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The paper presents data mining methods applied to gene selection for recognition of a particular type of prostate cancer
on the basis of gene expression arrays. Several chosen methods of gene selection, including the Fisher method, correlation
of gene with a class, application of the support vector machine and statistical hypotheses, are compared on the basis of
clustering measures. The results of applying these individual selection methods are combined together to identify the
most often selected genes forming the required pattern, best associated with the cancerous cases. This resulting pattern of
selected gene lists is treated as the input data to the classifier, performing the task of the final recognition of the patterns.
The numerical results of the recognition of prostate cancer from normal (reference) cases using the selected genes and the
support vector machine confirm the good performance of the proposed gene selection approach.
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1. Introduction

A DNA microarray is a collection of microscopic DNA
spots attached to a solid surface used to measure
simultaneously the expression levels of a large number of
genes. Each DNA spot contains a specific DNA sequence,
being the short section of a gene or other DNA element
used to hybridize a cDNA or cRNA sample (called the
target) under high-stringency conditions. Monitoring gene
expression using microarrays is an important problem in
the study of cell functions, candidate gene identification,
cellular response to different drugs as well as classification
of disease states (De Rinaldis, 2007; Ramaswamy et al.,
2001).

DNA microarrays typically store data of thousands
of expressions of individual genes. A common way to
represent the data set produced through DNA microarray
experiments is to form a matrix in which the row
corresponds to the particular individual and the column
represents the expression levels of different genes.
Typically, we have the number of rows in the range of
hundreds and the number of columns (genes or gene
sequence) of a several or tens of thousands.

Comparing the gene expression profiles and selecting
those which are best associated with the analyzed types
of data in the high dimensional space of a small number
of observations represent a formidable challenge in
pattern recognition, which can be solved using specialized
methods of data mining. Present approaches to this task
include various clustering methods (Eisen et al., 1998;
Herrero et al., 2001), application of neural networks and
support vector machines (Guyon et al., 2002; Huang and
Kecman, 2005; Wiliński and Osowski, 2012), statistical
tests (Baldi and Long, 2001), linear regression methods
applying forward and backward selection (Huang and
Pan, 2003), fuzzy logic based algorithms (Woolf and
Wang, 2000), rough set theory (Wang and Gotoh, 2009;
2010; Świniarski, 2001), various statistical methods
(Mitsubayashi et al., 2008; Golub et al., 1999), as well as a
fusion of many selection methods (Wiliński and Osowski,
2012; Yang, 2011). Although the progress in this field
is fast, there is still a need for better understanding and
improvement of the research.

This paper presents an analysis and a comparison of
methods of gene selection which are strongly associated

muszyna22@wp.pl
sto@iem.pw.edu.pl
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with the prostate cancer. This particular problem was
considered, for example, by Wang and Gotoh (2010)
by using rough set theory, or by Wiliński and Osowski
(2012) by using several methods of selection. The issue
is a typical feature selection task of data mining (Duda
et al., 2003; Guyon and Elisseeff, 2003; Tan et al., 2006).
The most difficult problem is that the number of genes is
extremely large (more than ten thousand) and the number
of patterns—very limited (around one hundred). The
selected genes of the particular expression levels form
the most characteristic pattern for the given type of the
cancer. Applying a classifier to given data should lead to
an improved accuracy of the recognition of cancer cases
from non-cancerous ones (Furey et al., 2000; Makinaci,
2007; Wiliński and Osowski, 2012).

In the numerical experiments we will analyse many
different gene selection methods in the prostate cancer
problem, containing two classes of data, either tumor or
non-tumor cases. The experimental data set of patterns
x1,x2, . . . ,xm ∈ R

n representing the values of gene
expressions with known class labels d1, d2, . . . , dm ∈
{−1, 1} standing for these two particular classes, where
m � n. The results of such analysis will be presented in
numerical and visual forms.

The small subset of the most representative features
(gene expression coefficients) will be used to train the
Support Vector Machine (SVM) classifier (Haykin, 1999;
Scholkopf and Smola, 2002), the network generating the
decision function D(xi) for the particular input pattern
vector xi ∈ R

l, where i ∈ {1, . . . , m} and l � n. The
trained classifier may then be used to recognize and assign
the newly acquired data to the appropriate class.

The results of numerical experiments concerning
selection of the most important genes in prostate cancer as
well as classification of cases on the basis of the selected
genes will be discussed. The main contribution of the
paper is developing a fusion system of various selection
approaches into the final set, most closely associated
with the cancer. Also, we propose a special procedure
which estimates the number of higher rank genes using
the self-organization procedure. This is in contrast to the
majority of papers, where many methods have been tried,
but only the best one was treated as the final solution.

2. Selection of gene ranking methods

2.1. Problem formulation. The main task of selection
is to discover the expression activity of the genes that
are associated with the type of cancer considered. The
difficulty is that an expression array is a huge matrix
with a large number of columns (n) representing genes
or gene sequences (further called features) and a small
number of rows (m) corresponding to the succeeding
individuals. It is known that the level of expression
of some genes is characteristic for the specific type of

illness and is similar for many patients suffering from this
illness (De Rinaldis, 2007; Guyon et al., 2002; Hewett and
Kijsanayothin, 2008).

When visualising the gene expression matrix of all
genes for two groups of patients (the group suffering from
a particular type of cancer against the healthy class), we
cannot observe any visible division of the image into
two groups that are associated with these two classes of
patients. Thus, an important problem is to select a limited
number of the top rank genes that are most representative
and discriminative for both the classes. After a selection
is made, we should see a clear division of data into two
separated graphical regions corresponding to both classes.

In this paper we will limit our consideration of
gene ranking to prostate tumor (PRT) data, taken from
the benchmark gene data base of Vanderbilt University
(Vanderbilt, 2002), represented by two classes.

2.2. Gene ranking methods. Gene ranking is a
specific form of the general process of feature selection,
in which each gene or gene sequence expression
is treated as a feature. Out of the tremendous
number of different methods of feature selection,
we will limit our consideration to just a few of them:
Kolmogorov–Smirnov and Wilcoxon–Mann–Whitney
statistical tests, the correlation analysis, a Fisher measure
based on the analysis of distribution of centres and
variances of the clusters, as well as gene ranking using a
linear support vector machine. This choice of methods
belongs to different approaches to the feature selection
and provides a different point of view on the problem.

The results of the separated selection processes are
combined together to perform the second step of selection
that leads to the final optimal ranking of genes. The main
stress of the analysis will be directed toward the measure
of the cluster quality and then to the application of the
gene selection results in the classification of the data.

To get reliable results of selection, each of the
individual methods presented above will be repeated many
times on randomly chosen samples of the original data set.
In our experiments we performed each selection method
10 times by using 90% of the randomly selected rows of
the data set. The results of these trials will be integrated
into a final ranking by applying two further processes:

• Ranking by frequency: the features are arranged
according to their frequency of the appearance within
the first 100 best features. This is a sufficiently large
number to represent the most relevant genes that
characterize the classes. The feature which appeared
the highest number of times within the 100 best in all
performed experiments is treated as most important.
In this way, a natural ranking of features was created.

• Ranking by positions: this ranking is based on the
sum of the positions that the particular feature took
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in all experiments of selection. The best feature is
the one of the smallest value of this total sum. To
suppress the problem of a very large size of vectors,
we took into account only the first 100 features. The
feature which was absent in the list of the best 100
was punished by assigning the position of 101.

These two methods of fusion will be compared on the
example of benchmark data concerning the prostate tumor
(Vanderbilt gene data base).

2.2.1. Fisher discriminant measure. In the Fisher
method we form the discriminant measure S12(f) of
the feature f to recognize Class 1 from Class 2 in the
following form (Golub et al., 1999):

S12(f) =
|m1(f) − m2(f)|
σ1(f) − σ2(f)

, (1)

where mk(f) = E{f |k} is the mean value of the features
for data records that form the k-th class (k = 1, 2), while
σ1 and σ2 denote the standard deviations of the feature in
both classes, respectively. Large values of S12(f) indicate
a good separation ability of the feature f for recognition
of these two classes. A small value means that clusters
of both the classes are close to each other and the data
samples are widely distributed. Such a feature does not
represent a good discriminative property. The results
generated by this method will be denoted shortly by FISH.

2.2.2. Correlation of gene expression with
classes. The method frequently used in assessing
the discriminative power of the candidate feature f for
the recognition of the particular class among K classes
(K = 2 in our case) is the correlation of this feature with
the class (Duda et al., 2003).

Let us denote by d ∈ {1, . . . , k}m the vector of
class membership, by m(f) = E{f} the mean value of
the feature f in the whole set of data, and by var(f) =
E{(f − m(f))2} the variance of the feature f for the
whole data. The correlation measure of the feature f with
the vector d representing classes is defined through the
covariance cov(f,d) and can be expressed in the form
(Wiliński and Osowski, 2012; Duda et al., 2003)

S(f) =
∑K

k=1 P 2
k (mk(f) − m(f))2

var(f)
∑K

k=1 Pk(1 − Pk)
, (2)

with Pk denoting the probability of the k-th class. After
calculating this measure for all features, we can arrange
them in a decreasing order, from the highest to the
smallest discriminative value. With this, we get an
automatic ranking of the features. This method of feature
ranking will be denoted by COR.

2.2.3. Statistical hypothesis tests. In these tests the
feature f is treated as a statistical variable of some
distribution related to the type of data (Sprent and
Smeeton, 2007). The feature of a good discriminating
ability should have a similar distribution for the group of
observations belonging to the same class, and different
in the case of different classes. We applied here two
tests: the Wilcoxon–Mann–Whitney (WMW) and the
Kolmogorov–Smirnov (KS) (Sprent and Smeeton, 2007;
Matlab, 2012)

The WMW test applied here is based on the ranks
of the particular patterns. In this method we arrange
the population of X random variables (Class 1) and the
population of Y random variables (Class 2) together in
the increasing order of magnitude (ordinal fashion). The
arrangement where most of the Y ’s are greater than most
of the X’s or vice versa would be evidence against random
mixing. This would tend to discredit the null hypothesis of
identical distributions. In the WMW test we estimate the
probability P denoting the degree of similarity of both the
sequences. The higher this probability, the more similar
the two populations. This method of feature ranking will
be denoted shortly by WMW.

The KS test checks the null hypothesis that the
samples of both the classes are drawn from the same
distribution at the desired significance level (default =
0.05). The Matlab function kstest2 (Matlab, 2012)
implements this test and determines the distance between
the cumulative distribution functions of the data belonging
to two compared classes. This distance is regarded as a
basis for defining the statistical measures of difference
between both the populations. Let us denote by Fx1(x)
and Fx2(x) the empirical cumulative distributions of two
populations of feature f which respectively represent
Class 1 (vector x1) and Class 2 (vector x2), ([x1,x2]T ∈
R

m). Using the Kolmogorov–Smirnov test, we defined
two different discriminative measures (Wiliński and
Osowski, 2012) (where D = {x1, . . . , xs}, for a given
set of s ∈ N):

• Additive Kolmogorov–Smirnov measure (AKS),

S12(f) =
∑

x∈D

|Fx1(x) − Fx2(x)|. (3)

• Scaled maximum Kolmogorov–Smirnov measure
(SKS),

S12(f) = a(f) · sup
x∈D

|Fx1(x) − Fx2(x)|, (4)

where the scaling coefficient a(f) is defined as follows:

a(f) =
|E(x1) − E(x2)|
σ(x1) + σ(x2)

. (5)

High values of these measures indicate that the
distributions of points belonging to two classes are
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different (do not belong to the same population of
samples). Such a feature is beneficial.

2.2.4. Application of linear SVM. A support vector
machine of a linear kernel is another good tool for feature
selection (Guyon et al., 2002). In this work it was applied
in two different modes. The first one is its application
in one-input arrangement by using only one feature at a
time (Vert, 2007). We train equally as many networks as
the number of features. Each feature is the only single
input signal to the SVM. The discriminative power of a
single feature is characterized by the value of the class
recognition error, provided by a one-dimensional linear
SVM, trained to classify all learning samples using only
one feature at a time as the input signal. The results
of classification are used for assessing the feature. The
smaller this error, the better the class discriminative ability
of the feature. The discriminative value of the particular
feature f is then defined as

S12(f) =
Nr(f)

Na
, (6)

where Nr(f) represents the number of correctly
recognized samples at application of feature f , while Na

is the total number of samples under recognition. On the
basis of this value, the ranking of features is made. This
method of the feature ranking will be referred to as 1SVM.

The application of the multi-input linear SVM, called
also SVM Recursive Feedback Elimination (SVM-RFE),
was proposed by Guyon et al. (2002). This method found
some modifications (Huang and Kecman, 2005; Yang,
2011) used in various research areas. The discrimination
power of each feature is tested in the presence of the
whole set of features, used as the excitation to the linear
kernel SVM. The decision on the membership of the
n-dimensional input vector x to the particular class relies
on the sign of the value of the linear function y(x) =
wT x + b with the weight vector w ∈ R

n and the bias
b ∈ R dependent on the linear combination of the training
patterns forming the support vectors. The absolute values
of the weights of the vector w produce a feature ranking

S12(f) = |wf |, (7)

where wf is the value of weight joining the input of
feature f with SVM network. The procedure of the feature
elimination is repeated many times by training the SVM
classifiers. The application of the shorter and shorter
feature vectors forms the input signals. The procedure is
ended when we get the state in which there are no weights
of significantly smaller magnitudes, or when we achieve
the vector of appropriate (desired) size. This method will
be shortly denoted by MSVM.

3. Assessment of cluster quality

The samples representing each class form natural clusters
of the data. The quality of these clusters depends on the
size and composition of vectors representing the samples.
In this section we introduce different measures of cluster
quality.

3.1. Class oriented measures of cluster quality. In
this approach the records of data belong to different
classes that are treated as samples coming from two
clusters representing the cancer and non-cancer cases,
respectively. The clusters are represented by their cluster
centres cA and cB . The quality of the clusters may
be characterized by different measures of quality (Sabo,
2014). The first one is the minimum distance dmin (in
Euclidean metric) between closest two points belonging
to different clusters. Denote by A and B the clusters and
by nA and nB their sizes, respectively. Then we get

dmin(A, B) = min
i,j

d(xi,xj), (8)

for i = 1, 2, . . . , nA and j = 1, 2, . . . , nB . The other
measure is the centroidal distance dcent, defined between
the centers of both clusters,

dcent(A, B) = d(cA, cB). (9)

A higher distance guarantees better separation of the
clusters. An important measure is also the dispersion of
the clusters. It is defined as the average of the distances
among all points belonging to the same cluster A and B,

σ(i) =
1
m

∑

xk∈i,xj∈i

d2(xk,xj), (10)

for i = A, B, where m = ni(ni − 1)/2. The total
dispersion of the clustered data may be treated as the sum
of cluster dispersions.

3.2. Quality measures at unsupervised clustering. In
this approach the original set of high dimensional data
is clustered according to the distances into two groups
without taking into account their class membership. In
this way the clusters will contain the representatives of
both classes. The simplest way to such clustering is
the application of the K-means algorithm (Tan et al.,
2006; Haykin, 1999). After performing such clustering
we can assess the quality of clusters by using some
specific measures. Let us denote by nij the number of
representatives of the j-th class in i-th cluster (i, j = 1,
2), by ni the number of elements in the i-th cluster with
n = n1 + n2, and by pij = nij/ni the percentage of the
elements of j-th class in the i-th cluster. The purity of the
i-th cluster is defined as (Tan et al., 2006)

pi = max
j

(pij). (11)
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After dividing the data set into K clusters (K = 2 in our
case), the total purity of the clustered space is defined as

p =
K∑

i=1

pi
ni

n
. (12)

The higher this measure, the more uniform the class
composition of the clusters and the better their predictive
properties. Its high value means the highest purity of the
clustered space (each cluster represents a separate class).

4. Results of gene ranking and fusion

The methods of feature selection presented above were
applied simultaneously to the fusion of the most important
genes corresponding to the division of a prostate cancer
data (Vanderbilt gene data base (Vanderbilt, 2002)) into
two classes. The first class of data (52 records) represents
the prostate tumour and the second (50 records) reflects
the reference class which represents the patients with
no prostate cancer. Each vector of gene expression
contains 10509 elements. The value ranges of these
elements change from gene to gene. The highest and
the lowest range were found for the gene numbers 9737
and 3281. Their values were [12, 15753] and [−7,
10.1], respectively. The set of experimental patterns
x1,x2, . . . ,x102 ∈ R

10509 arranged in the form of
row vectors presents the values of gene expressions
with known class labels d1, d2, . . . , d102 ∈ {−1, 1}
representing either first or second class cases.

4.1. General procedure of gene fusion. To get
the most reliable results, we repeated 10 times the
experiments of ranking according to the procedure
described in Section 2.1. The statistics of the selection
of each gene in these 10 trials were made. In this way we
are able to note the positions of the genes in the ranking
and the frequency of their appearance among the first 100
best. All genes beyond the first 100 are ignored in these
statistics. Our aim is to select only a few genes that best
correlate with the class. In each selection run we take
into the consideration only the 100 best genes and form
a limited, but sufficiently large population of them for the
future fusion procedure.

To find the best set of genes, we applied two fusion
procedures: by frequency and by positions. This allows
us to fuse the results of the individual trials into the
final outcome. The two systems were applied within the
particular methods of selection and then for integration of
all methods into the final result of the gene position. The
results of such selection were compared with a random
selection of 100 genes (without ranking). In this way, we
provided the same size of representative vectors for the
comparison purpose. The random choice of the genes was
also repeated 10 times to average the results.

4.2. Results of clustering class oriented data. In the
first point of our analysis we characterize the distribution
of the available data that belong to the particular classes.
In this analysis we assume that the data of each class form
one cluster. The number of clusters is identical to that
of classes (two in our experiments). The representation
of the original data by the selected genes should result in
different distributions of the clusters. The clusterization
results which are generated by the different selection
methods are compared on the basis of the distances (dmin

and dcent) between both clusters of data as well as the
dispersion measure of the clusters representing the cancer
cases (A) and the reference (healthy) class (B). In this
part of experiments the data belong to the clusters that
are associated with the exactly known membership to the
classes (the clusters are class uniform). The numerical
results of the experiments are presented in Table 1. These
include also the statistical results in the form of mean
value ± standard deviation that was obtained at 10 trials
and a different random composition of 100 genes.

In the table we see that the selection results are
better than the random choice of genes. The presented
methodological approaches to feature selection increases
the distances between clusters in comparison with the
random choice of data, but the differences are not very
significant. The dispersion measures of the clusters were
also reduced.

We provided the visualization of the 100 dimensional
data by mapping them into a two-dimensional coordinate
system to get better insight into the results of selection.
We employed two most important components of linear
Principal Component Analysis (PCA) (Haykin, 1999).
The PCA transformation was performed on the covariance
matrix formed on the basis of the available data. The
PCA mapping results related to the random choice of 100
genes, use of the Fisher method, the final fusion system
by frequency and positions applied to the 100 best genes
are presented in Fig. 1. These results correspond to the
sample run of procedures.

The visualization of results definitely confirmed the
good performance of our selection methods. We obtained
a significant improvement of data location applying only
the Fisher method. When the genes are randomly chosen,
the representatives of both classes are strongly interlaced
with each other. There is no visible border between
both the classes. The application of gene ranking and
selection methods caused that the distribution of data
changed completely. Both classes are well separated now
and only a few representatives are located in a wrong area.

The discrimination ability of the selected genes is
depicted in Fig. 2. It presents the mapping of the
gene expression values into colors for both the classes
considered. The jet color map was used in this mapping.
Figure 2(a) represents the randomly selected set of 10
genes and Fig. 2(b) the results of representing data by
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Table 1. Values of quality measures of class uniform clusters for different methods applied to selection of the 100 best genes.
Method dmin dcentr σ(A) σ(B)

Random 3.84± 0.38 9.63±3.26 12.52±0.47 12.76±0.39
FISH 4.05±0.28 11.55±3.24 11.02±0.42 11.71±0.36
COR 4.30±0.29 11.86±3.19 10.69±0.37 10.08±0.40
WMW 3.95±0.39 9.91±3.27 10.58±0.39 11.08±0.42
AKS 4.37±0.40 11.68±3.25 12.29±0.52 10.51±0.44
SKS 4.03±0.46 9.76±3.24 11.07±0.49 11.98±0.41
1SVM 4.73±0.27 11.23±3.19 11.30±0.39 11.47±0.38
MSVM 6.40±0.24 10.59±3.17 12.13±0.37 12.24±0.33
Fusion by 4.06 11.55 10.51 10.34
frequency
Fusion by 4.45 11.58 10.59 10.35
position

(a) (b)

(c) (d)

Fig. 1. PCA distribution of data at random choice of 100 genes (a), 100 best genes selected by the Fisher method (b), 100 best genes
selected by using the fusion system based on the frequency (c), 100 best genes selected by using the fusion system based on the
positions (d).

the 10 best genes selected using the fusion system based
on positions. The horizontal axis represents the selected
genes identified by their numbers in the original notation.
They are presented in sequence according to their position
in ranking. In the case of randomly selected genes, there
is no visible border between the patterns representing the

first 52 specimen of the prostate cancer and the other 50
healthy specimen. The situation radically changed after
the application of the developed selection procedure. Now
this border is easily recognized, because the pattern of
levels of gene expression belonging to opposite classes is
significantly different.
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(a)

(b)

Fig. 2. Graphical representation of data for the application of
10 genes (features): genes chosen randomly (a), genes
selected by our method (b).

We identified the composition of the genes with the
highest correlation in relation to prostate cancer. Both
the fusion systems (although integration was done on
the outcomes of different principles of basic rankings)
produced consistent results. Among the 10 most
important genes, 9 were the same (10417, 1943, 8765,
7346, 7515, 2718, 7811, 3200, 8220). These genes,
together with the next in ranking, will form the basic input
information for the classification task.

4.3. Results of unsupervised clustering of data.
A very interesting approach to gene selection is
unsupervised clusterization of the data (without taking
into account their class membership) in the process of
self-organization. We performed the simplest clustering
in the form of the K-means method for the data set

represented by all genes (the vector size 10509) and by
shorter vectors formed by the selected genes. In the
experiments we changed the population size of the most
important genes selected by using different methods. The
aim was to find an optimal size of the vector (the number
of the most important genes) resulting in the best purity of
the clusters. Figure 3 presents the total purity curve as the
function of the population of the selected genes after the
fusion of the results of all selection methods. The highest
total purity value corresponds to the optimal number of
features (genes).

Fig. 3. Dependence of the total purity of clusters on the number
of selected genes.

On the basis of this curve, we selected the optimal
number of the most important genes, which equals 10.
Tables 2 and 3 present the numerical results of the chosen
quality measures of the clusters by applying different
ranking methods. The tables show the class distribution
of data belonging to both classes and clusters, the purity
of both clusters as well as the total purity of the clustered
space.

As we can see, the selection and reduction of
features significantly improved the total purity of the
clusterization. The purity of the clusters increased from
the total mean value of 0.67 for all genes (no reduction),
to 0.95 in the best case of reduction. We observed
that different methods had greater or smaller or lower
impact on the results. Also, the integration system of
selection results carried out within the individual method
and between different methods plays an important role.
The mean value of purity over all the methods within the
first system of selection was equal to 0.843, while for the
second one 0.865. The integration of all selection results
improved this value to 0.94 (the first integration system)
and 0.95 (the second integration system).

It is interesting to compare the composition of the
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Table 4. Composition of the set of the 10 best genes selected by the Fisher method and by the proposed fusion by positions, arranged
in the original order of their importance.

Fisher 4823 7451 3200 8220 7652 8765 8468 5461 6640 7515

Fusion 10417 8765 7515 7346 2718 1943 4823 3200 8220 7451
by position

Table 2. Integrated results of clusterization of gene expression
microarray data for all genes and for 10 genes selected
using the fusion system based on frequency.

Method Cluster Class 1 Class 2 Purity Total
purity

No selection A 5 16 0.76 0.67
(all genes) B 47 34 0.58
FISH A 8 46 0.85 0.89

B 44 4 0.92
COR A 6 42 0.88 0.87

B 46 8 0.85
WMW A 4 48 0.92 0.92

B 48 2 0.96
AKS A 6 25 0.81 0.70

B 44 25 0.64
MKS A 6 26 0.81 0.70

B 46 24 0.66
1SVM A 6 46 0.88 0.90

B 46 4 0.92
MSVM A 10 50 0.83 0.92

B 42 0 1.00
Fusion by A 5 49 0.91 0.94
frequency B 47 1 0.98

Table 3. Integrated results of clusterization of gene expression
microarray data for all genes and for the 10 best genes
selected using the fusion system based on positions.

Method Cluster Class 1 Class 2 Purity Total
purity

No selection A 5 16 0.76 0.67
(all genes) B 47 34 0.58
FISH A 5 48 0.92 0.93

B 47 2 0.96
COR A 6 49 0.89 0.92

B 46 1 0.98
WMW A 11 49 0.82 0.90

B 41 1 0.98
AKS A 6 19 0.76 0.70

B 46 31 0.60
MKS A 8 25 0.76 0.68

B 44 25 0.64
1SVM A 6 49 0.89 0.92

B 46 1 0.98
MSVM A 5 49 0.91 0.92

B 47 1 0.98
Fusion by A 4 49 0.92 0.95
positions B 48 1 0.98

selected genes found by the best final fusion system
corresponding with the last row of Table 3 and the
composition of genes selected by the best individual
method of only slightly lower purity (for example,
the Fisher method—the second row of the results of
Table 3). Table 4 depicts the identification of the 10
best genes selected by both the methods (Fisher and
fusion system by positions) arranged in the original order
of their importance. They represent the fused results
of the application of all selection methods at all trials.
Among the 10 best genes we found 6 which appeared
simultaneously in both the methods (7451, 3200, 4823,
8220, 8765, 7515). The other four were different in
both the cases. This means that the integration process
significantly influenced the selection process.

If we transpose the results directly from purity to
class recognition (the sample falling into a particular
cluster is automatically associated with the majority
class), we can observe a significant improvement of
recognition accuracy after the selection process. In the
case of all genes taking part in clusterization, there were
39 misclassified cases (38.2% of the relative error). In
the best case of integration, the total number of the
misclassified samples was equal to 5, which corresponds
to the relative error equal to 4.9%. These results indicate
the upper limit of classification accuracy in the application
of clusterization as classification tool. Application of
more advanced classifiers should lead to an improvement
of the classification results. In the next section we will
present the results of applying the SVM as the classifier,
performing the task of gene pattern recognition.

5. Classification of prostate tumor data

5.1. SVM classifier. The last step of the developed
gene ranking approach is performing the recognition
of data into two classes in the application of the
selected genes. This classification step used for
the final recognition of the tumor from the healthy
cases was performed by applying once again support
vector machine classifiers. However, this time the the
polynomial kernel was used (Scholkopf and Smola, 2002).
This particular kernel was chosen after introductory
experiments involving other types of kernel (linear,
Gaussian, sigmoidal). The polynomial kernel was found
to have the highest accuracy of classification. In these
experiments we used a solver developed and implemented
in Matlab by Fan et al. (2005) as well as Chang and Lin
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(2011). This algorithm is based on modified sequential
programming.

The support vector machine is a solution of a
feedforward structure with one hidden layer. The
application of a special learning method leads to
a quadratic program with linear constraints and one
well-defined global minimum. Basically, the SVM is a
one output linear machine, working in a high dimensional
feature space formed by nonlinear mapping of the original
n-dimensional input vector x into the k-dimensional
feature space. The nonlinear vector function ϕ(x)
is arranged in the form of the kernel K(x,xi) =
ϕT (x)ϕ(xi). More details about the learning phase of
this network can be found, e.g., in the book of Scholkopf
and Smola (2002).

The regularization constant C plays an important role
in the learning phase. It balances the complexity of the
network, characterized by the values of weights and the
error of the classification, over the learning data. The
low value of C means smaller significance of the learning
errors in the adaptation stage and leads to a smaller
network size of a higher separation margin. Increasing
the value of C leads to more complex structures with a
smaller separation margin but better performance over the
learning data. For normalized input signals, the value of
C is usually much bigger than 1 (a typical value is in
the range from 100 to 1000). In practice, we adjusted it
by a trial-and-error procedure using a small percentage of
validation data extracted from the available learning data.
In the same way we adjusted the proper value of the degree
q of the polynomial kernel function. The parameters C
and q were adjusted simultaneously by trying different
combinations of their values in the introductory stage of
the experiments.

5.2. Results of classification. In this part of research
we investigate the accuracy of cancer recognition from the
normal cases on the basis of gene expression microarray
data at different selections of genes. Well selected genes
should result in an improvement of cancer recognition
accuracy. The application of all genes together in
the recognition is not suggested. The number of
records corresponding to the individuals is too small in
comparison with the number of genes in order to get the
reliable results.

In this research we compare the results of cancer
recognition applying a limited number of genes selected
by the ensemble of all methods. The quantity of the
genes used comes from the results of data clusterization.
In these experiments we applied the population of genes
which corresponded to the highest purity of clusters.
According to the results of Fig. 3, it was equal to 10.
For the comparison purposes, we performed additional
classification trials with the same number of genes, but
selected randomly from the whole population of the

available genes.
To get the objective results, we applied a 10-fold

cross validation approach, repeating the learning/testing
experiments 10 times, changing each time the testing part
of the data not used in learning (Haykin, 1999). As
the classifier, we used the SVM network of a third-order
polynomial kernel. On the basis of these experiments, the
percentage error of testing was calculated.

The particular results of the experiments will be
depicted in the form of a confusion matrix representing
the average results of the cross validation procedure
for the testing data. The rows represent the real class
membership of the data and the columns—the results
of the classification. The diagonal entries (i = j)
represent the number of properly recognized classes.
Each entry outside the diagonal represents the number of
misclassified cases. The entry in the (i, j)-th position of
the matrix means a false assignment of the i-th class to the
j-th one. Table 5 presents the best results of classification
corresponding to the fusion system based on positions in
the application of the 10 best genes.

As can be seen, the recognition results are nearly
perfect. Only few representatives of both classes were
misclassified. The relative error of the final classification
results was reduced to 1.96%.

To compare the importance of gene ranking, we
repeated these 10 cross validation experiments by
randomly choosing the composition of 10 genes. The
obtained results in the form of a confusion matrix are
depicted in Table 6. This time the misclassification rate
is very high (32.3%).

From these results it is evident that the application of
the highest ranked genes in this representation of samples
provides the highest accuracy (the least relative error) in
all experiments.

In the medical experiments the accuracy is usually
only one measure of the quality. This measure treats every
class as equally important, hence it is not sufficient to
assess the method in an objective way. Additional aspects
of the results associated with the importance of the cancer

Table 5. Confusion matrix of the classification results for the
application of the 10 best genes selected by the fusion
system based on positions.

Class 1 Class 2

Class 1 51 1
Class 2 1 49

Table 6. Confusion matrix of the classification results by apply-
ing 10 randomly selected genes.

Class 1 Class 2

Class 1 39 13
Class 2 20 30
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class recognition (called here True Positive, TP) from
the healthy class (True Negative, TN) should be taken
into consideration. By the symbol FN we understand the
number of cancer specimen falsely recognized as healthy
and by FP—healthy cases recognized as cancerous. On
the basis of this notation we define here four quality
measures of classification.

The most important is the True Positive Rate (TPR),
called also sensitivity, defined as the fraction of all
positive examples predicted correctly by the classifier
TPR = TP/(TP + FN ). Similarly, the True Negative
Rate (TNR), called specificity, is defined as the fraction
of negative examples predicted correctly by the classifier
TNR = TN /(TN + FP). The next used measure is
the False Alarm (FA) rate defined as the ratio of
negative class cases recognized by the classifier as positive
FA = FP/(FP + TN ). The last one of very high
importance is the False Negative Rate (FNR), defined as
FNR = FN /(TP + FN ). Table 7 presents numerical
results which concern these quality measures when
applied to the recognition of a prostate cancer specimen
from healthy ones. They correspond to the use of the
10 highest ranked genes selected by the fusion method
based on positions. The sensitivity and specificity of the
proposed classification method achieve very high values
(close to 0.98). On the other hand, the false alarm rate
is very low. These results confirm high efficiency of the
developed approach.

6. Conclusions

We analyzed different methods of gene selection for the
recognition of the prostate tumor from healthy cases using
the gene expression array. We applied seven chosen
measures of the gene class discrimination ability for this
pattern recognition problem. The methods considered
represent different approaches to feature selection and
apply the correlation of the gene with the classes, the
Fisher measure, statistical hypotheses as well as the
application of the classification ability of the linear SVM.

We proposed a two-step procedure of ranking the
most important genes associated with the classes. In
the first step, each method acts in an independent way,
estimating its specific value of the discriminative measure
for each gene. On the basis of these values the genes are
ranked from the most to the least significant. To avoid the
problem of scarcity of data in comparison with the number

Table 7. Values of quality measures for recognition of prostate
cancer cases (class +) and healthy ones (class −) for
application of the 10 highest rank genes after fusion by
positions of all methods of selection.

TPR TNR FNR FA

0.981 0.980 0.019 0.020

of genes, the ranking procedure was repeated many times
using different (randomly chosen) sets of data records.
Next, we determined the positions of the genes and the
frequency of their selection from the best set in these
cross-validation runs. On the basis of these results, we
finally create the first step of the gene ranking.

In the second stage of the ranking procedure, we
compared the contents of the high rank genes created by
the different methods. Through these results we are able
to identify the highest rank genes chosen by most of the
selection methods. They form the final set of the best
genes (the genes correlated with cancer in the highest
way). Two approaches to fusion were investigated. The
first one considered the frequency of occurence of the
particular feature in the best set in all rankings, and the
second one—the position of each feature in the rankings.

The quality of the ranking procedure has been
checked in different ways. First, we checked the visual
form of the expression level of the selected genes for
both classes. The other visualization form applied the
mapping of data by using principal component analysis
and presenting the transformed data in a 2-D space formed
by the two most important components. The numerical
analysis of the clusters formed by 2-class data was also
important. We defined and investigated various measures
of cluster quality by considering the selected genes. On
the basis of this analysis, we were able to determine the
optimal number of genes used in the final classification
step.

In order to verify the results, we applied the SVM
classifier with the polynomial kernel, which is responsible
for recognition of tumor data from non-tumor cases. In
this step, we use the top ranked genes as the input
information in the classifier to obtain the best possible
recognition of the classes which the succeeding records
belonged to.

Observe that the testing data did not take part in
the learning phase. The results of classification on
this set of data were of very high quality, proving the
efficiency of the proposed gene ranking methods. The
average accuracy of class recognition in the prostate tumor
problem, calculated on the basis of 10 cross-validation
runs, was equal to 98.04%. This result is compared
favorably with the most recent results for similar data of
prostate tumor (Wang and Gotoh, 2010), processed using
rough set theory. The declared average accuracy on the
PRT data in this paper was equal to 90.98%, while the
highest single run achieved the peak value of accuracy
below 98%. Our approach guaranteed high quality and
stable results.
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