
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 3, 535–550
DOI: 10.2478/amcs-2014-0039

USING A VISION COGNITIVE ALGORITHM TO SCHEDULE VIRTUAL
MACHINES

JIAQI ZHAO ∗, YOUSRI MHEDHEB ∗∗, JIE TAO ∗∗, FOUED JRAD ∗∗ , QINGHUAI LIU ∗,
ACHIM STREIT ∗∗

∗ School of Basic Science
Changchun University of Technology, Yan An Street 2005, 130012 Changchun, China

e-mail: scorpiozhao@yahoo.com.cn,liuqinghuai21@126.com

∗∗Steinbuch Center for Computing
Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

e-mail: {yousri.mhedheb,jie.tao,foued.jrad,Achim.streit}@kit.edu

Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance,
the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand
physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NP-
hard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM)
scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the
largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates
an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire
system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem.
This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing
them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the
novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models
different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired
from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center
energy consumption.

Keywords: cloud computing, vision cognitive algorithm, VM scheduling, simulation.

1. Introduction

The concept of cloud computing (Armbrust et al., 2009;
Mell and Grance, 2013; Wang et al., 2010a; 2013a)
was introduced by Amazon with its Elastic Compute
Cloud EC2 (Amazon, 2013a) and Simple Storage Service
S3 (Amazon, 2013b). This concept was immediately
accepted by both the industry and the academy due to
its special features of provisioning computing capacities
as services in a self-service and easy-to-use manner.
According to the definition of the National Institute of
Standards and Technology (NIST), cloud computing is
a model for enabling convenient, on-demand network
access to a shared pool of configurable computing
resources (networks, servers, storage, applications, and
so on) that can be rapidly provisioned and released

with minimal management effort or service provider
interaction (Mell and Grance, 2013).

The services provided by existing cloud
infrastructures can be classified into three models,
i.e., Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) (Mell
and Grance, 2013; Kahn et al., 2013) . IaaS targets on
an on-demand provision of the computational resources,
normally in the form of virtual machines. Customers can
install software packages on the machines to establish
their own computing environments. SaaS provides
customers with a functionality of using the provider’s
applications in the form of Web services that run centrally
on the computing infrastructure of the service provider.
PaaS targets on an entire platform including the hardware
and the application development environment, which

scorpiozhao@yahoo.com.cn, liuqinghuai21@126.com
{yousri.mhedheb,jie.tao,foued.jrad,Achim.streit}@kit.edu

536 J. Zhao et al.

allows the users to develop their applications using
the provider’s computing platform. Existing clouds
are mostly IaaS-featured. Examples include Amazon
EC2, SmartCloud (IBM, 2013), Flexiscale (FlexiScale
Ltd., 2013), as well as academic implementations like
Eucalyptus (Nurmi et al., 2008), OpenNebula (Sotomayor
et al., 2008), Nimbus (Keahey and Freeman, 2008) and
OpenStack (Openstack, 2013).

Cloud computing is enabled by several underlying
technologies, where the virtualization technology is
especially important. Actually, the virtualization
approach was proposed in the late 1950s with an
initial goal of running different binary codes on the
expensive hardware. Today, cloud computing makes
virtualization a hot topic because it relies on this
technology to provide on-demand, elastic computing
resources. The virtualization itself is also developed from
a simple approach to a mature technique with a standard
virtualization layer as middleware. This additional system
layer, the so-called hypervisor or virtual machine monitor
(Rosenblum and Garfinkel, 2005), exists between the
operating system and the system hardware to enable
the running of multiple operating systems on the same
physical machine. The functionality of a hypervisor
is to provide each operating system with a virtual set
of hardware components, including the processor, the
memory and devices. Xen (Barham et al., 2003),
VMware (VMware Inc., 2013) and KVM (KVM, 2013)
are the three well-known hypervisors among the existing
implementations. The Xen hypervisor is an open source
development and is widely used for research purposes.
KVM is also an open source implementation. It provides
virtualization capacities directly in the Linux kernel,
achieving the thinnest hypervisor of only a few hundred
thousand lines of code. VMware is a commercial product
and is mainly used for server consolidation.

Virtualization brings a new computing methodology
but also new research issues, especially with respect to
performance (González-Vélez and Kontagora, 2011). One
of the major research topics for virtualized infrastructures
is VM scheduling that decides which physical machine
shall host a new virtual machine. The scheduling result
directly influences the performance and efficiency of the
entire virtual infrastructure.

Scheduling is not a novel topic. This issue exists
in various scenarios, like task scheduling in parallel and
distributed systems and job scheduling in computing grids
(Kołodziej and Xhafa, 2011). Researchers have also
proposed a number of algorithms for tackling different
scheduling problems. The design of a VM scheduling
scheme on the cloud, however, is more challenging
because the following facts with computing clouds:

• large system scale with several hundred thousand
computing nodes (and this scale has been growing

up);

• business model that expects a low operation cost and
a high Quality of Services (QoS) with respect to the
response time on a VM request, system performance,
service availability, etc.;

• large number of customers/users, meaning also a
large number of VM requests;

• workloads cannot be pre-defined or predicted.

Considering these features we proposed a scheduling
scheme and a global optimization algorithm to address
virtual machine allocation on the cloud. Our first concern
is the energy consumption because large part of the cloud
center operation cost is contributed by this factor. The
second consideration is the service quality, especially the
response time to a VM request. For this purpose the
scheduling process must be fast and efficient with low
overheads, thus to be capable of handling unexpected
workloads. We also aim at maintaining the performance
of the running virtual machine. With these concerns as
background we designed and implemented the scheduling
policies and algorithms. In summary, our approach
contributes to the stand of research on VM scheduling
with the following features:

• Thermal-aware scheduling: The temperature of
a host machine is modelled and involved in the
VM scheduling to prohibit a processing core from
reaching a temperature limit. A higher temperature
of the processor not only results in more energy
consumption but also increases the possibility of
hardware failure.

• Load-aware scheduling: The scheduling scheme
guarantees that none of the physical hosts is
overloaded in order to maintain the performance of
applications running on a virtual machine.

• Energy-based global optimization: A vision
cognitive algorithm was developed to search for
the best host for a VM instance with the result of
minimal energy consumption. The novel algorithm
uses overlook points to reduce the number of
candidate hosts and hence converges faster than the
traditional pairwise comparison methods.

All of these policies are specifically designed for
lower operation cost as well as service performance
and quality of a cloud center. Thermal-aware
targets on the operation cost and service availability
with balancing temperature across processing cores,
load-aware addresses the performance issue of cloud
services, and global optimization aims at a minimal
energy consumption while keeping the response time
possibly low for ensuring the service quality.

Using a vision cognitive algorithm to schedule virtual machines 537

The proposed approach was validated using
CloudSim (Calheiros et al., 2011), a well-know simulator
for research works on cloud computing. The reason
for applying a simulator rather than a real cloud is
that validating this concept requires detailed information
about the target cloud, including the system configuration,
the runtime workload as well as the temperature of all
physical hosts. These details cannot be gained from real
clouds. On the other hand, the simulator allows us to
model various system scales and use scenarios. Therefore,
it is the best choice for us to study the feasibility and
functionality of the proposed algorithms.

In addition to the proposed scheduling scheme, we
also implemented several other scheduling policies for a
comparative study. The experimental results show that
the proposed approach performs better than others with
the lowest energy consumption while the service quality
is granted in most cases.

The remainder of the paper is organized as following.
Section 2 introduces the related work on scheduling
approaches and global optimization algorithms. Section 2
describes the design of the thermal-aware and load-aware
scheduling scheme. This is followed by describing
the vision cognitive algorithm in Section 3. The
implementation on top of CloudSim is then detailed in
Section 5. Section 6 shows the experimental results with
discussions. Finally, the paper concludes in Section 7,
with a brief summary and several future directions.

2. Related work

This research work mainly addresses two research topics,
i.e., task scheduling and global optimization algorithms.
In this section the related works in both areas are
described in three categories: cluster task scheduling, VM
scheduling and global optimization algorithms.

2.1. Cluster task scheduling. Scheduling is a hot
topic in the area of parallel and distributed computing.
A common scenario is the scheduling of parallel tasks
on a cluster system (Valentini et al., 2013; Min-Allah
et al., 2012). There are a number of production
schedulers that are widely used in both commercial and
research computing infrastructures. Condor (Tannenbaum
et al., 2002), Torque (Staples, 2006; Adaptive Computing
Inc., 2013), PBS (Altair Engineering Inc., 2013) and
SUN/Oracle Grid Engine (Gentzsch, 2001; ORACLE,
2013) are several representative examples.

In addition to these mature products, researchers
have been studying on scheduling issues for various
use cases, with the earlier implementation focusing on
load-balancing and recently with energy-awareness (Hsu
and Feng, 2005; Kołodziej, et al., 2013a; Wang et al.,
2012a; 2011b; Zhang et al., 2013) as additional features.

Kim (1988) as well as Wu and Gajski (1990)
introduce a graph clustering technique that applies static
scheduling heuristics to schedule parallel tasks. Given a
task graph, “clustering” is the process of mapping task
graph nodes onto labelled clusters. All tasks of the same
cluster are executed on the same processor. This approach
is similar to the list scheduling algorithm described by
Li and Huang (2007) as well as Mtibaa et al. (2007).
List-based scheduling algorithms assign priorities to tasks
and sort tasks into a list ordered in decreasing priority. The
tasks are then scheduled based on the priorities.

As computing systems consume more and more
energy (Wang and Khan, 2013b; Bilal et al., 2013), a
growing number of research works on task scheduling
show the feature of energy-awareness. Most of these
research works adopt the technique of Dynamic Voltage
and Frequency Scaling (DVFS). It has been proven to
be a feasible solution for reducing processor energy
consumption (Hsu and Feng, 2005). By lowering the
processor clock frequency and supply voltage during
some time slots (for example, idle or communication
phases), energy consumption can be significantly reduced
with a slight performance loss. Therefore, the
DVFS technique has been applied in high performance
computing fields, in large data centers, etc., to reduce
the energy consumption while gaining high reliability and
availability.

The works of Yao et al. (1995) as well as Manzak
and Chakrabarti (2003) focus on scheduling independent
tasks with DVFS on a single processor. Gruian and
Kuchcinski (2001) propose a list-based low energy
scheduling algorithm—LEneS. It smartly introduces
enhanced task-graphs and energy gain in the list-based
scheduling. In the work presented by Martin et al. (2002)
a hybrid global/local search optimization framework is
developed for DVFS with simulated heating. The research
work of Zong et al. (2011) studies two energy-aware
duplication scheduling algorithms for parallel tasks on
homogeneous clusters. Lee and Zomaya (2009) propose
an energy-conscious scheduling heuristic for parallel tasks
on heterogeneous computing systems. In addition (Wang
et al., 2010b; 2013c) exploit DVFS to implement a
power-aware task clustering algorithm for parallel HPC
tasks. The algorithm takes care of the slack time for
non-critical jobs, extends their execution time and reduces
the energy consumption without increasing the task’s
execution time as a whole. The algorithm is validated
using a simulation approach. Lin and Qiu (2010) apply
a thermal-aware strategy based on the RC thermal model
(Skadron et al., 2002) to reduce the peak temperature of
HPC servers under stochastic workloads. The approach
by Zhang and Chatha (2007) combines the two techniques
used by Wang et al. (2010b) as well as Lin and Qiu
(2010) to solve a temperature-aware scheduling problem.
For this, the researchers implement an approximation

538 J. Zhao et al.

algorithm based on the lumped RC thermal model and
DVFS to study the effect of using the thermal constraints
on maximizing the performance of tasks running on some
CPU architectures.

2.2. VM scheduling. As the virtualization technology
is getting hot, the problem of virtual machine scheduling
has also been studied. Kim et al. (2008) implement
a guest-aware priority-based scheduling scheme, which
is specifically designed to support latency-sensitive
workloads. The proposed scheme prioritizes the virtual
machines to be allocated by using the information about
the priorities and status of guest-level tasks in each VM.
It preferentially selects the VMs that run latency-sensitive
applications to be scheduled, thus reducing the response
time to the I/O events of latency-sensitive workloads. The
algorithm was integrated in the Xen hypervisor.

Wang et al. (2012b) propose a novel VM scheduling
algorithm for virtualized heterogonous multicore
architectures. It exploits the core performance
heterogeneity to optimize the overall system energy
efficiency, and uses a metric termed energy-efficiency
factor to characterize the power and performance behavior
of the applications hosted by VMs on different cores.
The VM’s energy-efficiency factors are calculated, and,
based on the values, virtual machines are mapped to
heterogeneous cores with the final goal of maximizing
the energy efficiency of the entire system. Similarly
to the previous work, this scheduling scheme is also
implemented within the Xen hypervisor.

Takouna et al. (2011) also addresses the VM
scheduling of heterogeneous multicore machines. A
scheduling policy is designed to schedule each virtual
machine to an appropriate processing core based on the
performance sensibility to the CPU clock frequency and
the performance dependency on the host. The policy is
validated using the Xen hypervisor.

In addition to the research work on VM schedulers of
general purposes, the specific problem of VM scheduling
on the cloud has also been addressed over the last years.

The work presented by Fang et al. (2010) develops
a two-layer scheduling model, where the first layer
creates the description of resource requirement of a virtual
machine while the second one takes care of the VM
scheduling on the host. By allocating the VMs to the hosts
that closely meet the resource requirement, this approach
tries to better use the cloud hardware resources. The
approach was evaluated on CloudSim.

Lin et al. (2011) propose a dynamic round-robin
scheduling scheme for deploying and migrating virtual
machines to or across the servers on the cloud. The
scheme uses two scheduling rules, whereby the first one
avoids allocating additional virtual machines to a retiring
physical machine that will be shut down while the second
one speeds up the consolidation process. The main goal

of this approach is to reduce the number of physical
machines used for saving energy.

Hu et al. (2010) propose a scheduling strategy for
VM scheduling on the cloud with load balancing. The
scheduling decision is based on the historical information
and the current state of the system. The influence on the
system after the deployment of the required VM resources
is pre-estimated, and based on this information the best
solution is chosen, which will introduce the best load
balancing and reduce or avoid dynamic VM migration.

Jang et al. (2012) design a task scheduling model
with the QoS taken into account. For each task the
model creates a set of chromosomes that contain the task
allocation and virtual machine information. The model
actually handles the problem of scheduling computing
tasks to virtual machines, rather than scheduling VMs to
physical hosts. The chromosomes are possible task and
VM pairs. The model then calculates a fitness value for
each chromosome to show how well the virtual machine
matching the task requirement, and thereby find the best
matches with respect to the user’s satisfaction and VM
availability.

Knauth and Fetzer (2012) propose a scheduler called
OptSched, which schedules virtual machines based on
the knowledge about the duration of timed instances to
optimize the virtual to physical machine assignment. It
co-locates timed instances with similar expiration times.
For each host, OptSched calculates the expiration time
delta between the instance to be scheduled and the
instance with the longest remaining execution time. It
then schedules the new instance on the host with the
smallest delta. If the new instance shows a longer
execution time than the remaining execution time of all
running instances, the new instance is scheduled on the
host where it extends the host’s uptime minimally. The
main goal of this scheduler is to reduce the cumulative
machine uptime and thereby save the energy consumption.

The work by Beloglazov and Buyya (2010) is
also one of the few approaches which take care of
energy issues of resource allocation on the cloud. The
authors implement a simulation environment based on
CloudSim (Calheiros et al., 2011) to evaluate various
power-aware scheduling policies for VMs running on a
large scale cloud center. Furthermore, they show how
VM migration and VM pining techniques can optimize
the load-balancing and the total energy consumption of
the cloud center.

2.3. Global optimization algorithms. Another topic
related to this work is to study global optimization
problems. Global optimization is a mathematical
problem, widely investigated in recent years (Mesghouni
et al., 2004). As a consequence, several intelligent
optimization algorithms have been developed, including
the tabu search algorithm, the quasi annealing algorithm,

Using a vision cognitive algorithm to schedule virtual machines 539

neural network algorithm, the genetic algorithm and the
ant colony algorithm.

The tabu search algorithm (Glover, 1989; 1990)
is a global optimization algorithm aiming to simulate
human intelligence. This algorithm has a better ability
in local optimization but it suffers from a premature
termination phenomenon. The quasi annealing algorithm
(Lundy and Mess, 1986) is a low intelligent algorithm. It
simulates annealing objects and thereby forms a modern
optimization algorithm. The computation amount of
this algorithm is lower than that of the Monte Carlo
method. Nevertheless, its global convergence is quite
poor. The neural network algorithm (Xing and Xie,
2007) is a kind of intelligent algorithm that constructs
an artificial neural network model. The algorithm is fast
and simple, but it also falls easily into a local optimal
solution. The genetic algorithm (Wang et al., 2007)
is an intelligent optimization algorithm based on the
biological capacity of the living beings under the use of
Darwin’s evolution theory of the “survival in the fittest”.
Genetic algorithms search the solution globally in the
entire space and therefore deliver more accurate results,
but also require a long computational time as well as
suffer from the premature convergence phenomenon. The
ant colony algorithm (Wang et al., 2007) is a distributed
intelligent simulation algorithm that imitates the social
behavior shown by ants by relying on pheromones to
communicate. This algorithm can achieve better global
optimal solutions, has the feature of strong robustness, and
is a parallel algorithm. Its disadvantage lies in the fact that
the algorithm involves a lot of parameters and there are
no deterministic methods to assign the parameters with
a fixed value, and hence can only rely on experiments
or experiences. Other deficits of the algorithm include
long calculation time and easy occurrence of deadlocks
or interruption. The lookout algorithm (Cai et al., 2006)
was proposed based on the knowledge of determining
the highest point of a mountain by simple observation.
The algorithm contains several components including
the lookout management mechanism, the strategies for
creating the lookout points, and the building and solving
of local problems. This algorithm performs a global
search but it is easy to produce the leak phenomenon.

Overall, all the algorithms, including tabu search,
simulated annealing, the neural network, the genetic
algorithm, ant colony and lookout, may create the leak
phenomenon in solving global optimization problems or
only achieve a local optimization result. Therefore, we
propose a kind of vision cognitive algorithm to solve
the global optimization problem in VM scheduling on
the clouds. This novel approach, similar to the lookout
algorithm, is also based on the behavior of human
beings locating on the highest/lowest objects by simply
observing. However, it ensures that no leak phenomenon
occurs while producing the observation points. We

used mathematical methods to prove that the sequences
generated by the algorithm converge in probability to the
global minimum.

2.4. Summary. Overall, task scheduling is a hot
topic for parallel and distributed computing and has been
addressed not only in the field of cluster computing
but also other fields like grid computing (Kołodziej et
al., 2012; 2013b; Chen et al., 2013; 2010; Wang et
al., 2011a). On the cloud specifically, task scheduling
deals actually with the allocation of virtual machines. In
the last years the topic of VM scheduling on the cloud
has been studied and load-balancing schemes have been
also investigated. However, thermal-aware scheduling on
the cloud is still not touched upon. This is a special
feature of the work presented in this paper. More
specifically, the proposed scheduling approach solves a
global optimization problem in order to schedule the
virtual machine on a host that results in the minimal
system energy consumption. The work of Lin et al. (2011)
touches explicitly upon the energy issues on the cloud,
however, the approach is limited to simply shutting down
physical hosts without a global view of the entire system.
The developed new vision cognitive algorithm speeds up
the process of finding the best target host. Therefore,
the proposed approach scales well with current and future
cloud infrastructures that are getting larger and larger.

3. Scheduling scheme

3.1. Problem description. VM scheduling on a
cloud centre handles the task of finding a physical host
in response to a VM request of a user. The VM
request contains the users requirement on the hardware
(potentially also software user’s) configuration of the host
machine. For example, a user may ask for a physical
machine with minimum four computing cores of Intel
processors, a three-level cache hierarchy, a memory size
larger than 2 GB, and so on. We can use the following
mathematical form to describe such a request:

R = {R1, R2, R3, . . . , Rm},

where Ri is a single requirement attribute in the form of
A > (or <,≥,≤) value (e.g., memorysize ≥ 2GB).

The scheduler’s task is to match this request to a
host that also has its individual hardware configuration
and system status, like free resources, CPU utilization and
temperature. We use the following mathematical form to
describe a host machine:

Hi = {P1, P2, P3, . . . , Pn},

where P shows the hardware parameters and current state
of the host. The following host, for example, is equipped

540 J. Zhao et al.

with 64 processing cores and has a free memory of 4 GB,
a free disk space of 40 GB, a CPU load of 60%, etc.:

Hi = {64 cores, 4G RAM , 40Gdisk , 60%CPU , . . .}.

In a cloud centre there are hundred thousand physical
hosts. This work aims to solve a problem of finding one of
them that (i) best matches the users requirement; (ii) both
its CPU load and temperature do not exceed a pre-defined
threshold once the VM runs on it; and (iii) its additional
energy demand for running the VM is lower than that of
any other host machines.

3.2. Models. To implement a scheduling scheme
with the three goals described above, we need to model
the CPU temperature and the energy consumption of a
computing system.

For measuring the CPU temperature we apply the
RC thermal model with single core processors (Skadron
et al., 2002). According to Skadron et al. (2002), for
an integrated circuit at the die level, heat conduction is
the dominant mechanism that determines the temperature.
There exists a well-known duality between heat transfer
and electrical phenomena. Any heat flow can be described
as a current and the passing of this heat flow through
a thermal resistance leads to a temperature difference
equivalent to a voltage. Figure 1 depicts the RC
model, where C stands for the thermal capacitance of
the processor, R for the thermal resistance, P for the
processor’s dynamic energy consumption, and Tamb for
the ambient temperature.

Fig. 1. Lumped RC model of a single core processor.

The relationship between the ambient temperature
and the dynamic energy consumption can be modelled as

Tamb = RC
dT

dt
+ T − RP,

and the dynamic energy consumption of a processor is
determined by

P = kf,

where f is the CPU frequency and k is a constant
which presents the CPU feature and is determined by the
processor vendor and the design of the processor.

Given an initial die temperature of Tinit at the time
zero and assuming that P remains unchanged during the
time period [0, t], the temperature of the processor at time
t can be computed with (Lin and Qiu, 2010; Zhang and
Chatha, 2007)

T (t) = PR + Tamb − (PR + Tamb − Tinit)e−
t

RC .

The second model is the energy model used to
compute the energy consumption of a server, i.e., a host
machine in a cloud centre. Recent studies (Beloglazov
and Buyya, 2010) show that the energy consumption
by servers can be accurately described by a linear
relationship between the energy consumption and the
CPU utilization, even when the dynamic voltage and
frequency scaling scheme is applied. The reason lies
in the limited number of states that can be set to the
frequency and voltage of the CPU and the fact that
voltage and performance scaling are not applied to other
system components, such as the memory and the network
interface. Moreover, these studies show that on average
an idle server consumes approximately 70% of the energy
consumed when it is fully utilized. Therefore, the energy
consumption of a server E can be modelled as a function
of the CPU utilization u:

E(u) = (1 − u)0.7Emax + uEmax,

where Emax is the power consumption of a server in full
use. For example, a server of a data centre is in 90% used
and 10% the idle. In this case, the energy consumption of
the server is 0.9×Emax in the busy status and 0.1×0.7×
Emax in idle status. The total energy consumption of the
server is the sum of the two parts.

3.3. VM scheduling. Based on the models described
above, we designed a scheduling scheme for allocating
virtual machines on a cloud infrastructure with the
following three steps:

• Filtering by the user requirement: The requirement
parameters in a VM request are compared with the
configuration and current status of available host
machines of the target cloud. The hosts that do
not match users’ requirement are filtered out and the
other hosts serve as the input for the next step.

• Threshold with load and temperature: The second
step of the scheduling is to check whether a host
machine is overloaded or its processor temperature
is above a pre-defined threshold, in the case that the
incoming virtual machine runs on it. Those hosts that
do not pass the examination are removed from the
candidate list.

• Minimal energy consumption: In the last step of the
scheduling, the energy consumption of the candidate

Using a vision cognitive algorithm to schedule virtual machines 541

host machines before and after hosting the virtual
machine is calculated. The host that causes the
smallest increase in the energy consumption of the
system is chosen as the dedicated machine for the
new VM instance because it results in the minimal
energy consumption of the whole system.

The final step of the scheduling is a global
optimization problem, where the additional energy
demand of all candidate host machines for running the
incoming VM instance has to be compared to find the one
with the minimal value. In this case we propose a novel
vision cognitive algorithm to enable an accurate result
with a short computing time.

The second step of the scheduling deals with two
thresholds, one is the CPU utilization and the other is the
processor temperature. The problem can be simply solved
by the traditional approach of cutting off the values over
the thresholds.

The first step of the scheduling handles two
parameter sets, one is the VM request of users and the
other is the host information. It solves the problem
of matching one set to the other to see whether the
value in the host set is equal to or larger/smaller than
the requirement for each parameter attribute specified in
the set of a VM request. Depending on the number
of parameters, solving this problem can be complicated
and rather time-consuming. Currently, we use a simple
approach of comparing two data sets. However, a fast
mathematical algorithm is needed for large cloud systems
with a huge computing capacity. This is a research focus
in the next step of this work.

Fig. 2. Interaction of the VM scheduler with the cloud.

The proposed VM scheduler is designed to be
integrated in a cloud middleware to replace its original
one, usually a round-robin scheme that allocates the VMs
to each host equally in a cyclic order. As depicted in

Fig. 2, the VM scheduler is a part of a cloud middleware
that is responsible for the resource management, VM
issues, and so on. Users’ requests for creating a VM are
delivered to the Cloud middleware, where the scheduler
determines a target host based on the proposed strategies
described above. The hosts are virtualized using a certain
hypervisor. Finally, the Cloud middleware starts a VM
on the chosen host with the user-given machine images.
We implemented this infrastructure on top of a Cloud
simulator. The implementation details will be shown
later after the description of the algorithm for global
optimization.

4. Vision cognitive algorithm

The proposed novel algorithm solves the following global
optimization problems:

c∗ = min
x∈Rn

f(x). (1)

4.1. Algorithm. This subsection first introduces the
algorithm. The proof and validation are given in the
following two subsections.

Assumption 1. f : R
n → R is continuous and has a lower

bound.

Assumption 2. There exists a real number c0, which
makes the level set

Hc0 = {x ∈ R
n|f(x) ≤ c0}

not empty and bounded.

4.2. Sampling and updating. In the algorithm, the
initial density is chosen as δ0(x) = U(D), where D ⊂ R

n

is a hypercube large enough. For other steps we choose
the following kernel density function:

δk+1(x) =
1

N ′hn
N ′

N ′∑

i=1

ker
∣∣∣
x − X̂k

i

hN ′

∣∣∣, k = 0, 1, . . .

(2)
We use here the relative entropy method (de Boer,

2005) to update the sampling density function δk+1(x).
In order to simplify the computation, the kernel

function is selected as follows:

ker(x) =
n∏

j=1

1
π(1 + x2

j)
, (3)

where xj presents the j-th element of the set x =
(x1, x2, . . . , xn). Such a kernel function simplifies the
task of both the sampling and updating of the density

542 J. Zhao et al.

Algorithm 1. Vision cognition.
Step 1. Input a sufficiently small minimum ε > 0, the
number of sample points N ∈ Z

+, the order k = 0, and
c0 = f(x0).
Step 2. Sampling. Using the order k = k + 1 to produce
the sample point set {Xk

i , i = 1, 2, . . . ,N} ∼ δk(x),
where δk(x) is the sampling density function.

Step 3. This step creates the overlooking memory
mechanism. First the function f(Xk

i), Xk =
{Xk

i |f(Xk
i) ≤ ck−1, i = 1, 2, . . . , N} is computed and

then f(Xk
i), Xk

i ∈ Xk is sorted in the increasing order to
acquire the order overlook sample set:

X̂k = {X̂k
i , i = 1, 2, . . . , N ′}, N ′ ≤ N .

Step 4. Calculating the current numerical overlooking

level ck = f(X̂k
1).

Step 5. Calculating σk
2 =

∑
x∈X̂k(f(x) − ck)2.

Step 6. If σk
2 < ε, the loop terminates and c∗ = ck

is the sought approximate total extremum. Otherwise,
the sampling density function δk+1(x) = δk(x1, X̂k) is
updated and the computation goes back to Step 2.

function. Based on Eqns. (2) and (3), we achieve the
sampling kernel density function as

δk+1(x) =
1

N ′hn
N ′

N ′∑

i=1

∣∣∣∣∣

n∏

j=1

1

π
∣∣∣1 +

∣∣xj−X̂k
ij

hN′

∣∣2
∣∣∣

∣∣∣∣∣, (4)

where X̂k
ij is the j-th element of the i-th sampling point

in the k-th priority sampling set (k = 0, 1, . . .).

4.3. Convergence of the algorithm.

Theorem 1. Assuming that {ck} is the set created by the
algorithm, there exists a c such that

p(lim
k→∞

ck = c) = 1. (5)

Proof. From Algorithm 1 we know that

ck = f(X̂k
1) ≤ f(X̂k−1

1) = ck−1.

Therefore, {ck} is a monotonically decreasing
sequence. In addition, according to Assumption 1, ck is
bounded. Together, it can be concluded that

p(lim
k→∞

ck = c) = 1.

�

Lemma 1. If ck
a.s−→ c, ∃x̄ ∈ R

n, x̄ 	∈ X̂k (k = 1, 2, . . .)
and f(x̄) ≤ c, then ∃X̄k ∈ X̂k, k = 1, 2, . . . , so that
X̄k → x̄(k → ∞).

Proof. Assume that there is no sequence {X̄k} with
x̄ as the limit point. Then there is ε > 0 to make
∀X̂k 	∈ ⋃

(x̄, ε). As k → ∞, selecting the priority
sampling set using the designed sampling density function
δk(x), we get that ∃ε > 0, which yields ∀X̂k ∈ ⋃

(x̄, ε).
This contradicts the assumption. �

Theorem 2. A necessary and sufficient condition for c =
minx∈Rn f(x) is that when the algorithm creates ck

a.s−→
c, we have ∀x ∈ Hc, f(x) = c.

Proof. We prove first the necessity. Given c =
minx∈Rn f(x), Hc = {x|f(x) ≤ c}. Then for ∀x ∈ Hc

there must be f(x) = c.
Now we prove the sufficiency. Given that for ∀x ∈

Hc and ck
a.s−→ c there exists f(x) = c, then for ∀x ∈ R

n

there holds f(x) ≥ c.
Finally, we prove the theorem by contradiction.

Assume the following:

• There exists k so that x0 ∈ X̂k ⊂ R
n and f(x0) < c.

According to the algorithm, ck = f(X̂k
1). Therefore,

f(X̂k
1) ≤ f(x0) and ck ≤ f(x0). Moreover, we

have ck
a.s−→ c. According to Theorem 1, c ≤ ck ≤

f(x0), which contradicts the assumption.

• ∃x̄ ∈ R
n and x̄ 	∈ X̂k, f(x̄) < c.

According to Lemma 1, ∃X̄k ∈ X̂k, k = 1, 2 . . . , which
makes X̄k → x̄ (k → ∞). Furthermore, according to the

algorithm, ck = f(X̂k
1) and f(X̂k

1) ≤ f(x̄). Therefore,
ck ≤ f(x̄). In addition, ck

a.s−→ c. Based on Theorem 1, it
can be concluded that c ≤ ck ≤ f(x̄). This again conflicts
with the assumption. Combining all the proofs above, we
conclude that ∀x ∈ R

n there holds f(x) ≥ c. �

Theorem 3. Given c ≤ ck ≤ f(x̄), c is the global opti-
mum and Hc is the global minimal point set of Eqn. (1).

Proof. As k → ∞, σk
2 =

∑
x∈X̂k(f(x) − ck)2 →

0, we have |f(x) − ck| → 0. Furthermore, ck
a.s−→ c.

Therefore, ∀x ∈ Hc, if x ∈ X̂k then f(x) = c when

k → ∞. If x 	∈ X̂k and f(x̄) < c, from Lemma 1 we
deduce that ∃X̄k ∈ X̂k, k = 1, 2, . . . , which results in
X̄k → x̄ (k → ∞) and further f(x) = c. According to
Theorem 2, c = minx∈Rn f(x), and correspondingly Hc

is the optimal point set.
Since σk

2 =
∑

x∈X̂k(f(x) − ck)2 = 0, we get

|f(x) − ck| = 0. Moreover, since ck
a.s−→ c it is true

that for ∀x ∈ Hc there holds f(x) = c. Based on
Theorem 2 it can be concluded that c = minx∈Rn f(x),
and correspondingly Hc is the optimal point set. �

Validation. We validated the algorithm using MATLAB
with several sample problems. The first example is the

Using a vision cognitive algorithm to schedule virtual machines 543

Rosenbrock function

F2(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2,
xi ∈ [−10, 10], i = 1, 2

with min F2(x1, x2) = 0.
Based on the proposed algorithm, we achieved the

optimum point of (1, 1)T , min F2(x1, x2) = 0 by using
the point number N = 2000 and the convergence number
k = 4.

The second example is the Easom (ES) function:

ES(x1, x2)

= − cosx1 cosx2 exp(−((x1 − π)2 + (x2 − π)2))

with the search space −100 ≤ xi ≤ 100, i = 1, 2,
and the global optimum x∗ = (π, π), ES(x∗) = −1.
Applying the proposed algorithm we acquired a result
of the optimum (3.1423, 3.1489)T and the optimal value
−0.999989, when using N = 4000 and k = 3.

The third example solves the function sphere model:

F4(x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n,

xi ∈ [−100, 100], i = 1, . . . , m,

with n = 3 and the optimum at xi = 0 (i = 1, 2, 3),
min F4(x1, x2, x3) = 0.

Using this algorithm, we achieved a solution
at (0.0020, 0.0019, 0.0021)T , min F4(x1, x2, . . . , x8) =
0.00001202 by N = 3000 and k = 9.

For the VM scheduling on the cloud, the proposed
algorithm actually deals with the function F (xi) =
Ecpu(xi)after − Ecpu(xi)before with a search space of
0 < x < N , where N is the number of host machines that
have passed through the matching process of the first two
scheduling steps. The function calculates the additional
energy consumption of a host in case a new VM runs
on it. The optimum for this problem is min F (x) = 0
because we are looking for the host that introduces the
minimal energy increase after the new VM is scheduled.
The energy consumption of a host is calculated with our
energy model on the runtime when a cloud is working.

To make it clear how the algorithm works for VM
scheduling, the functionality of the algorithm for finding
the host with a minimal energy increase is demonstrated
in Fig. 3. As shown there, the algorithm first uses over-
look point 1 to cut off the hosts, whose additional energy
consumption is higher than the value at this point. It
then applies overlook point 2 to cut more hosts off. This
process goes on further till there is only one host left.

It can be seen that the performance of the algorithm is
significantly influenced by the first overlook point because
it directly determines the numbers of cuttings up till
convergence. We start simply with a constant for the
current implementation. The plan is a more intelligent
approach that dynamically computes the initial overlook
point based on the history information.

Fig. 3. Mapping the vision cognitive algorithm to the host se-
lection.

5. Implementation

We implemented the proposed algorithm as well as the
scheduling scheme, and validated the approach using a
simulator for computing Clouds, the CloudSim toolkit
(Calheiros et al., 2011). It models large scale data
centres with an internal broker, sensors, a physical host,
as well as virtual machines. CloudSim also provides
the functionality to configure datacenter resources. This
allows us to model cloud providers with different system
scale and hardware resources.

Figure 4 shows the core architecture of CloudSim. It
can be seen that this simulator is well structured with a
clear layer definition. It is easy for us to extend CloudSim
with additional components both at the user level for
specifying users VM requests and at the simulation level
for implementing the scheduling scheme. In addition,
CloudSim enables also the simulation of dynamic load,
which allows us to study the influence of different kinds
of workloads on the energy consumption of the host
machines.

The three steps of the scheduling scheme are
implemented in different classes. While the vision
cognitive algorithm for the last step is described above,
the algorithms for the first step is demonstrated with the
following pseudo-code:
Input : VM r e q u e s t (p r o c e s s o r t y p e P , RAM s i z e R ,

c o r e s N, d i s k s i z e D, OS t y p e OS ,)
Input : A l l H o s t L i s t
Output : M a tchHos tL i s t

For each h o s t i n A l l H o s t L i s t Do
I f g e t P r o c e s s o r T y p e (h o s t) == P and getRAM (h o s t))

>= R and getNumbersCores (h o s t) >= N and
g e t D i s k (h o s t) >= D and . . .

Then add h o s t t o M a tchHos tL i s t
Endif

Endfor
Return M atchHos tL i s t

The task of the first scheduling step is to find
those physical hosts that meet the hardware and software
requirements specified in a VM request. As shown in
the pseudo-code, the algorithm has both the VM request
and the full list of cloud centre available hosts as inputs.
It goes through the host list to check each parameter of
the request and fills thereby the matching hosts in a new

544 J. Zhao et al.

Fig. 4. Software architecture of CloudSim.

list of hosts. This list serves as the input for the second
scheduling step.

As demonstrated in the following pseudo-code, in the
second step the scheduler goes through all the matching
hosts detected by the last scheduling step to find those
hosts whose temperature and CPU usage exceed the
specified thresholds. The detected hosts are then removed
from the list of matching hosts to form a new list of
hosts that are candidates for running the requested virtual
machine. We also output the list of overheated hosts and
the list of overloaded hosts for the reason of evaluation.

Input : M a tchHos tL i s t , T hres ho ldT empera tu r e ,
T h r e s h o l d U t i l i z a t i o n

Output : C a n d i d a t e H o s t l i s t , ove rT hre s ho ldT empHost s ,
o v e r U t i l i z e d H o s t s

For each h o s t i n M a tchHos tL i s t Do
I f i s H o s t O v e r T h r e s h o l d T e m p e r a t u r e (h o s t)
Then overT hres ho ldT empHos t s <− add h o s t
E ls e

I f i s H o s t O v e r T h r e s h o l d U t i l i z a t i o n (h o s t)
Then o v e r U t i l i z e d H o s t s <− add h o s t
Endif

Endif
Endfor
C a n d i d a t e H o s t L i s t <− M atchHos tL i s t −

overT hres ho ldT empHos t s − o v e r U t i l i z e d H o s t s
Return C a n d i d a t e H o s t L i s t , ove rT hres ho ldT empHost s ,

o v e r U t i l i z e d H o s t s

The algorithm uses two thresholds, one for limiting
the number of workloads on a host and the other for
preventing the processors from a high temperature. Both
the thresholds aim at reducing the cloud centre energy
consumption while ensuring the quality of cloud services.
The former concerns the performance and the latter
enhances the service availability by reducing the potential
hardware defect. Both the thresholds may be determined
based on the hardware properties of the processors. For

example, the threshold for CPU utilization can be set to
100% for most of the vendor processors, and the threshold
for chip temperature varies from one type of processor to
another.

When considering the energy consumption, however,
the selection of both the thresholds is not that simple
with the only referring to the hardware feature of
the processors. We performed several experiments to
investigate on this issue with the simulation approach. The
details of the simulation setups will be given in the next
section, together with more results about the validation of
the proposed scheduling concept. Figures 5 and 6 show
the experimental results with the thresholds.

Fig. 5. System energy consumption with different workloads
(y-axis: energy consumption, x-axis: workload).

Figure 5 depicts the energy consumption of the

Using a vision cognitive algorithm to schedule virtual machines 545

entire system (all host machines) by running two different
types of workloads. The left bar in the figure presents
the result with a stochastic workload, where jobs are
coming with an interval calculated using an exponential
distribution and the job size is generated using a variety
of probabilistic distributions. The right bar is the result
with a full CPU usage. It can be seen that the energy
consumption for a workload with a full CPU usage is
larger than the same metric measured with the stochastic
workload. This means that a full utilization of the CPU
results in a higher energy consumption, and for energy
optimization of a cloud centre the CPUs will not be
100% loaded. The experimental results of a research
work of Beloglazov and Buyya (2012) demonstrated that
the energy consumption rises considerably from a CPU
utilization of 90%. Therefore, we chose a value of 0.9
as the threshold of the CPU utilization for our validation
tests.

Fig. 6. Influence of the temperature threshold on the energy
consumption.

Similarly to the CPU utilization, different
temperature thresholds result also in diversified energy
consumption. We used a set of temperature thresholds to
study this issue. Figure 6 shows the result. As depicted
there, the temperature thresholds applied range from 333
Kelvin (unit of temperature) to 360 Kelvin. The value
presented in the y-axis is the total energy consumption of
a cloud centre in a single day.

Observing the curve in the figure, it can be seen
that the energy consumption with different temperature
thresholds can be divided into four areas of different
patterns. In the first area, i.e., the temperature threshold
between 333 and 335, the energy consumption maintains
constant with a value of 52 kWh. In the second region,
i.e., 335 < temperature threshold < 340, the energy
consumption of the system goes down as the threshold
is getting larger. This behavior stops at threshold 340,
where a new phase starts, again with constant energy

consumption. After this phase, a slight reduction in
the energy consumption can be seen, but generally
the temperature threshold does not change the energy
behavior in phase 4. The best case for our experiments
is the point with 343 Kelvin.

6. Validation results

6.1. Experimental setup. As described above, we
applied a simulation approach to validate the developed
scheduling strategies. The reason for using simulation,
rather than a real cloud platform lies in the fact
that we need the status information of physical hosts
on a cloud centre. Currently, it is not possible to
gain this information from a commercial cloud, which
prohibits us from validating the full functionality of the
implemented scheduler and from studying the behavior
of the designed scheduling as well as global optimization
algorithms. In contrast, CloudSim implements a view
of infinite computing resources, and it is easy to
extend this simulator for both monitoring and additional
functionalities.

Table 1. Configuration of virtual machines.
VM Type 1 2 3 4

VM MIPS 500 1000 2000 2500
VM Cores 1 1 1 1

VM RAM [MB] 613 1740 1740 870
VM BW [Mbit/s] 100 100 100 100

VM Size [GB] 2.5 2.5 2.5 2.5

For the experiments, we modelled the scheduling
task of a whole day with a random generation of VM
requests. A VM request contains four requirement
attributes, i.e., the number of CPU cores, the CPU
frequency, the RAM size and the bandwidth. The
properties of the modelled VM types are described in
Table 1. As shown there, we use different VMs with
various values in MIPS and the RAM size to model real
scenarios.

The thermal constants used in the simulation for the
lumped RC thermal model are listed in Table 2. These are
typical values of a single core CPU obtained from (LAVA
Lab, 2013).

We configured CloudSim for a cloud center with 50
different hosts. A half of the hosts are modelled as HP
ProLiant G4 servers and the other half as HP ProLiant
G5 servers. The characteristics of the servers are given in
Table 3. The frequency of each core on the HP ProLiant
G4 server is 1860 MIPS and for the HP ProLiant G5 server
the value is 2660 MIPS. Each server is modelled with a
connection of 1 GB/s bandwidth. The CPU utilization
behavior of the servers is acquired from SpecPower08
(SPEC, 2013). The threshold for the CPU utilization is

546 J. Zhao et al.

Table 2. Thermal constants for the lumped RC thermal model.
Thermal Parameter Value Unit

Initial CPU Temperature (Tinit) 318 Kelvin
Ambient Temperature (Tamb) 308 Kelvin

Case Temperature (Tcase) 353 Kelvin
Thermal Capacity C 340 Joule/Kelvin

Thermal Resistance R 0.34 Kelvin/Watt

Table 3. Simulated physical machines in a cloud centre.
Server Host Type HP Proliant G4 HP Proliant G5

Host MIPS 1860 2660
Host Cores 1 1

Host RAM [MB] 2048 4096
Host BW [Gbit/s] 1 1
Host Storage [TB] 1 1

set to 0.9 while the temperature threshold is chosen as
343 Kelvin, based on the test results shown in the previous
section.

In order to observe the efficiency of the implemented
scheduler, we also implemented three other scheduling
schemes for a comparative study. The first one is called
Non power aware, which schedules the virtual machines
without considering the CPU usage. It reflects the energy
consumption in a cloud center with full CPU utilization.
The second scheme is DVFS. It schedules tasks on the
basis of the CPU voltage and frequency. It relies on
the information from the CPU performance and power
model to set the priorities for the VM placement. The
energy consumption is calculated as a function of the CPU
usage, and is regulated automatically and dynamically
based on DVFS. The last scheme is Power aware ThrMu
(Beloglazov and Buyya, 2010). This scheduling algorithm
focuses on minimizing the CPU usage by setting up hosts
in the idle mode. It migrates the running VMs of a host
with CPU usage over a threshold to other hosts. We use
a utilization threshold of 0.9 for this scheme, the same as
our scheduler.

6.2. Experimental results. The main goal of the
proposed scheduling scheme is to reduce the energy
consumption by scheduling a virtual machine to the host
that causes a minimal increase in energy consumption.
Therefore, our first experiment was done to see how the
hosts vary from one another in the additional energy
requirement after hosting a new virtual machine.

Figure 7 depicts the experimental results. We choose
hosts 1 to 10 as examples. The x-axis of the diagram in the
figure shows the hosts, while the y-axis is the additional
energy requirement of an individual host in case a new
VM is run on it. The data were measured at a certain time
point. From the figure it can be clearly seen that the hosts

show individual additional energy consumption with the
largest difference of 21%. This number will get larger
for a cloud centre with more different types of hosts. As
mentioned, for this experiment we only configured two
types of processors.

Fig. 7. Additional energy consumption of different hosts in case
of launching a new VM instance (x-axis: hosts, y-axis:
energy increase in KW).

The next experiment studies the feasibility of
the proposed scheduling scheme by comparing the
energy consumption in the cases of applying different
scheduling schemes, i.e., Non power aware, DVFS,
Power aware ThrMu and our thermal-aware scheme
(Thas).

Figure 8 depicts the result of the experiment, where
the energy consumption was measured during a single
simulation run with all four algorithms. Comparing the
proposed scheduler with the other scheduling algorithms,
it can be seen that our scheduler achieves the lowest
energy demand with a value of 25.64 KWh per day, while
the energy consumption with other schemes is 150.68
KWh with Non power aware, 52.98 KWh with DVFS and
28.9 KWh with Power aware ThrMu. It can be concluded
that combining the power-aware with the thermal-aware
scheduling strategies provides the best results for energy
consumption.

To have a deeper insight in the different scheduling
schemes, we measured the energy consumption at
different times of day. Figure 9 presents the experimental
results. The x-axis of the diagram in the figure is the
time points where the energy consumption calculated.
The y-axis presents the total energy consumption of the
simulated cloud centre.

The data were first gathered after 2 hours of a
simulated run, and then at a time interval. The four curves
in the figure present the results with the four scheduling
algorithms. The curves go up with the duration of the
simulation because a cloud centre requires more energy

Using a vision cognitive algorithm to schedule virtual machines 547

Fig. 8. Data center one-day energy consumption with several
scheduling schemes (x-axis: scheduling schemes, y-
axis: energy consumption in KWh with the numbers
shown in the lower table).

Fig. 9. Energy consumption at different time points (x-axis:
time points, y-axis: total energy consumption in KWh).

for its operation with time. It is interesting to see that
the behavior difference of the algorithms gets clearer as
the simulation is running. From the figure it can be seen
that after a two-hour run the energy consumption for the
four scheduling schemes varies only slightly. However,
the difference gets larger and larger. After 24 hours,
for example, the total cloud centre energy consumption
for the proposed scheduling scheme is only 17% of that
caused by the Non power aware scheme. This means that
the cloud centre will significantly save its energy for a
long-term operation by using the proposed approach.

However, the gain in energy is achieved with some
violation to the Service Level Agreement (SLA) that
defines the quality of the services. We measured
an SLA violation of 14%, where the VM request
cannot be processed within the promised response time.

This indicates that the proposed algorithms have to be
optimized towards less computation time.

7. Conclusions

The paper describes a novel scheduling scheme for
allocating virtual machines on the physical hosts of a
cloud centre. The main goal of the scheduling is to achieve
minimal system energy consumption while ensuring the
performance and quality of cloud services. For this
purpose, we propose to use an optimization algorithm
to compute the best location for a virtual machine with
fast convergence so that most of the VM requests can be
processed in the given response time.

In the next step of this research work, the energy
model will be improved for covering heterogeneous
architectures. Additionally, the vision cognitive algorithm
has to be improved to use the history information to
determine the first overlook point. More importantly, we
will study another mathematical algorithm for mapping
the VM request set to the host configuration set. It
is expected that with these optimizations the proposed
scheduling algorithm will scale well for larger systems
without a violation to the SLA of a cloud centre.

Acknowledgment

This work was supported (in part) by the German
Research Foundation (DFG) through the Priority
Programme 1648: Software for Exascale Computing
(SPPEXA).

References
Adaptive Computing Inc. (2013). TORQUE Resource Manager,

http://www.adaptivecomputing.com/
products/open-source/torque/.

Altair Engineering Inc. (2013). PBS Works—Enabling
On-Demand Computing,
http://www.pbsworks.com/.

Amazon (2013a). Amazon Elastic Compute Cloud,
http://aws.amazon.com/ec2/.

Amazon (2013b). Simple Storage Service,
http://aws.amazon.com/s3/.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I. and Zaharia, M. (2009). Above the clouds: A Berkeley
view of cloud computing, Technical report, University of
California at Berkeley, Berkeley, CA.

Barham, P., Dragovic, B. and Fraser, K. (2003). Xen and the
art of virtualization, Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles, Bolton Landing,
NY, USA, pp. 164–144.

Beloglazov, A. and Buyya, R. (2010). Adaptive threshold-based
approach for energy-efficient consolidation of virtual
machines in cloud data centers, Proceedings of the 8th

http://www.adaptivecomputing.com/
products/open-source/torque/
http://www.pbsworks.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/

548 J. Zhao et al.

International Workshop on Middleware for Grids, Clouds
and e-Science, Bangalore, India, pp. 4:1–6.

Beloglazov, A. and Buyya, R. (2012). Optimal online
deterministic algorithms and adaptive heuristic for energy
and performance efficient dynamic consolidation of virtual
machines in cloud datacenters, Concurrency and Compu-
tation: Practice and Experience 24(3): 1397–1420.

Bilal, K., Khan, S.U., Madani, S.A., Hayat, K., Khan, M.I.,
Min-Allah, N., Kołodziej, J., Wang, L., Zeadally, S. and
Chen, D. (2013). A survey on green communications using
adaptive link rate, Cluster Computing 16(3): 575–589.

Cai, Y., Qian, J. and Sun, Y. (2006). Outlook algorithm for
global optimization, Journal of Guangdong University of
Technology 23(2): 1–10.

Calheiros, R.N., Ranjan, R., Beloglazov, A., e Rose, C.A.F.D.
and Buyya, R. (2011). CloudSim: A toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Software:
Practice and Experience 41(1): 23–50.

Chen, D., Li, D., Xiong, M., Bao, H. and Li, X. (2010).
GPGPU-aided ensemble empirical mode decomposition
for EEG analysis during anaesthesia, IEEE Trans-
actions on Information Technology in BioMedicine
14(6): 1417–1427.

Chen, D., Wang, L., Wu, X., Chen, J., Khan, S., Kołodziej, J.,
Tian, M., Huang, F. and Liu, W. (2013). Hybrid modelling
and simulation of huge crowd over a hierarchical
grid architecture, Future Generation Computer Systems
29(5): 1309–1317.

de Boer, P. (2005). A tutorial on the cross-entropy method, An-
nals of Operations Research 134(2): 19–67.

Fang, Y., Wang, F. and Ge, J. (2010). A task scheduling
algorithm based on load balancing in cloud computing,
Proceedings of the 2010 International Conference on
Web Information Systems and Mining, Sanya, China,
pp. 271–277.

FlexiScale Ltd. (2013). FlexiScale: Utility Computing on
Demand, http://www.flexiscale.com/.

Gentzsch, W. (2001). Sun grid engine: Towards creating a
compute power grid, Proceedings of the 1st International
Symposium on Cluster Computing and the Grid, Washing-
ton, DC, USA, pp. 35–36.

Glover, F. (1989). Tabu search: Part I, ORSA Journal on Com-
puting 21(1): 190–206.

Glover, F. (1990). Tabu search: Part II, ORSA Journal on Com-
puting 21(2): 4–32.

González-Vélez, H. and Kontagora, M. (2011). Performance
evaluation of MapReduce using full virtualisation on
a departmental cloud, International Journal of Applied
Mathematics and Computer Science 21(2): 275–284, DOI:
10.2478/v10006-011-0020-3.

Gruian, F. and Kuchcinski, K. (2001). LEneS: Task scheduling
for low-energy systems using variable supply voltage
processors, Proceedings of the 2001 Asia and South Pa-
cific Design Automation Conference, Yokohama, Japan,
pp. 449–455.

Hsu, C. and Feng, W. (2005). A feasibility analysis of power
awareness in commodity-based high-performance clusters,
Proceedings of Cluster Computing, Burlington, VT, USA,
pp. 1–10.

Hu, J., Gu, J., Sun, G. and Zhao, T. (2010). A scheduling strategy
on load balancing of virtual machine resources in cloud
computing environment, Proceedings of the International
Symposium on Parallel Architectures, Algorithms and Pro-
gramming, Dalian, China, pp. 89–96.

IBM (2013). IBM SmartCloud,
http://www.ibm.com/cloud-computing/.

Jang, S., Kim, T., Kim, J. and Lee, J. (2012). The study
of genetic algorithm-based task scheduling for cloud
computing, International Journal of Control and Automa-
tion 5(4): 157–162.

Kahn, S., Bilal, K., Zhang, L., Li, H., Hayat, K., Madani, S.,
Min-Allah, N., Wang, L., Chen, D., Iqbal, M., Xu, C.
and Zomaya, A. (2013). Quantitative comparisons of the
state of the art data center architectures, Concurrency and
Computation: Practice & Experience 25(12): 1771–1783,
DOI:10.1002/cpe.2963.

Keahey, K. and Freeman, T. (2008). Science clouds: Early
experiences in cloud computing for scientific applications,
Proceedings of the 1st Workshop on Cloud Computing and
Its Applications, Chicago, IL, USA.

Kim, D., Kim, H., Jeon, M., Seo, E. and Lee, J. (2008).
Guest-aware priority-based virtual machine scheduling for
highly consolidated server, Proceedings of the 14th Inter-
national Conference on Parallel and Distributed Comput-
ing (Euro-Par 2008), Las Palmas de Gran Canaria, Spain,
pp. 285–294.

Kim, S. (1988). A general approach to multiprocessor
scheduling, Technical report, University of Texas at
Austin, Austin, TX.

Knauth, T. and Fetzer, C. (2012). Energy-aware scheduling
for infrastructure clouds, Proceedings of the IEEE Inter-
national Conference on Cloud Computing Technology and
Science, Taipei, Taiwan, pp. 58–65.

Kołodziej, J., Khan, S., Wang, L., Kisiel-Dorohinicki,
M. and Madani, S. (2012). Security, energy, and
performance-aware resource allocation mechanisms for
computational grids, Future Generation Computer Systems
31: 77–92, DOI: 10.1016/j.future.2012.09.009.

Kołodziej, J., Khan, S., Wang, L., Byrski, A., Nasro, M.
and Madani, S. (2013a). Hierarchical genetic-based grid
scheduling with energy optimization, Cluster Computing
16(3): 591–609, DOI: 10.1007/s10586-012-0226-7.

Kołodziej, J., Khan, S., Wang, L. and Zomaya, A. (2013b).
Energy efficient genetic-based schedulers in computational
grids, Concurrency and Computation: Practice & Experi-
ence, DOI:10.1002/cpe.2839.

Kołodziej, J. and Xhafa, F. (2011). Modern approaches
to modeling user requirements on resource and task
allocation in hierarchical computational grids, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 21(2): 243–257, DOI: 10.2478/v10006-011-0018-x.

http://www.flexiscale.com/
http://www.ibm.com/cloud-computing/

Using a vision cognitive algorithm to schedule virtual machines 549

KVM (2013). Kernel Based Virtual Machine,
http://www.linux-kvm.org/.

LAVA Lab (2013). Hotspot,
http://lava.cs.virginia.edu/HotSpot/.

Lee, Y. and Zomaya, A. (2009). Minimizing energy
consumption for precedence-constrained applications
using dynamic voltage scaling, Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, Washington, DC, USA, pp. 92–99.

Li, R. and Huang, H. (2007). List scheduling for jobs with
arbitrary release times and similar lengths, Journal of
Scheduling 10(6): 365–373.

Lin, C., Liu, P. and Wu, J. (2011). Energy-aware virtual machine
dynamic provision and scheduling for cloud computing,
Proceedings of the IEEE International Conference on
Cloud Computing, Washington, DC, USA, pp. 736–737.

Lin, S. and Qiu, M. (2010). Thermal-aware scheduling for
peak temperature reduction with stochastic workloads,
Proceedings of IEEE/ACM RTAS WIP, Chicago, IL, USA,
pp. 53–56.

Lundy, M. and Mess, A. (1986). Convergence of an
annealing algorithm, Journal on Mathematical Program-
ming 34(1): 111–124.

Manzak, A. and Chakrabarti, C. (2003). Variable voltage
task scheduling algorithms for minimizing energy/power,
IEEE Transactions on Very Large Scale Integration Sys-
tems 11(2): 270–276.

Martin, S., Flautner, K., Mudge, T. and Blaauw, D. (2002).
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic
workloads, Proceedings of the 2002 IEEE/ACM Interna-
tional Conference on Computer-aided Design, San Jose,
CA, USA, pp. 721–725.

Mell, P. and Grance, T. (2013). The NIST Definition of Cloud
Computing,
http://csrc.nist.gov/publications/
drafts/800-145/Draft-SP-800-145_cloud-
definition.pdf.

Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary
algorithms for job-shop scheduling, International Jour-
nal of Applied Mathematics and Computer Science
14(1): 91–103.

Min-Allah, N., Khan, S.U., Ghani, N., Li, J., Wang, L.
and Bouvry, P. (2012). A comparative study of rate
monotonic schedulability tests, The Journal of Supercom-
puting 59(3): 1419–1430.

Mtibaa, A., Ouni, B. and Abid, M. (2007). An efficient list
scheduling algorithm for time placement problem, Journal
of Computers and Electrical Engineering 33(4): 285–298.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L. and Zagorodnov, D. (2008).
The Eucalyptus open-source cloud-computing system,
Proceedings of Cloud Computing and Its Applications,
http://eucalyptus.cs.ucsb.edu/wiki/
Presentations.

Openstack (2013). OpenStack Cloud Software,
http://openstack.org/.

ORACLE (2013). Oracle Grid Engine,
http://www.oracle.com/us/products
/tools/oracle-grid-engine-075549.html.

Rosenblum, M. and Garfinkel, T. (2005). Virtual machine
monitors: Current technology and future trends, Computer
38(5): 39–47.

Skadron, K., Abdelzaher, T. and Stan, M.R. (2002).
Control-theoretic techniques and thermal-RC modeling for
accurate and localized dynamic thermal management, Pro-
ceedings of the 8th International Symposium on High-
Performance Computer Architecture, HPCA ’02, Washing-
ton, DC, USA, pp. 17–28.

Sotomayor, B., Montero, R., Llorente, I. and Foster, I. (2008).
Capacity leasing in cloud systems using the OpenNebula
engine, The First Workshop on Cloud Computing and Its
Applications, Chicago, IL, USA.

SPEC (2013). SpecPower08, http://www.spec.org.

Staples, G. (2006). TORQUE resource manager, Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing,
Tampa, FL, USA.

Takouna, I., Dawoud, W. and Meinel, C. (2011). Efficient virtual
machine scheduling-policy for virtualized heterogeneous
multicore systems, Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques
and Applications (PDPTA2011), Las Vegas, NV, USA.

Tannenbaum, T., Wright, D., Miller, K. and Livny, M.
(2002). Beowulf Cluster Computing with Linux, MIT
Press, Cambridge, MA, pp. 307–350.

Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani,
S., Li, J., Zhang, L., Wang, L., Ghani, N., Kołodziej,
J., Li, H., Zomaya, A., Xu, C., Balaji, P., Vishnu, A.,
Pinel, F., Pecero, J., Kliazovich, D. and Bouvry, P. (2013).
An overview of energy efficiency techniques in cluster
computing systems, Cluster Computing 16(1): 3–15.

VMware Inc. (2013). VMware,
http://www.vmware.com.

Wang, D., Wang, J., Wang, H., Zhang, R. and Guo, Z. (2007).
Intelligent Optimization Approaches, High Education
Publish House, Beijing.

Wang, L., Laszewski, G., Younge, A., He, X., Kunze, M., Tao,
J. and Fu, C. (2010a). Cloud computing: A perspective
study, New Generation Computing 28(2): 137–146.

Wang, L., Tao, J., von Laszewski, G. and Chen, D. (2010b).
Power Aware scheduling for parallel tasks via task
clustering, Proceedings of the IEEE 16th International
Conference on Parallel and Distributed Systems (ICPADS),
Shanghai, China, pp. 629–634.

Wang, L., Chen, D. and Huang, F. (2011a). Virtual
workflow system for distributed collaborative scientific
applications on Grids, Computers & Electrical Engineer-
ing 37(3): 300–310.

http://www.linux-kvm.org/.
http://lava.cs.virginia.edu/HotSpot/.
http://csrc.nist.gov/publications/
drafts/800-145/Draft-SP-800-145_cloud-
definition.pdf
http://eucalyptus.cs.ucsb.edu/wiki/
Presentations
http://openstack.org/
http://www.oracle.com/us/products
/tools/oracle-grid-engine-075549.html
http://www.spec.org.
http://www.vmware.com.

550 J. Zhao et al.

Wang, L., von Laszewski, G., Huang, F., Dayal, J.,
Frulani, T. and Fox, G. (2011b). Task scheduling
with ANN-based temperature prediction in a data center:
A simulation-based study, Engineering with Computers
27(4): 381–391.

Wang, L., Khan, S. and Dayal, J. (2012a). Thermal
aware workload placement with task-temperature profiles
in a data center, The Journal of Supercomputing
61(3): 780–803.

Wang, Y., Wang, X. and Chen, Y. (2012b). Energy-efficient
virtual machine scheduling in performance-asymmetric
multi-core architectures, Proceedings of the 8th Interna-
tional Conference on Network and Service Management
and 2012 Workshop on Systems Virtualization Manage-
ment, Las Vegas, NV, USA, pp. 288–294.

Wang, L., Chen, D., Hu, Y., Ma, Y. and Wang, J. (2013a).
Towards enabling cyberinfrastructure as a service in
clouds, Computers & Electrical Engineering 39(1): 3–14.

Wang, L. and Khan, S. (2013b). Review of performance metrics
for green data centers: A taxonomy study, The Journal of
Supercomputing 63(3): 639–656.

Wang, L., Khan, S., Chen, D., Kołodziej, J., Ranjan, R., Xu,
C. and Zomaya, A. (2013c). Energy-aware parallel task
scheduling in a cluster, Future Generation Computer Sys-
tems 29(7): 1661–1670.

Wu, M. and Gajski, D. (1990). Hypertool: A programming aid
for message-passing systems, IEEE Transactions on Par-
allel and Distributed Systems 1(3): 330–343.

Xing, W. and Xie, J. (2007). Modern Optimization Algorithms,
Qinghua University, Beijing.

Yao, F., Demers, A. and Shenker, S. (1995). A scheduling model
for reduced CPU energy, Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, Milwau-
kee, WI, USA, pp. 374–382.

Zhang, S. and Chatha, K.S. (2007). Approximation algorithm for
the temperature-aware scheduling problem, Proceedings
of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, USA, pp. 281–288.

Zhang, W., Wang, L., Song, W., Ma, Y., Liu, D.,
Liu, P. and Chen, D. (2013). Towards building a
multi-datacenter infrastructure for massive remote sensing
image processing, Concurrency and Computation: Prac-
tice & Experience 25(12): 1798–1812.

Zong, Z., Manzanares, A., Ruan, X. and Qin, X. (2011). EAD
and PEBD: Two energy-aware duplication scheduling
algorithms for parallel tasks on homogeneous clusters,
IEEE Transactions on Computers 60(3): 360–374.

Jiaqi Zhao obtained her M.Sc. degree at the Northeast Normal Univer-
sity of China in 2006. Currently she works as a lecturer at the Changchun
University of Technology. Her major research areas are data analysis al-
gorithms and data-intensive computing. She has participated in the de-
velopment of several research projects. Her research results have been
published in several international conferences and journals.

Yousri Mhedheb is a Ph.D. student at the Steinbuch Centre for Com-
puting of the Karlsruhe Institute of Technology (KIT), Germany. He
received his diploma in electrical engineering from the same university.
His current research interest is high performance and large scale com-
puting.

Foued Jrad is a Ph.D. student at the Steinbuch Centre for Computing
of the Karlsruhe Institute of Technology (KIT), Germany. He received
his diploma in electrical engineering from the University of Hanover,
Germany. His current research interests include intercloud computing,
cloud interoperability and cloud service brokerage.

Jie Tao obtained her Ph.D. degree at the Department of Computer Sci-
ence of the Munich University of Technology, Germany. She is currently
a senior research associate at the Steinbuch Centre for Computing, Karl-
sruhe Institute of Technology. Dr. Tao’s research work targets mainly
at parallel and distributed computing, data-intensive computing and grid
& cloud computing. She has published a number of articles in peer-
reviewed international journals and leading conferences. She serves as a
co-chair or PC member in a set of international conferences and work-
shops. She is a guest editor of several international journals.

Qinghuai Liu is a full professor at the School of Basic Science,
Changchun University of Technology. His major research interest is op-
timization algorithms and their applications. His research results have
been published in peer-reviewed international conferences and journals.

Achim Streit is the director of the Steinbuch Centre for Computing,
Karlsruhe Institute of Technology, and a full professor of distributed and
parallel high performance systems. He received his Ph.D. in computer
science from Paderborn University. From 2005 to 2010 he led the Di-
vision of Distributed Systems and Grid Computing at the Juelich Su-
percomputing Centre. As the director of the SCC, Professor Streit is
responsible for HPC, scientific computing and simulation science, large
scale and federated data management and analysis, grid and cloud com-
puting. He is an author of more than 50 scientific peer-reviewed papers,
journal articles and book chapters, as well as a PC member of more than
30 international workshops and conferences.

Received: 19 August 2013
Revised: 18 January 2014

	Introduction
	Related work
	Cluster task scheduling
	VM scheduling
	Global optimization algorithms
	Summary

	Scheduling scheme
	Problem description
	Models
	VM scheduling

	Vision cognitive algorithm
	Algorithm
	Sampling and updating
	Convergence of the algorithm

	Implementation
	Validation results
	Experimental setup
	Experimental results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

