size n, A is a square matrix
of size n × n, and � is the column vector of ones
of size n. In this case, we say that X is a matrix
exponentially distributed with representation (α,A) or,
shortly, ME(α,A) distributed.

Definition 7. If X is an ME(α,A) distributed random
variable, where α and A have the following properties:

• αi ≥ 0, α� = 1 (there is no probability mass at
x = 0),

• Aii < 0, Aij ≥ 0 for i �= j, A� ≤ 0,

we say that X is phase type distributed with representation
(α,A) or, shortly, CPH(α,A) distributed.

The vector-matrix representations satisfying the
conditions of Definition 7 are called Markovian.

The probability density function (pdf), the Laplace
transform, and the moments of X are

fX (x) = −αeAxA�, (9)

μn = E(Xn) = n!α(−A)−n
�. (10)

2.4. Continuous Markov arrival process and a con-
tinuous rational arrival process. Let X (t) be a point
process on R

+ with a joint probability density function of
inter-event times f(x0, x1, . . . , xk) for k = 1, 2, . . ..

Definition 8. X (t) is called a rational arrival process if
there exists a finite (H0,H1) square matrix pair such that
(H0 + H1)� = 0,

π(−H0)−1H1 = π, π� = 1 (11)

has a unique solution, and

f(x0, x1, . . . , xk)

= πeH0x0H1e
H0x1H1 . . . e

H0xkH1�. (12)

In this case we say that X (t) is a rational arrival process
with representation (H0,H1) or, shortly, RAP(H0,H1).

Definition 9. If X (t) is a RAP(H0,H1), where H0 and
H1 have the following properties:

• H1ij ≥ 0,

• H0ii < 0, H0ij ≥ 0 for i �= j, H0� ≤ 0,

we say that X (t) is a Markov arrival process with
representation (H0,H1) or, shortly, MAP(H0,H1).

Similarly to the discrete case, the representations
satisfying the conditions of Definition 9 are called
Markovian, and similarity transformations generate
different representations of the same process.
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3. Canonical form of second-order DPH
distributions

In this section we provide a canonical form for
DPH(2) distributions. We start with characterizing
the properties of all possible MG(2) distributions, i.e.,
distributions of the form (1), where A is a 2×2 matrix.
Using this characterization we prove that all MG(2)
distributions (thus all second-order DPH distributions)
have a Markovian canonical form. After that we present
the exact transformation method.

3.1. Canonical form of DPH(2).

Theorem 1. An MG(2) distribution has one of the fol-
lowing two forms:

• different eigenvalues:

pi = Pr(X = i) = a1s
i−1
1 + a2s

i−1
2 , (13)

where s1, s2 are the eigenvalues of A. These eigen-
values are real with 0 < s1 < 1, s1 > |s2|. More-
over, a1, a2 are such that

a1 ≤ (1 − s1)(1 − s2)
s1 − s2

,

a2 = (1 − s2)
(

1 − a1

1 − s1

)
.

Furthermore, a1 > 0 if s2 ≥ 0 and

a1 ≥ s2(1 − s1)(1 − s2)
s2(1 − s2) − s1(1 − s1)

if s2 < 0;

• identical eigenvalues:

pi = Pr(X = i) = (a1(i− 1) + a2)si−1, (14)

where s is the double eigenvalue of A. This eigen-
value is real with 0 < s < 1. Furthermore, a1, a2

are such that

0 < a1 ≤ (1 − s)2

s
, a2 =

(1 − s)2 − a1s

1 − s
.

A vector matrix representation of the first form is

α =
[

a1

1−s1 ,
a2

1−s2

]
,

A =

⎡
⎣ s1 0

0 s2

⎤
⎦,

(15)

and of the second form is

α =
[
a1

1−s,
a2(1−s)− a1(1−2s)

(1−s)2
]
,

A =

⎡
⎣ s s

0 s

⎤
⎦.

(16)

Proof. The first form covers the cases when the
eigenvalues s1 and s2 of A are different and the second
one when the eigenvalues are identical (s1 = s2 = s). We
discuss these cases separately.

Case 1: Different eigenvalues. First we show that the
eigenvalues are real. Assume that A has a complex
eigenvalue. In this case the other eigenvalue has to be
its complex conjugate and a1 and a2 must be conjugates,
too, to obtain real pi = a1s

i−1
1 + a2s

i−1
2 values. Let ϕ

be the argument of a1 (a1 = |a1|eiϕ), and ψ the argument
of s1. Moreover, assume that ψ ∈ (0, π). From i = 1
we get that ϕ ∈ [−π/2, π/2]. Now consider the case
i = �π/ψ�+ 1. The argument of a1s

i−1
1 is ϕ+ (i− 1)ψ,

and it is in [π/2, 3π/2]. This means that pi is negative
since a1s

i−1
1 and a2s

i−1
2 are conjugates. Thus we get that

the eigenvalues are real.
The two real eigenvalues have to be such that the one

with the larger absolute value (s1) is positive, because
it becomes dominant for large i and pi would become
negative for large i with a negative dominant eigenvalue.
Additionally, the dominant eigenvalue has to be less than
one to ensure that the pi series has finite sum.

The relation of the a1, a2 coefficients is obtained
from

∑
i pi = 1. The bound a1 > 0 for the case s2 ≥ 0

comes from the fact that pi ∼ a1s
i−1
1 for large i, where

s1 is positive. A negative a1 would result in negative pi

for large i. If s2 < 0, this is not enough, since pi can still
be negative for smaller i if a2 is sufficiently large. In this
case the lower bound for a1 comes from p2 ≥ 0, as

0 ≤ p2 = a1s1 + a2s2,

0 ≤ a1s1 + (1 − s2)
(

1 − a1

1 − s1

)
s2,

0 ≤ a1
s2(1 − s2) − s1(1 − s1)

1 − s1
+ s2(1 − s2),

a1 ≥ s2(1 − s1)(1 − s2)
s1(1 − s1) − s2(1 − s2)

. (17)

The upper bound of a1 can be derived from p1 ≥ 0,
since

0 ≤ p1 = a1 + a2,

0 ≤ a1 + (1 − s2)
(

1 − a1

1 − s1

)
,

0 ≤ a1
s2 − s1
1 − s1

+ (1 − s2),

a1 ≤ (1 − s1)(1 − s2)
s1 − s2

. (18)

Case 2: Identical eigenvalues. First we show that the
eigenvalue is real and non-negative. If s is complex or
negative in (14), then pi ∼ a1(i−1)si−1 for large i, which
becomes complex or negative, respectively, for any a1 in
the case of two consecutive large values of i.
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The inequality s < 1 comes from the fact that the
series pi has a finite sum.

Similarly to the previous case, the relation of the a1,
a2 coefficients is obtained from

∑
i pi = 1 and the bound

a1 > 0 comes from the fact that pi ∼ a1(i − 1)si−1 for
large i, where s is positive. A negative a1 would result in
negative pi for large i. The upper bound of a1 comes from
p1 ≥ 0, since

0 ≤ p1 = a2, (19)

0 ≤ (1 − s)2 − a1s

1 − s
, (20)

a1 ≤ (1 − s)2

s
. (21)

�

Theorem 2. If X is MG(2) distributed with two distinct
positive eigenvalues (0 < s2 < s1 < 1), then it can be
represented as ADPH(α,A), where

α =
[

a1(s1−s2)
(1−s1)(1−s2) ,

a1 + a2

1−s2

]
,

A =

⎡
⎣ s1 1 − s1

0 s2

⎤
⎦ .

Proof. The (α,A) vector–matrix pair is such that pi =
αAi−1(�−A�) = a1s

i−1
1 +a2s

i−1
2 . Matrix A obviously

satisfies the conditions of Definition 2 when 0 < s2 <
s1 < 1. It remains to show that α is non-negative when
0 < s2 < s1 < 1, 0 < a1, and p1 ≥ 0. In the first element
of α we have a1 > 0, s1−s2 > 0, s1−1 < 0, s2−1 < 0,
from which it is positive. In the second element we have
a1 + a2 = p1 ≥ 0 and 1 − s2 > 0. Note that α� = 1
when

a2 = (1 − s2)
(

1 − a1

1 − s1

)
.

�

Theorem 3. If X is MG(2) distributed with a dominant
positive and a negative eigenvalue (s2 < 0 < s1 < 1 and
s1 + s2 > 0), then it can be represented as DPH(α,A),
where

α =
[

a1s1 + a2s2
(1 − s1)(1 − s2)

,
(a1 + a2)(1 − s1 − s2)

(1 − s1)(1 − s2)

]
,

A =

⎡
⎣ 1 − β1 β1

β2 0

⎤
⎦ ,

β1 = 1 − s1 − s2, β2 =
s1s2

s1 + s2 − 1
.

Proof. The eigenvalues of A are s1, s2 and the (α,A) pair
is such that pi = αAi−1(�− A�) = a1s

i−1
1 + a2s

i−1
2 .

Parameters β1 and β2 are positive and less than
1 from which matrix A satisfies the conditions of
Definition 2.

It remains to show that α is non-negative when s2 <
0 < s1 < 1, 1 > s1 > s1 + s2 > 0 and p1, p2 ≥ 0. For
the first element of α, we have a1s1 + a2s2 = p2 ≥ 0,
s1 − 1 < 0, s2 − 1 < 0, from which it is positive, and for
the numerator of the second element we have a1 + a2 =
p1 ≥ 0 and 1 − s1 − s2 > 0. The denominator of the
second element is the same as that of the first one. Thus
the second element of α is also non-negative. �

Theorem 4. If X is MG(2) distributed with two identical
eigenvalues (0 < s = s2 = s1 < 1), then it can be
represented as ADPH(α,A), where

α =
[

a1s

(1 − s)2
,

a2

1 − s

]
, A =

⎡
⎣ s 1 − s

0 s

⎤
⎦ .

Proof. The (α,A) vector–matrix pair is such that pi =
αAi−1(� − A�) = (a1(i − 1) + a2)si−1, and matrix A
satisfies the conditions of Definition 2 when 0 < s < 1.

It remains to show that α is non-negative when 0 <
s < 1, 0 < a1 and p1 ≥ 0. All terms of the elements of α
are non-negative since a2 = p1 ≥ 0. �

Theorems 2–4 have the following consequences.

Corollary 1. The vector-matrix representations in The-
orems 2–4 can be used as canonical representations of
DPH(2) and MG(2) distributions.

Corollary 2. We have

second-order DPH ≡ second-order MG.

Moreover,

second-order ADPH ≡ second-order MG

with positive eigenvalues.

Corollary 3. If the eigenvalues of second-order
MG(γ,G) are positive and its canonical representation
is ADPH(α,A), then ME(γ,G−I) is a matrix exponen-
tial distribution whose canonical ACPH representation
(Cumani’s canonical form) is ACPH(α,A − I).

Proof. The matrix of the canonical representation
ADPH(α,A) has the form⎡

⎣s1 1 − s1

0 s2

⎤
⎦ ,

where 1 > s1 ≥ s2 > 0. Consequently, A− I is a matrix
of an ACPH distribution in Cumani’s canonical form with
eigenvalues 0 > s1 − 1 ≥ s2 − 1 > −1.

Furthermore, since ME(γ,G−I) and ACPH(α,A−
I) represent the same distribution, ME(γ,G−I) is a valid
ME distribution. �
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3.2. Transformation of DPH(2) to the canonical
form. The introduced canonical representations can be
obtained from a general vector-matrix representation with
the following similarity transformation.

Corollary 4. If the eigenvalues of a second-order
MG(γ,G) are 0 < s2 < s1 < 1, then its canonical rep-
resentation is ADPH(α = γB,A = B−1GB), where
matrix B is composed of column vectors

b1 = �− b2

and

b2 =
1

1 − s2
(�− G�).

Proof. Matrix B is obtained as the solution of B� =
b1 + b2 = � and

GB = B

⎡
⎣ s1 1 − s1

0 s2

⎤
⎦ ,

whose column vector form is Gb1 = s1b1 and Gb2 =
(1 − s1)b1 + s2b2. Consequently,

A =

⎡
⎣ s1 1 − s1

0 s2

⎤
⎦ .

�

The proofs for the subsequent corollaries in this
section follow the same pattern and are omitted.

Corollary 5. If the eigenvalues of a second-order
MG(γ,G) are s2 < 0 < s1 < 1, then its canonical rep-
resentation is ADPH

(γB,

⎡
⎣ s1 + s2 1−s1−s2

s1s2
s1+s2−1 0

⎤
⎦),

where matrix B is composed of column vectors

b1 = �− b2

and

b2 =
1 − s1 − s2

(1 − s1)(1 − s2)
(�− G�).

Corollary 6. If the eigenvalues of a second-order
MG(γ,G) are s = s1 = s2 < 1, then its canonical rep-
resentation is

ADPH(γB,

⎡
⎣ s 1−s

0 s

⎤
⎦),

where matrix B is composed of column vectors b1 = �−
b2 and b2 = 1

1−s (�− G�).

The presented similarity transformations can
be used as transformation methods to compute the
canonical representation from a general (Markovian or
non-Markovian) vector matrix representation. As an
example, a simple implementation of Corollary 4 is
presented as Algorithm 1.

Algorithm 1. Canonical second-order DPH
representation based on Corollary 4.

1: [s1, s2] = eig(G);
2: e = [1, 1];
3: b2 = 1

1−s2
∗ (e− G ∗ e);

4: b1 = e− b2;

5: return (γ ∗ [b1, b2],

⎡
⎣ s1 1 − s1

0 s2

⎤
⎦)

4. Canonical form of third-order DPH
distributions

In the previous section we proved that the whole MG(2)
class can be represented with Markovian vector–matrix
pairs. That is why we started with the characterization of
the second-order MG class. For third-order distributions
the same does not hold, that is, DPH(3) �≡ MG(3). Due
to this difference we follow a different approach here and
show only that a transformation with a given similarity
matrix results in a Markovian canonical form for all
DPH(3)s.

Similarly to the second-order case, the canonical
representations of DPH(3) distributions are classified
according to the eigenvalue structure of the distribution.
We encode the eigenvalues in decreasing absolute values
and denote by N the ones with negative real parts and
by P the ones with non-negative real parts. For example
PNP, means that 1 ≥ |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥
Re(s3) ≥ 0 > Re(s2), where si, i = 1, 2, 3 denote the
eigenvalues. Since the eigenvalue with the largest absolute
value (dominant eigenvalue) has to be real and positive
(to ensure positive probabilities in (1) for large i), we
have the following cases: PPP, PPN, PNP, PNN. Complex
(conjugate) eigenvalues can occur only in the case of PPP
and PNN.

4.1. Case PPP. Following the pattern of Corollary 3,
we define the canonical form in the PPP case based on the
canonical representation of CPH(3) distributions.

Theorem 5. If the eigenvalues of a third-order
DPH(γ,G) are all non-negative, we define the canonical
form as follows. The vector–matrix pair (γ,G−I) defines
a CPH(3). Let (α,A) be the canonical representation of
CPH(γ,G − I) as defined by Horváth and Telek (2009).
The canonical representation of DPH(γ,G) is (α,A+I).
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Proof. The complete proof of the theorem requires
the introduction of the procedure defined by Horváth and
Telek (2009). Here we only demonstrate the result for the
case when the canonical representation of CPH(γ,G−I)
is acyclic. When the eigenvalues of G are 1 > s1 ≥ s2 ≥
s3 > 0, the eigenvalues of G − I are 0 > s1 − 1 ≥
s2 − 1 ≥ s3 − 1 > −1. In this case the matrix of the
acyclic canonical form of CPH(γ,G − I) is

A =

⎡
⎢⎢⎢⎣
s3 − 1 0 s∗ = 0

1 − s2 s2 − 1 0

0 1 − s1 s1 − 1

⎤
⎥⎥⎥⎦

and the associated vectorα is non-negative. Finally, A+I
is non-negative and the associated exit probability vector,

�− A� = [1 − s3, 0, 0]T ,

is non-negative as well.
In the general case, s∗ might be positive and si − 1,

i = 1, 2, 3 are not the eigenvalues of A, but also in that
case the elements of A + I and �−A� are non-negative.

�

The rest of the cases require the introduction of new
canonical structures.

4.2. Case PPN.

Theorem 6. If the eigenvalues of a third-order
DPH(γ,G) satisfy 1 > |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥
Re(s2) > 0 > Re(s3), then its canonical representation
is DPH(γB,A), where

A =

⎡
⎢⎢⎢⎣
x1 1 − x1 0

0 x2 1 − x2

0 x3 0

⎤
⎥⎥⎥⎦ ,

x1 = s1, x2 = s2 + s3, x3 =
−s2s3

1 − s2 − s3
,

and matrix B is composed of column vectors

b1 = �− b2 − b3,

b2 =
1

(1 − x2)(1 − x3)
G(�− G�),

b3 =
1

1 − x3
(�− G�).

Proof. The eigenvalues of the canonical matrix are
s1, s2, s3. We need to prove that 0 ≤ xi < 1 and γbi ≥ 0
for i = 1, 2, 3. Based on the eigenvalue conditions of the

PPN case, the validity of x1 and x2 is immediate. For x3

it is easy to see that x3 > 0. For the other limit we have

−s2s3
1 − s2 − s3

< 1, (22)

0 < 1 − s2 − s3 + s2s3, (23)

0 < (1 − s2)︸ ︷︷ ︸
>0

(1 − s3)︸ ︷︷ ︸
>0

. (24)

The elements of b2 and b3 are non-negative, because
(� − G�) and G(� − G�) are the one-and two-step exit
probability vectors of DPH(γ,G) and 0 ≤ x2, x3 < 1.

All that is left is to prove that b1 is non-negative. By
substituting into b1 = �− (b2 + b3), we get

b2 + b3 =
(

1
1 − x2

G + I

)
1

1 − x3
(I − G)� = M�,

(25)
which is the product of a matrix (denoted by M above)
and the vector �. Let us examine σi, i = 1, 2, 3
the eigenvalues of M . The matrix M is a polynomial
function of G. Therefore, its eigenvalues can be
calculated using (25) as

σi =
(

1
1 − x2

si + 1
)

1
1 − x3

(1 − si)�. (26)

First note that σi ≥ 0, i = 1, 2, 3, as x2 and x3 are less
than 1. Substituting into x2 and x3 for i = 1, we get

σ1 =
(

1
1 − x2

s1 + 1
)

1
1 − x3

(1 − s1)

=
(

1
1 − s2 − s3

s1 + 1
)

1 − s2 − s3
(1 − s2)(1 − s3)

(1 − s1)

= (s1 + 1 − s2 − s3)
1

(1 − s2)(1 − s3)
(1 − s1)

=
1 − s1
1 − s2

(
1 +

s1 − s2
1 − s3

)
≤ 1 − s1

1 − s2
(1 + s1 − s2),

(27)

which is less than 1 as

1 − s1
1 − s2

(1 + s1 − s2) ≤ 1, (28)

(1 − s1)(1 + s1 − s2) ≤ (1 − s2), (29)

−s21 + s1s2 ≤ 0. (30)

For i = 2,

σi =
(

1
1 − x2

si + 1
)

1
1 − x3

(1 − si)

=
(

1
1 − s2 − s3

s2 + 1
)

1 − s2 − s3
(1 − s2)(1 − s3)

(1 − s2)

= (s2 + 1 − s2 − s3)
1

(1 − s2)(1 − s3)
(1 − s2) = 1.

(31)
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In much the same way, σ3 = 1 can be derived. Thus
the eigenvalues of M are between 0 and 1. This means
that the transformation M� cannot increase the length
of �, i.e., the smallest element of b2 + b3 = M� is
less than 1. In other words, at least one of the elements
of b1 = � − (b2 + b3) is positive. However, from
the first column of the matrix equation GB = BA we
have another expression for b1, x1b1 = Gb1. That is,
x1 = s1 is the largest eigenvalue of G, and b1 is the
associated eigenvector, which is either strictly positive
or strictly negative according to the Perron–Frobenius
theorem. Consequently, b1 is strictly positive. The
elements of γ are non-negative and therefore γbi, i =
1, 2, 3 are non-negative as well. This completes the proof.

�

4.3. Case PNP. The PNP case exhibits the widest set
of representations. Here the eigenvalues are real and such
that 0 < s3 < −s2 < s1 < 1. Let the eigenvalue
representation of the distribution be pi = γGi−1(� −
G�) = σ1s

i−1
1 + σ2s

i−1
2 + σ3s

i−1
3 . Using this notation,

we first define the required representations.

Definition 10. The PNP representation of the distribu-
tion is

α = γB, A =

⎡
⎢⎢⎢⎣
x1 1 − x1 0

x2 0 1 − x2

0 x3 0

⎤
⎥⎥⎥⎦ ,

where
x1 = −a2,

x2 =
a0 − a1a2

a2(1 + a2)
,

x3 =
a0(1 + a2)

a0 − a2 − a1a2 − a2
2

,

a0, a1, and a2 are the coefficients of the characteristic
polynomial of G, i.e.,

a0 = −s1s2s3,

a1 = s1s2 + s1s3 + s2s3,

a2 = −s1 − s2 − s3.

The matrix B is composed of column vectors

b1 = �− b2 − b3,

b2 =
1

(1 − x2)(1 − x3)
G(�− G�),

b3 =
1

1 − x3
(�− G�).

Definition 11. The PNP+ representation of the distribu-
tion is

α =
[

σ3
1−s3

, σ1s1+σ2s2
(1−s1)(1−s2)

, (σ1+σ2)(1−s1−s2)
(1−s1)(1−s2)

]
,

A =

⎡
⎢⎢⎢⎣
x1 0 0

0 x2 1 − x2

0 x3 0

⎤
⎥⎥⎥⎦ ,

x1 = s3, x2 = s1 + s2, x3 =
−s1s2

1 − s1 − s2
.

Definition 12. The PNP++ representation of the distri-
bution is

α =
[

σ1+σ2+σ3
1−s3

, σ1s1(s1−s3)+σ2s2(s2−s3)
(1−s1)(1−s2)(1−s3)

,

(1−s1−s2)(σ1s1+σ2s2−(σ1+σ2)s3)
(1−s1)(1−s2)(1−s3)

]
,

A =

⎡
⎢⎢⎢⎣

x1 0 0

0 x2 1 − x2

1 − x3 x3 0

⎤
⎥⎥⎥⎦ ,

x1 = s3, x2 = s1 + s2, x3 =
−s1s2

1 − s1 − s2
.

Theorem 7. When the eigenvalues are such that 0 <
s3 < −s2 < s1 < 1, the generator matrices of the repre-
sentations PNP, PNP+ and PNP are Markovian.

Proof. (PNP representation) Let λi = −si for i = 1, 2, 3.
In this case, λ2 is strictly positive and so λ1 is strictly
negative, while λ3 is non-positive. Consequently, a0 =
λ1λ2λ3 ≥ 0. The positivity of x1 = −a2 follows from
the fact that the sum of the eigenvalues of G is positive:

1 + a2 = 1 + λ1︸ ︷︷ ︸
>0

+λ2 + λ3︸ ︷︷ ︸
≥0

> 0, (32)

1 > −a2, (33)

1 > x1. (34)

The first inequality follows from −1 < λ1 and
|λ3| ≤ |λ2|. The next inequality also follows from
−1 < λ1, λ3 and 0 < λ2:

1+ a0 + a1 + a2 = (1+λ1)(1+λ2)(1+λ3) > 0. (35)

In the following, we have that −a2 < 1. From that
we get a0 ≥ −a2a0.

The denominator of x3 is

a0 − a2 − a1a2 − a2
2 ≥

− a2︸︷︷︸
<0

(1 + a1 + a2 + a0︸ ︷︷ ︸
>0

) > 0. (36)
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In the numerator of x3 a0 is non-negative and 1 + a2

is positive. Therefore, x3 is non-negative. We need to
show that x3 < 1:

x3 < 1, (37)

a0 + a0a2 < a0 − a2 − a1a2 − a2
2, (38)

0 < −a2(1 + a0 + a1 + a2), (39)

which was proven in (36). Finally, let us consider x2:

x2 < 1, (40)

a0 − a1a2 > a2(1 + a2), (41)

a0 − a2 − a1a2 − a2
2 > 0. (42)

We have here that the eigenvalues of λi are decreasing and
only λ2 is positive:

x2 =
−(

≤0︷ ︸︸ ︷
λ1 + λ2)(

≤0︷ ︸︸ ︷
λ1 + λ3)(

≥0︷ ︸︸ ︷
λ2 + λ3)

− x1︸︷︷︸
>0

(1 − x1︸ ︷︷ ︸
>0

)
≥ 0. (43)

PNP+ and PNP++ representations. In these cases the
properties of xi are easy to read from the eigenvalue
conditions and we have that 0 < x1, x2, x3 < 1. �
Conjecture 1. One of the PNP, the PNP+ and the PNP++
representations of a DPH(3) with PNP eigenvalues is
Markovian.

Proof. We could analytically treat several special cases of
the DPH(3) PNP class, but we do not have a formal proof
which covers the whole class. Apart from the analytical
treatment of the special cases, we also completed an
exhaustive numerical investigation and have not found any
counterexample yet. �

According to our numerical investigations, the
PNP++ representation covers (transforms to a Markovian
representation) the largest set of randomly generated
DPH(3)s. The second one is the PNP representation,
and the PNP+ representation covers the least among our
randomly generated DPH(3)s. Among 400000 DPH(3)s
with PNP eigenvalues, there are ∼300 ones whose PNP++
and PNP representations are non-Markovian and whose
PNP+ representation is Markovian.

4.4. Case PNN.

Theorem 8. If the eigenvalues of a third-order
DPH(γ,G) are 1 > |s1| ≥ |s2| ≥ |s3|, Re(s1) > 0 >
Re(s3) ≥ Re(s2) and |s2|2 ≤ 2s1(−Re(s2)), then its
canonical representation is DPH(γB,A), where

A =

⎡
⎢⎢⎢⎣
x1 1 − x1 0

x2 0 1 − x2

x3 0 0

⎤
⎥⎥⎥⎦ ,

x1 = −a2, x2 =
−a1

1 + a2
, x3 =

−a0

1 + a1 + a2
,

the matrix elements are defined based on the coefficients
of the characteristic polynomial of G,

a0 = −s1s2s3, a1 = s1s2 + s1s3 + s2s3,

a2 = −s1 − s2 − s3,

and the matrix B is composed of column vectors

b1 = �− b2 − b3, b2 =
1

(1 − x2)(1 − x3)
G(�−G�),

b3 =
1

1 − x3
(�− G�).

Proof. The eigenvalues of the canonical matrix are
s1, s2, s3. We need to prove that 0 ≤ xi < 1 and γbi ≥ 0
for i = 1, 2, 3.

Let λi = −si for i = 1, 2, 3. The statements about
a2 in the PNP case are also valid for this case. The trace
of matrix G (the sum of its diagonal elements) equals the
sum of its eigenvalues, and so the sum of the eigenvalues,
as well as −a2, are non-negative. Consequently, 0 ≤
x1 < 1. Now we consider x2. Since (1 + a2) is positive,
we need to show that a1 is non-positive.

If the eigenvalues are all real, then we can write

a1 = s1s2︸︷︷︸
<0

+ s3︸︷︷︸
<0

(s1 + s2)︸ ︷︷ ︸
≥0

, (44)

which is the sum of a negative and a non-positive number.
Accordingly, the result will be negative as well.

If s2 and s3 are complex conjugates, we can write
them as s2 = −u + iv and s3 = −u− iv, where u, v are
positive reals. With this notation,

a1 = s1(−u+ iv) + s1(−u− iv) + (u2 + v2)

= u2 + v2 − 2s1u ≤ 0, (45)

where the last inequality comes from |s2|2 ≤
2s1(−Re(s2)).

Now we show that x2 is less than 1:

x2 < 1,
−a1 < 1 + a2,

0 < 1 + a1 + a2. (46)

The last inequality can be proven by writing 1 + a1 + a2

in the following way:

1 + a1 + a2

= (1 + λ1)(1 + λ2)(1 + λ3)︸ ︷︷ ︸
>0

−λ1λ2λ3︸ ︷︷ ︸
<0

> 0. (47)



462 A. Mészáros et al.

Since λ1λ2λ3 is a0, we also get that x3 is positive:

x3 =
−

<0︷︸︸︷
a0

1 + a1 + a2︸ ︷︷ ︸
>0

> 0.

Similarly, for the upper bound of x3

x3 < 1,
−a0 < 1 + a1 + a2,

0 < 1 + a0 + a1 + a2,

0 < (1 + λ1)(1 + λ2)(1 + λ3). (48)

The vectors b2 and b3 are non-negative, because
(� − G�) and G(� − G�) are the one-and two-step exit
probability vectors of DPH(γ,G), and 0 ≤ x2, x3 < 1.

Finally, from the matrix equation GB = BA we
have an explicit expression for b1,

b1 =
1

(1 − x1)(1 − x2)(1 − x3)
G2(�− G�).

That is, b1 is a three-step exit probability vector multiplied
by a positive constant. �

Theorem 8 does not cover the case when |s2|2 >
2s1(−Re(s2)). This can occur only when s2 and s3 are
complex conjugate eigenvalues. The following theorem
applies in this case.

Theorem 9. If the eigenvalues of a third-order
DPH(γ,G) are 1 ≥ |s1| ≥ |s2| ≥ |s3|, Re(s1) > 0 >
Re(s3) ≥ Re(s2), and |s2|2 > 2s1(−Re(s2)), then we
use the same canonical form as in the case of PPP in The-
orem 5.

Proof. Similarly to the proof of Theorem 5, we need to
introduce the procedure of Horváth and Telek (2009) in
order to prove the theorem, which we omit here. �

5. Canonical representation of
second-order DMAPs

In this section we give a canonical form for DMAP(2)
processes.

We use an approach similar to that in Section 3,
i.e., we prove that every DRAP(2) can be transformed
to the introduced Markovian canonical form. We do
this by choosing a set of the bounds of DRAP(2)
and show that they are the tight bounds of the
introduced DMAP(2) canonical form, which means
that DRAP(2)⊆ canonical DMAP(2), but by definition
canonical DMAP(2)⊆DRAP(2). Consequently,
DRAP(2)≡ canonical DMAP(2).

DRAP(2) processes are defined by four-parameters
(Telek and Horváth, 2007), e.g., the first three-factorial
moments of the stationary inter-arrival time distribution

(f1, f2, f3), and the correlation parameter (γ). D0 and
D1 of size 2 × 2 have a total of eight-elements (free
parameters). The (D0 + D1)� = � constraint reduces
the number of free parameters to six. If, additionally,
two elements of the representation are set to zero, then
the obtained (canonical) representation characterizes the
process exactly with four parameters.

5.1. Canonical forms of CMAP(2). Theorem 5 uses
the relation of discrete and continuous distributions. We
are going to utilize a similar relation between DMAP(2)
and CMAP(2). To this end, we summarize the canonical
representation of CMAP(2) from the work of Bodrog et al.
(2008).

Theorem 10. (Bodrog et al., 2008) If the correlation pa-
rameter of a second-order CRAP(H0,H1) is

• non-negative, then it can be represented in the fol-
lowing Markovian canonical form:

D0 =

⎡
⎣−λ1 (1 − a)λ1

0 −λ2

⎤
⎦ ,

D1 =

⎡
⎣ aλ1 0

(1 − b)λ2 bλ2

⎤
⎦.

(49)

where 0 < λ1 ≤ λ2, 0 ≤ a, b ≤ 1, min{a, b} �=
1, γ = ab, and the associated embedded stationary
vector is

π =
[

1−b
1−ab

b−ab
1−ab

]
,

• negative, then it can be represented in the following
Markovian canonical form:

D0 =

⎡
⎣−λ1 (1 − a)λ1

0 −λ2

⎤
⎦,

D1 =

⎡
⎣ 0 aλ1

bλ2 (1 − b)λ2

⎤
⎦,

(50)

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1,
γ = −ab, and the associated embedded stationary
vector is

π =
[

b
1+ab 1 − b

1+ab

]
.

5.2. Canonical forms of DMAP(2) with positive eigen-
values.

Theorem 11. If the eigenvalues of H0 are posi-
tive and the correlation parameter of a second-order
DRAP(H0,H1) is
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• non-negative, then it can be represented in the fol-
lowing Markovian canonical form:

D0 =

⎡
⎣1 − λ1 (1 − a)λ1

0 1 − λ2

⎤
⎦,

D1 =

⎡
⎣ aλ1 0

(1 − b)λ2 bλ2

⎤
⎦,

(51)

where 0 < λ1 ≤ λ2, 0 ≤ a, b < 1, γ = ab, and the
associated embedded stationary vector is

π =
[

1−b
1−ab

b−ab
1−ab

]
;

• negative, then it can be represented in the following
Markovian canonical form

D0 =

⎡
⎣1 − λ1 (1 − a)λ1

0 1 − λ2

⎤
⎦,

D1 =

⎡
⎣ 0 aλ1

bλ2 (1 − b)λ2

⎤
⎦,

(52)

where 0 < λ1 ≤ λ2, s1 = 1 − λ1, s2 = 1 − λ2,
0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab, and the associated
embedded stationary vector is

π =
[

b
1+ab 1 − b

1+ab

]
.

Proof. Practically the same approach is applied here as
in Theorem 5. First note that, if (H0,H1) is a DRAP(2),
then (H0 − I,H1) is a CRAP(2). Using this,

DRAP(H0,H1)
D→C⇒ CRAP(H0 − I,H1)

≡ CMAP(T−1(H0 − I)T ,T−1(H1)T ) (53)

proves the theorem. The steps are self-explanatory, except
for the equivalence in the above expression, which is
based on Theorem 10 of Bodrog et al. (2008). �

5.3. Canonical forms of DMAP(2) with a negative
eigenvalue.

Theorem 12. If one eigenvalue of H0 is nega-
tive and the correlation parameter of a second-order
DRAP(H0,H1) is

• non-negative, then it can be represented in the fol-
lowing Markovian canonical form:

D0 =

⎡
⎣1 − β1 aβ1

1
aβ2 0

⎤
⎦ ,

D1 =

⎡
⎣ (1 − a)β1 0

(1 − 1
aβ2)b (1 − 1

aβ2)(1 − b)

⎤
⎦ ;

(54)

• negative, then it can be represented in the following
Markovian canonical form:

D0 =

⎡
⎣ 1 − β1 aβ1

1
aβ2 0

⎤
⎦ ,

D1 =

⎡
⎣ 0 (1 − a)β1

(1 − 1
aβ2)b (1 − 1

aβ2)(1 − b)

⎤
⎦ ,

(55)

where the eigenvalues are such that s2 < 0 < s1 < 1,
s1 + s2 > 0, the relation of the parameters and the eigen-
values is

β1 = 1 − s1 − s2,

β2 =
s1s2

s1 + s2 − 1
, 0 ≤ b < 1,

β2 ≤ a ≤ min
(

1, b
1 − s2
1 − s1

)

in the case of γ ≥ 0 or β2 ≤ a ≤ 1 in the case of γ < 0.

The correlation parameter and the first coordinate of
the embedded stationary probability vectors (the unique
solution of (5))

• of (54) are

γ = (1−a)(1−b)
(

1 +
1−a
a

s1s2
1−s1−s2 + s1s2

)
,

(56)

π1 =
1 − 1

1−aγ

1 − γ
, (57)

• of (55) are

γ = −(1 − a)b
(

1 +
1 − a

a

s1s2
1 − s1 − s2 + s1s2

)
,

(58)

π1 = 1 − 1 + a
1−aγ

1 − γ
. (59)

We prove the theorem by considering the full
flexibility of the class DRAP(2) with a negative eigenvalue
and showing that the canonical forms of Theorem 12
cover this whole set of processes. To this end, we first
investigate the flexibility of the class DRAP(2).

5.3.1. Constraints of the class DRAP(2). We
investigate the flexibility of the class DRAP(2) based on
the following representation:

H0 =

⎡
⎣ s1 0

0 s2

⎤
⎦ ,

H1 =

⎡
⎣ a1 + (1−a1−s1)γ (1−a1−s1)(1−γ)

a1(1−s2)(1−γ)
1−s1

(1−s2)(1−a1−s1+a1γ)
1−s1

⎤
⎦ ,

(60)
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where s1 is the positive and s2 is the negative eigenvalue,
γ is the correlation parameter, and a1 is the parameter
that characterizes the stationary inter-arrival distribution
together with the eigenvalues according to (13). With
this representation the first coordinate of the embedded
stationary vector is π1 = a1/(1 − s1).

For a given pair of eigenvalues, s1 > 0 and s2 < 0,
Theorem 1 defines the limits of a1. According to these
limits, the first coordinate of any embedded vector of
DRAP(H0,H1) should be bounded by

(1 − s2)s2
(1 − s2)s2 − (1 − s1)s1

≤ x ≤ (1 − s2)(1 − s2)
s1 − s2

.

(61)
The function Un(x) describes the effect of an n long
inter-arrival period on the first coordinate of the embedded
vector,

Un(x) =
(x, 1 − x)H0

n−1H1

(x, 1 − x)H0
n−1H1�

(1, 0)T . (62)

If the embedded vector is (x, 1 − x) at an arrival instance
and the next inter-arrival is n time unit long, the embedded
vector is going to be (Un(x), 1−Un(x)) at the next arrival
instance. In the case of DMAPs the embedded vector
represents the probability distribution of the background
Markov chain at arrivals, but in the case of DRAPs it does
not have any probabilistic interpretations. H0 and H1

have to be such that starting from the stationary embedded
vector π for any series of inter-arrival times, the first
coordinate of the embedded vector satisfies (61). Based
on this property, we define simple constraints:

• Long series of one time unit long inter-arrivals:
U1(x) = x has to have a real solution between the
bounds in (61), because if the solution were complex
or larger (smaller) than the respective bound, then
a series of one time unit long inter-arrivals would
increase (decrease) the first coordinate above the
upper (below the lower) limit (cf. Fig. 1). This
constraint results in

γ ≤ (
√
c1 −√

c2)2

(c3 − a1s2)2
. (63)

• Long series of one time unit long inter-arrivals, then
a two time units long inter-arrival: If γ > 0,
then U1(x) is a shifted negative hyperbolic function
which increases monotonously between the bounds
in (61). If U1(x) = x has two solutions, w1, w2

(w1 < w2), then w1 is stable and w2 is unstable,
which means that, starting from x < w1 or w1 <
x < w2 and having a long series of one time unit
long inter-arrivals, the first coordinate converges to
w1, while starting from x > w2 and having a long
series of one time unit long inter-arrivals, the first

coordinate diverges. Consequently, a long series of
one time unit long inter-arrivals and a two time units
long inter-arrival keep the first coordinate between
the bounds if U2(w1) ≤ w2. This constraint results
in

γ ≤ s1s2c2 − c1(1 − s1 − s2)
c4c5

−
√
s1s2c1c2(s1 + s2)2

c4c5
. (64)

• Long series of two time units long inter-arrivals:
Similarly to the first constraint, U2(x) = x has to
have a real solution which results in

γ ≥
√
s1s2c2 +

√
c6)2

c42
. (65)

• Long series of one time unit long inter-arrivals: If
γ < 0, then U1(x) is a shifted hyperbolic function
which decreases monotonously between the bounds
in (61). U1(x) = x has to have a stable real solution
(w1) between the bounds in (61), which holds if

d
dx
U1(x)

∣∣∣
x=w1

> −1

(cf. Fig. 2) (in the case of a long series of 1 time
unit long inter-arrivals the first coordinate converges
to w1). This constraint results in

γ ≥ s2(1 − a1 − s1) + a1s1
(c3 − a1s1)2

. (66)

In the above expressions the auxiliary variables are

c1 = −a1(s1 − s2)2(1 − a1 − s1),

c2 = (1 − s1)3(1 − s2),
c3 = 1 − s1(2 − a1 − s1), (67)

c4 = s1(1 − s1)(1 − a1 − s1) + a1s2(1 − s2),

c5 = (a1(s1 − s2) + s2(1 − s1)2),

c6 = −a1(1 − a1 − s1)(s1(1 − s1) − s2(1 − s2))2.

We summarize the results of this subsection in the
following theorem.

Theorem 13. For DRAP(H0,H1) defined in (60) with
0 < s1 < 1, −s1 < s2 < 0 and a1 satisfying Theorem 1
the correlation parameter satisfies the inequalities (63)–
(66).

Theorem 13 defines only some bounds of the set of
DRAP(2) processes, but the subsequent analysis of the
canonical DMAP(2) proves that these bounds are tight.
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Fig. 1. U1(x) when s1 =0.8, s2 =−0.3, a1 =0.19, γ =0.17.

Fig. 2. U1(x) when s1 = 0.8, s2 = −0.3, a1 = 0.19, γ =
−0.012.

Fig. 3. Upper and lower γ limits as a function of a1 when s1 =
0.8, s2 =−0.3.

5.3.2. Constraints of the set of canonical DMAP(2)
processes. Having the bounds of the DRAP(2) class
from Theorem 13, we are ready to prove Theorem 12.

Proof. (Theorem 12) First we need to relate the variables
of the canonical representation with the parameters used
for characterizing DMAP(2) processes. The relation of
β1, β2 with s1, s2 is

s1,2 =
1
2

(
1 − β1 ±

√
(1 − β1)2 + 4β1β2

)
. (68)

The relation of s1, s2, a1, γ with a and b can be obtained

from (56) and (57) for the first canonical form and from
(58) and (59) for the second canonical form.

If γ > 0, then

a =
g1 +

√
g2
1 − g2

2e1
,

b = 1 − aγ(1 − s1 − s2 + s1s2)
(1 − a)(a(1 − s1 − s2) + s1s2)

, (69)

where

e1 = (1 − s1)(1 − s1 − s2)2,
e2 = (1 − s1 − s2)(a1(s1 − s2)(1 − γ) − s1(1 − s1)),

e3 = γ(1 − s1)2,
g1 = e1 + e2 − e3(1 − s1 − s2),
g2 = 4e1(e2 + e3s1), (70)

and if γ < 0, then

a =
g3 −

√
g2
3 + g4

g5
,

b = 1 − aγ(1 − s1 − s2 − s1s2)
(1 − a)(a(1 − s1 − s2) + s1s2)

, (71)

where

e6 = a1(s1 − s2)(1 − γ),
e7 = (1 − s1)(s2(1 − γ) − (1 − s1 − s2)γ),

e8 = (1 − s1 − s2)(1 − s1)s2,
g3 = −(1 − s1 − s2)e6 + e7s1 − e8,

g4 = 4(e6 + e7)e8s1,
g5 = −2(1 − s1 − s2)(e6 + e7). (72)

Based on these relations, the constraints of the canonical
DMAP(2) processes can be obtained using the fact that all
the elements of D0 and D1 have to be non-negative real
numbers. That is, a is real, β2 ≤ a ≤ 1 and 0 ≤ b ≤
1. The parameter a is real when the expression under the
square root sign in (69) for γ > 0 and in (71) for γ < 0
is non-negative. Altogether, these constrains result in five
inequalities for γ > 0 and five for γ < 0. Out of these,
the following are relevant:

• Case γ > 0:

– a is real when g2
1 − g2 ≥ 0, which translates to

(63),

– the inequality b ≤ 1 translates to (64).

• Case γ < 0:

– a is real when g2
3 + g4 ≥ 0, which translates to

(65),

– the inequality b ≥ 0 translates to (66).

The appendix provides a detailed derivation of (63) based
on g2

1 − g2 ≥ 0. We neglect the details of the other
derivations. �
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6. Explicit moments and correlation
matching with the canonical forms

One of the most important applications of the introduced
canonical forms is the factorial moment matching for
DPH(2) and DPH(3) distributions as well as the factorial
moment and correlation matching of DMAP(2) processes.

In the second part of this section we give explicit
factorial moment and correlation matching formulas for
second-order models. While such formulas cannot be
provided for DPH(3), the canonical form still makes
moment matching possible. In the first part of this section
we discuss this matching procedure for DPH distributions
in general.

6.1. Moment matching with DPH. To obtain
formulae for moment matching, the inverse of (3) is
required, that is, we need to find a vector–matrix pair
based on a given set of factorial moments. For a full
characterization of a DPH(n), we need the first 2n −
1 factorial moments (f1, f2, . . . , f2n−1). We find an
appropriate vector–matrix pair exhibiting a given set of
factorial moments using the procedure available for CPH
moment matching of Horváth and Telek (2007). In spite of
the fact that (10) and (3) look similar, we cannot directly
use the CPH moment matching method for DPH moment
matching, because of the extra term in (3). That is why we
first transform the factorial moments such that they exhibit
an expression similar to (10).

Let us define G = −(I − A)−1A. Then A−1 =
I − G−1. Substituting this into (3), we get

fi

i!
= α

(
(I − A)−1A

)i
A−1

�

= α(−G)i(I − G−1)�

= (−1)i α(Gi − Gi−1)�. (73)

Assuming f0 = 1 and α� = 1, from (73) we have

k∑
i=0

(−1)i fi

i!
= αGk

�. (74)

Multiplying both the sides by k!, we obtain

μ̂k � k!
k∑

i=0

(−1)i fi

i!
= k! αGk

�, (75)

which has the same form as (10). Applying the CPH
moment matching procedure with μ̂k results in α and G
which satisfy (75). Finally, the matrix A is obtained from
A = (G − I)−1G. This procedure commonly generates
a non-Markovian matrix A.

6.1.1. Moment matching with canonical DPH(2) and
DPH(3). Applying the general DPH moment matching

procedure of the previous subsection, we attain an (α,A)
MG(2) or MG(3) representation based on (f1, f2, f3) or
(f1, f2, . . . , f5). By determining the eigenvalues of A, the
appropriate type of canonical form can be decided and its
elements can be calculated according to Sections 3 or 4. If
the resulting representation is Markovian, then the given
set of factorial moments can be matched with a DPH(2) or
a DPH(3). Otherwise, it is not possible.

6.2. Parameter matching with DMAP(2). For
DMAP(2) processes, the previously mentioned inverse
characterization is possible, that is, the first three moments
(f1, f2, f3) and the correlation parameter (γ) can be used
to give explicit formulae for β1, β2, a, b of Theorems 11
and 12.

Our matching method is composed of two steps. The
first one is moment matching with a DPH(2). The result of
this phase is an (α,A) canonical DPH(2) representation.
The second one is the matching of γ. This means the
calculation of a and b of Theorems 11 and 12 from α,
A, and γ.

6.2.1. Bounds of DMAP(2) processes. For exact
parameter matching, first it has to be decided if a
DMAP(2) exists with a given set of f1, f2, f3, γ moments
and correlation parameter set, and if the matching is
possible, it has to be determined if one of the eigenvalues
of D0 is negative, as this affects the formulae for the
elements of the canonical form. To this end, moment and
a correlation bounds have to be established.

It can be easily proven that the class of DPH(2)
distributions can be defined as the stationary inter-arrival
time distribution of DMAP(2) processes. Thus, their
moment bounds are identical. These bounds can be
derived from the Markovian constraints on the canonical
form of DPH(2) distributions (i.e., the elements of α and
A in Theorems 2–4 have to be between 0 and 1). For A
with two positive eigenvalues, the constraints are already
given by Telek and Heindl (2002). These results are
summarized in Table 1, where

j1 =
6

(2 f1 +
√

2 j2)3

(
f1 (2 f1 +

√
2 j2)(3 f2 + 2 f1)

×(f2 − 2 f1 + 2) − 2 f22 (f2 −
√

2 j2)
)
, (76)

and j2 = 2 f12 − 2 f1 − f2.
For the negative eigenvalue case, we have derived

similar constraints as shown in Table 2, where

j3 =
3
√

(f2 − 2f1(f1−5)− 8)(f2 − 2f1(f1−1))3

4(f1−1)
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+
3(−4f1(f1−2)(f1−1)2 + 8f2 + 4f1f2(f1−3))

4(f1−1)

+
f2
2

4(f1−1)
. (77)

In the following we present formulae for β1, β2, p.
Substituting them into Eqns. (63)–(66), exact γ bounds
can be easily derived. However, the resulting expressions
are rather long, and therefore we do not show them.

6.2.2. Transformation to the DMAP(2) canoni-
cal form with positive eigenvalues. If the f1, f2, f3
moments are in the bounds described by Table 1, they can
be matched with a DPH(2) with positive eigenvalues. In
this case the first step is based on Table 3 by Telek and
Heindl (2002). The s1 and s2 elements of matrix A and
vector α can be calculated as

α = [p, 1 − p] ,

p =
−z(h3 − 6f1h1) +

√
h4

zh3 +
√
h4

,

s1 = 1 − h3 − z
√
h4

h2
,

s2 = 1 − h3 + z
√
h4

h2
,

where

h1 = 2f12 − 2f1 − f2, h2 = 3f22 − 2f1f3,

h3 = 3f1f2 − 6(f1 + f2 − f2
1 ) − f3,

h4 = h2
3 − 6h1h2,

z =
h2

|h2| . (78)

The second step is the calculation of a, b of Theorem 11.
If γ = 0, then a = 1, b = 0. If γ > 0, then a and b can be
computed using

a =
d1 −

√
d2

2(1 − s1)
, b =

d1 +
√
d2

2(1 − s2)
,

with

d1 = 1 − s2 − p(1 − s2)(1 − γ) + (1 − s1)γ,

d2 = d2
1 − 4(1 − s1)(1 − s2)γ.

If γ ≤ 0, then

a =
−γ(1 − s2)

p(1 − s2)(1 − γ) − γ(1 − s1)
,

b =
p(1 − s2)(1 − γ) − γ(1 − s1)

1 − s2
. (79)

6.2.3. Transformation to the canonical form with a
negative eigenvalue. If the f1, f2, f3 moments are in the
bounds described by Table 2, they can be matched with
a DPH(2) with a positive and a negative eigenvalue. In
this case the parameters β1, β2 and the vector α can be
computed using

β1 =
12f2

1 − 3f2(4 + f2) − 2f3 + 2f1(−6 + 3f2 + f3)
(3f2

2 − 2f1f3)
,

β2 =
−3f2(2 − 2f1 + f2) + 2(−1 + f1)f3

12f2
1 − 3f2(4 + f2) − 2f3 + 2f1(−6 + 3f2 + f3)

,

p =
β1 − f1β1 + β2 + f1β1β2

−1 + β2
, α = [p, 1 − p] .

From β1 and β2, the eigenvalues s1 and s2 are obtained
by (68). In the second step, a and b of Theorem 12 are
calculated. If γ = 0, then a = 1 and b = 0 stand again.
Otherwise, if γ > 0, then

a =
k1 +

√
k2
1 − k2

2β1
,

b = 1 − aγ(1 − β2)
(1 − a)(a− β2)

, (80)

and if γ < 0, then

a =
k3 +

√
k2
3 + 4β2k4

2k4
,

b = − aγ(1 − β2)
(1 − a)(a− β2)

, (81)

where

k1 = (1 − γ)(p+ β1 + β2 − pβ2) − 1 + β1,

k2 = 4β1(k1 − β1 + γ − β2γ),
k3 = (1 − γ)(−p(1 − β2) − 2β2) − γ(1 − β1),
k4 = k3 + β2 + γ − β2γ. (82)

If the moments f1, f2, f3 are out of the bounds
described by Tables 1 and 2, then exact matching is not
possible.

7. Fitting using canonical forms

In some cases, fitting based on a well-chosen distance
measure might capture important characteristics of traffic
traces better than moment matching. Employing
canonical forms is beneficial in this case, as well.

The main advantage of using canonical forms in
model fitting compared with the corresponding general
form is that, while the canonical forms have the full
flexibility of the given class, the number of parameters that
has to be optimized is lower. When fitting with DPH(2),
the canonical form has three parameters instead of the five
of the general form (DPH(2) has six elements and the
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Table 1. Bounds for the first three moments of DPH(2) distri-
butions with positive eigenvalues

condition bounds DPH(2)

1 ≤ f1 < ∞ –

1 ≤ f1 < 2 2(f1 − 1) ≤ f2 < ∞ –

2 ≤ f1
f1(3f1−4)

2 ≤ f2 < ∞ –

1 ≤ f1 < 2

2(f1 − 1) ≤ f2 j1 ≤ f3 β1 = β2

f2 < 2f1(f1 − 1) f3 ≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1

2 ≤ f1

f1(3f1−4)
2 ≤ f2 j1 ≤ f3 β1 = β2

f2 < 2(f1 − 1) f3 ≤ 6(f1 − 1)(f2 − f2
1 + f1) p = 1

2(f1 − 1) ≤ f2 j1 ≤ f3 β1 = β2

f2 < 1 − 1
f1

f3 ≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1

1 ≤ f1

2f1(f1 − 1) ≤ f2
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
≤ f3 β2 = 1

Table 2. Bounds for the first three moments of DPH(2) dis-
tributions with a negative eigenvalue

condition bounds DPH(2)

1 ≤ f1 < ∞ –

1 ≤ f1 < 2 2(f1 − 1) ≤ f2 < ∞ –

2 ≤ f1 2(f1 − 1)2 ≤ f2 < ∞ –

1 ≤ f1 < 2

2(f1 − 1) ≤ f2
3(f2−2f1+2)(f1+f2)

(2f1−1) ≤ f3 β2 = 0

f2 < 2f1(f1 − 1) f3 ≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β1 = 1

2 ≤ f1

2(f1 − 1)2 ≤ f2
3 f2(f2−2 f1+2)

2 (f1−1) ≤ f3 β2 = 0

f2 < f1(2f1 − 3) f3 ≤ 6(f1 − 1)(f2 − f2
1 + f1) p = 1

f1(2f1 − 3) ≤ f2
3 f2(f2−2 f1+2)

2 (f1−1) ≤ f3 β2 = 0

f2 < 2f1(f1 − 1) f3 ≤ 3(f2 − 2f1 + 2)(f1 + f2)

(2f1 − 1)
β1 = 1

1 ≤ f1

1 − 2f1(f1 − 1) ≤ f2 j3 ≤ f3 p = 0

f3 ≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 0

equation α� = 1 gives one constraint). The canonical
form of DPH(3) has five parameters instead of the eight
of the general case (a DPH(3) has nine elements and
α� = 1 gives a single constraint again). Finally, canonical
DMAP(2) has four parameters instead of six (DMAP(2)
has eight elements, but the (D0 + D1)� = � equation
means two constraints). Having fewer parameters results
in a faster and better fitting in general (for the chosen
distance measure).

In this section we provide numerical examples to
demonstrate the advantages of using canonical forms.
We use DPH(3) fitting as an illustration. Our choice
is motivated by the fact that DPH(3)s are significantly
more complex than DPH(2)s. However, we can use
a very straightforward fitting method for them with
relative entropy as a distance measure, which makes the
demonstration simpler than it would be with DMAP(2)
fitting.

As mentioned above, we use relative entropy as
a distance function in our examples. Having the X
and Y discrete distributions on N

+ with pmfs f(i)
and g(i), we can calculate their H relative entropy (or

Kullback–Leibler divergence) as

H(X ,Y) = −
∞∑

i=1

f(i) ln
(
g(i)
f(i)

)
. (83)

If f(i) is zero for a given i, that part of the
expression is considered zero. The relative entropy of
two distributions is strictly non-negative and is only zero
if f(i) = g(i). Intuitively, higher H means a bigger
difference between the two distributions and a worse
fitting in our case.

In the following we present the results of fitting to
three different distributions. The first one is the discrete
uniform distribution on 1 to 50 (i.e., f(i) = 0.02 if i =
1, . . . , 50 and f(i) = 0 otherwise). The second one is
DPH(4) with

α = [0.5, 0.2, 0.1, 0.2]] ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6 0.1 0.07 0.03

0.3 0.06 0.22 0.36

0.14 0.4 0.1 0.2

0.3 0.1 0.2 0.05

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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which has a monotonically decreasing pmf, and the third
one is DPH(3) with

α = [0.3, 0.1, 0.6] , A =

⎡
⎢⎢⎢⎣

0.2 0.75 0.05

0.5 0.1 0.4

0.1 0.7 0.07

⎤
⎥⎥⎥⎦ ,

which has a fluctuating pmf with a slow decay. We
made the fitting using the built-in optimization function
of Wolfram Mathematica (called NMinimize).

For the general form, we had to consider only one
type of representation. In the case of the canonical form,
we ran the fitting algorithm for all the different types
of representations and chose the best one. When fitting
the uniform distribution, we took the theoretical pmf
values. In the other two cases we simulated 100, 000
inter-arrival times using the respective (α,A) and fitted
using the empirical pmf of the traces. The results are
summarized in Table 3. They clearly show that canonical
forms perform better than the general form in fitting.
An intuitive explanation is that the canonical forms have
fewer parameters, and consequently, the optimization is
a simpler task than in the general case. Furthermore, as
different representations describe the same distribution in
the general form, they have the same distance from the
fitted trace. This suggests that the relative entropy is a
very bumpy function of the parameters for the general
case, which also makes the optimization harder.

The uniform distribution was hard to fit for both the
canonical and the general form. However, the former still
gave a much better result in terms of both the distance
and the running time. Similarly, both the canonical and
the general form were able to fit the trace of DPH(4), but
the canonical fitting was faster again. Probably the most
interesting example is the fitting of the DPH(3) trace. The
pmfs of the fitted DPHs can be seen in Fig. 4. While, in
theory, a perfect fit would have been possible, the general
form provided a poor solution. Using the canonical form
resulted in a good fitting, although it took a long time.
This is due to the slow decay of the distribution, because
it makes the goal function much more complex as it has
more elements than in the previous cases.

8. Conclusions

In this paper we presented canonical representations
for second-order and third-order DPH distributions and
second-order DMAPs. We provided a detailed proof
for the validity of these canonical representations, gave
explicit methods to obtain these representations, and
proved that the second-order Markovian models are
equivalent to their non-Markovian counterparts.

We demonstrated the benefits of these canonical
forms in parameter matching and trace fitting. Using

Table 3. Fitting of distributions with the general and canonical
DPH(3) form.

Distribution General form Canonical form

Distance Time Distance Time

Uniform 4.55 473 s 0.355 168 s

DPH(4) 0.00256 511 s 3.29×10−4 319 s

DPH(3) 6.32 4859 s 0.025 1571 s

Fig. 4. Fitting of DPH(3) distribution with the general and
canonical form.

them, we derived the moment and correlation bounds of
second-order DMAPs (and DPHs), and presented explicit
matching formulas for these parameters. For third-order
DPH distributions we provided a simple procedure that
can be used for moment matching.

We illustrated the advantages of fitting with
canonical forms instead of the general form through
numerical examples. The results confirmed that with
canonical forms a substantially better performance can be
achieved in both running time and fitting quality than with
using general Markovian forms.
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Appendix

The constraint for the correlation coefficient is the solution
of g2

1(γ) − g2(γ) = 0 for γ. By substituting (70) into
g1 and g2, regrouping the terms according to the different
powers of γ, and simplifying the expression, we get

g2
1 − g2

= (1−s1−s2)2(1−s1(2−a1−s1)−a1−s2)2γ2

− 2(1−s1−s2)2
[
1 + s21

(
3−a1(1−a1 + 2s2)−3s2

)

− s31(1−a1−s2)−s2
(
1 + (1−a1)a1s2

)

− s1

(
3−s2

(
3 + a1(2−2a1 + s2)

))]
γ

+ (1−s1−s2)2(1−s1(1 + a1−s2)−s2 + a1s2)2.

By solving the equation g2
1(γ)−g2(γ) = 0 and taking the

smaller solution and simplifying the result, we get

γ

=
a2
1(s1−s2)2−a1(1−s1)(s1−s2)2 + (1−s1)3(1−s2)

(1−s1(2−a1−s1)−a1s2)2

− 2
√−a1(1−s1)3(1−a1−s1)(s1−s2)2(1−s2)

(1−s1(2−a1−s1)−a1s2)2
.

From this last expression, one can see that the
numerator is the square of

√−a1(s1−s2)2(1−a1−s1)−√
(1−s1)3(1−s2). The constraint will be this smaller

solution. Finally, we get (63) by substituting the ci
formulae from (67).
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