
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 3, 567–577
DOI: 10.2478/amcs-2014-0041

MULTIPLE–INSTANCE LEARNING WITH PAIRWISE INSTANCE SIMILARITY

LIMING YUAN, JIAFENG LIU, XIANGLONG TANG

School of Computer Science and Technology
Harbin Institute of Technology, Harbin 150001, China

e-mail: yuanleeming@163.com,{jefferyliu,tangxl}@hit.edu.cn

Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and
many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance
Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they
delivered very promising performance, they often require long computation times for instance selection, leading to a low
efficiency of the whole learning process. In this paper, we propose a simple and efficient ISMIL algorithm based on the
similarity of pairwise instances within a bag. The basic idea is selecting from every training bag a pair of the most similar
instances as instance prototypes and then mapping training bags into the embedding space that is constructed from all
the instance prototypes. Thus, the MIL problem can be solved with the standard supervised learning techniques, such as
support vector machines. Experiments show that the proposed algorithm is more efficient than its competitors and highly
comparable with them in terms of classification accuracy. Moreover, the testing of noise sensitivity demonstrates that our
MIL algorithm is very robust to labeling noise.

Keywords: multiple-instance learning, instance selection, similarity, support vector machines.

1. Introduction

The term Multiple-Instance Learning (MIL) was first
coined by Dietterich et al. (1997). In this learning
framework, the training set is composed of labeled bags,
and each of which consists of one or more unlabeled
instances. A bag is positively labeled if it contains
at least one positive instance, otherwise it is negatively
labeled. The aim of an MIL predictor is to learn some
target concepts from the training set for correctly labeling
unseen bags.

The superiority of MIL over the traditional
supervised learning ascribes to the fact that it only
requires the label information of bags rather than that
of individual instances in them for training. Compared
with supervised learning, MIL is thus more suitable for
particular applications, such as drug activity prediction
(Dietterich et al., 1997), stock selection (Maron and
Lozano-Pérez, 1998), natural scene classification (Maron
and Ratan, 1998), computer aided diagnosis (Fung
et al., 2007; Raykar et al., 2008), Content-Based Image
Retrieval (CBIR) (Yang and Lozano-Pérez, 2000; Zhang
et al., 2002; Rahmani et al., 2008; Zha et al., 2008),
semantic segmentation (Vezhnevets and Buhmann, 2010),
action recognition (Ali and Shah, 2010), as well as object

detection (Viola et al., 2006; Dollár et al., 2008; Babenko
et al., 2011a) and tracking (Babenko et al., 2009; 2011b;
Li et al., 2010). Take the CBIR problem as an example.
An image is often represented as a set of localized regions
extracted from the image. However, only those carrying
category-specific information are regions of interest
for the purpose of classification, whereas other regions
have random features and thus possess no discriminative
ability. Hence the CBIR issue can be naturally formalized
as an MIL problem, where each image corresponds to a
bag and each image region corresponds to an instance in
the bag.

In recent years, several Instance Selection-based
MIL (ISMIL) algorithms have been presented by using
the concept of the embedding space, namely, DD-SVM
(Chen and Wang, 2004), MILES (Chen et al., 2006),
MILD (Li and Yeung, 2010) and MILIS (Fu et al., 2011).
The main idea can be summarized as follows. First, an
ISMIL algorithm applies an instance selection approach
to select some representative instance prototypes from
the training set. These instance prototypes thus form a
new feature space named the embedding space. Then,
a training bag is represented as a single feature vector
by mapping it into the embedding space, and thus any

yuanleeming@163.com,{jefferyliu,tangxl}@hit.edu.cn

568 L. Yuan et al.

standard supervised learning technique can be employed
for classification. Finally, the ISMIL algorithm uses
the new bag-level feature vectors to learn a standard
Support Vector Machine (SVM). Even though these
ISMIL algorithms can convey promising performance,
they usually require much computation time to complete
the instance selection process, especially for large-scale
data sets, leading to high computational complexity for
the whole learning process. As we know, computational
efficiency is an important issue for practical applications
(Czarnowski and Jędrzejowicz, 2011), so it is necessary
to design an efficient instance selection approach to speed
up the learning process of the ISMIL algorithm while not
sacrificing its generalization ability.

In this paper, we propose a novel ISMIL algorithm
based on an efficient instance selection approach, which
is inspired by the similarity of pairwise instances within
a bag. We call it Multiple-Instance Learning with
Pairwise Instance Similarity (MILPIS). The basic idea is
choosing from every training bag a pair of the most similar
instances as instance prototypes and using all the instance
prototypes to form the embedding space. Then a standard
SVM is learned using all the new bag-level features for
training bags derived by mapping theses bags into the
embedding space. The main contributions of this paper
can be summarized as follows. First, MILPIS searches for
small clusters of target concepts in the feature space, so
it has provided highly comparative classification accuracy
with other ISMIL algorithms. Second, MILPIS performs
instance selection by only considering the structure within
a bag, so it can accomplish the instance selection process
more quickly, and thus the whole learning process is
faster. Finally, the testing of noise sensitivity shows that
our MILPIS algorithm is very robust to labeling noise.
This is also due to the fact that MILPIS focuses on the
inner structure of a bag and is thus not influenced by the
label of the bag.

The rest of this paper is organized as follows. In
Section 2 we give an overview of some work related
to our research. In Section 3 we present our MILPIS
algorithm and analyze the computational complexities of
MILPIS and four previous ISMIL algorithms including
DD-SVM, MILES, MILD and MILIS. Section 4 provides
a comparative analysis of MILPIS with other ISMIL
algorithms using three MIL tasks, i.e., drug activity
prediction, automatic image annotation and region-based
image categorization. We give conclusions and outline
some future work in the last section of the paper.

2. Related work

MIL has become an important learning framework in the
machine learning community since it was first proposed
by Dietterich et al. (1997). Many algorithms have been
presented to tackle this new learning problem. Dietterich

et al. (1997) developed the first MIL algorithm named the
Axis-Parallel Rectangle (APR). They assume that there
may exist an APR in the feature space that includes at
least one instance from each positive bag and excludes all
instances from the negative bags. A bag will be labeled
positive if one of its instances falls within the APR,
otherwise it will be labeled negative. Later on, Maron
and Lozano-Pérez (1998) used a new concept of Diverse
Density (DD) to solve MIL problems. Similarly to the
APR, DD can be used to evaluate how many different
positive bags possess instances near a point in the feature
space and how far the negative instances are from that
point. Following their work, Zhang and Goldman (2002)
incorporated the concept of DD into the Expectation
Maximization (EM) framework in order to learn the target
concept in a more efficient manner. Rahmani et al. (2008)
employed the quasi-Newton method to iteratively locate
multiple target concepts from diverse initial locations,
since some real-world applications own the characteristics
of multi-modal distributions.

Together with these classical MIL algorithms, many
researchers focused on the adaptation of the standard
supervised learning techniques to the MIL scenario.
Ramon and De Raedt (2000) adapted neural networks
(Trawiński et al., 2012) to the MIL setting via taking
into account the relation of a bag to its instances. Zhang
and Zhou (2004) later derived a similar framework.
Wang and Zucker (2000) presented two MIL versions
of k-Nearest Neighbor (kNN) algorithms by using the
Hausdorff distance to compute the distances between
different bags, namely, citation-kNN and Bayesian-kNN.
Gärtner et al. (2002) designed a special kernel function
for multiple-instance data such that SVMs can be learned
directly from the training bags. Several years later, Tao
et al. (2008) explored specialized kernels for MIL and
applied them to the generalized MIL setting.

Andrews et al. (2003) treated the unobservable
instance labels as hidden variables and formulated MIL
as mixed integer quadratic programs. They developed
two MIL algorithms: mi-SVM, used for the instance-level
classification, and MI-SVM, used for the bag-level one.
Andrews and Hofmann (2004) proposed an algorithm
based on a generalization of linear programming boosting.
In the same year, Auer and Ortner (2004) proposed
a boosting-based algorithm that built an ensemble of
weak hypotheses, each of which is either a hyper-ball
or a hyper-rectangle. Settles et al. (2008) presented
a framework for active learning in the MIL scenario
and demonstrated that learning from instance labels
can significantly improve the performance of a basic
MIL algorithm. Li and Sminchisescu (2010) made
an attempt towards a convex formulation for MIL and
introduced convex constraints on the likelihood ratio
between the positive and negative classes for each
instance. Thus, MIL can be converted to a convex

Multiple-instance learning with pairwise instance similarity 569

joint estimation of the likelihood ratio function and the
likelihood ratio values on training instances. Inspired
by subgradient-based methods for SVMs, Bergeron et al.
(2012) introduced a nonconvex bundle algorithm to
optimize the multiple-instance objective directly. Li
et al. (2013) assume that instances are drawn from a
mixture distribution of the concept and non-concept.
With this assumption the classification of a bag can
be regarded as a classifier combining problem, which
combines the classification results of all instances in the
bag. Nguyen et al. (2013) provided a generic framework
for transforming rule-based algorithms to solve MIL
problems.

Over the past ten years, several researchers
have combined the instance selection techniques with
the concept of the embedding space to solve MIL
problems and presented several ISMIL algorithms,
namely, DD-SVM, MILES, MILD and MILIS. The
main difference among them is how to select instance
prototypes from the training set. Specifically, DD-SVM
depends on the DD concept to identify instance
prototypes. Those instances corresponding to local
maximizers of the DD function in the feature space
are chosen as instance prototypes. Then an SVM with
a Gaussian kernel is learned in the embedding space.
MILES regards all training instances as the initial instance
prototypes and performs the instance selection implicitly
by learning a 1-norm SVM with a linear kernel. MILD
performs the instance selection based on a conditional
probability model. The instance having the highest ability
to distinguish between positive and negative training bags
is chosen from each positive bag as an instance prototype.
As in DD-SVM, MILD then learns a standard SVM with
a Gaussian kernel using bag-level features for training
bags. MILIS achieves the initial instance selection by
modeling the distributions of the negative population with
the Gaussian-kernel-based kernel density estimator. Then
it depends on an iterative optimization framework to
update instance prototypes and learn a linear SVM.

3. MILPIS: Multiple-instance learning with
pairwise instance similarity

3.1. Motivation. A general assumption made by
many MIL algorithms is that positive instances often
form one or more clusters in the feature space. Two
such well-known algorithms are the APR and DD, which
attempt to search the whole feature space for a target
concept region or cluster that contains at least one instance
from every positive bag and none of negative instances.
Furthermore, the experimental analysis done by Maron
and Lozano-Pérez (1998) as well as Zhang et al. (2002)
revealed that the DD framework can learn certain simple
concepts of nature scenes. From the perspective of
instance selection, the DD concept can measure the

co-occurrence of similar instances from different bags
with the same label. In other words, an instance prototype
learned from DD represents a certain simple concept
or a class of instances that is more likely to appear in
bags with the specific label than in other bags. This
is one of the reasons why the DD-SVM algorithm has
succeeded with regard to instance selection, although it
tries to search for multiple instance prototypes (target
concepts) starting from a new instance in each iteration.
Nevertheless, DD-SVM needs to compute the distances
between almost all pairs of instances in the training set for
a single instance prototype, since it uses the quasi-Newton
method to locate the target concept. Therefore, DD-SVM
is very time-consuming, which has been demonstrated by
the experimental results given by Chen et al. (2006) as
well as Li and Yeung (2010).

Following the above analysis, one may argue that
clustering methods could be applied for the purpose
of capturing the target concepts or clusters of positive
instances. As indicated by Fu et al. (2011), a principled
way should be devoid of the clustering or quantization
procedure for an ISMIL algorithm, since clustering and
quantization do not consider the bag-level structure or
discriminative information, and thus may discard small
clusters in the feature space where informative features
may be located.

Based on the above discussions, two main points can
be summarized on how to search for the target concepts
(instance prototypes) for the instance selection approach
existent in an ISMIL algorithm. First, the searching
process should be efficient enough since we are often
faced with large-scale data sets in real-world applications.
Second, small clusters should not be discarded as far as
possible by the instance selection approach since they may
contain informative features.

3.2. MILPIS. To satisfy the above two constraints,
we propose an MILPIS algorithm based on a similarity
between pairwise instances within a bag. In the following,
we first describe this algorithm and give the pseudo-code
representation of the instance selection approach used by
our MILPIS algorithm. Then we analyze why the MILPIS
algorithm satisfies the above two constraints.

To describe the MILPIS algorithm, we need to
introduce some notation. Let B represent all training bags
and m represent the size of B. m+ and m− (m+ +m− =
m) are the numbers of positive and negative training bags,
respectively. We denote by Bi the i-th bag in B and by Bij

the j-th instance in that bag. The bag Bi is composed of ni

instances Bij , j = 1, 2, . . . , ni. Without ambiguity, Bij

also stands for the feature vector of an instance depending
on the context.

The MILPIS algorithm starts with selecting from
every training bag a pair of instances with the highest
similarity level. For this purpose, we need to evaluate a

570 L. Yuan et al.

similarity measure between two instances within a bag.
Here we adopt the Euclidean distance to determine the
similarity between all pairwise instances Bij and Bik in
a bag Bi, i.e., ‖Bij − Bik‖, i ∈ {1, 2, . . . , m}, j, k ∈
{1, 2, . . . , ni} and j �= k. Note that the smaller the
distance between two instances, the higher the similarity
level between them.

With the definition of the similarity between
instances, we can now describe the details of our MILPIS
algorithm. We first compute the Euclidean distances
between all pairs of instances in every training bag, and
select two closest instances from the bag as instance
prototypes. Then we use all the instance prototypes
to form the embedding space and map every training
bag into this new feature space. Thus every training
bag is represented by a single bag-level feature vector.
Finally, we train a standard SVM with a Gaussian kernel
using all the new bag-level features for training bags.
The pseudo-code for the instance selection procedure of
MILPIS is summarized in Algorithm 1.

Algorithm 1. Instance selection for MILPIS.
Input: Set of training bags B
Output: Set of instance prototypes T

1: T = {}
2: for i = 1 to m do
3: d_min = ∞
4: for j = 1 to ni − 1 do
5: for k = j + 1 to ni do
6: d = ‖Bij − Bik‖
7: if d < d_min then
8: d_min = d
9: t1 = Bij

10: t2 = Bik

11: end if
12: end for
13: end for
14: T ⇐ T ∪ {t1, t2}
15: end for

Algorithm 1 will output a set of instance prototypes
T = {t1, t2, . . . , t2m}, where m is the number of all
training bags. Since we select two instances (most similar
ones) from every training bag, the number of instance
prototypes is the double of that of training bags. All these
instance prototypes are then used to define the bag-level
feature mapping mentioned above. Formally, given the
set T = {t1, t2, . . . , t2m}, the bag-level feature mapping
between a bag and all the instance prototypes is defined as

D(Bi) = [H(Bi, t1), H(Bi, t2), . . . , H(Bi, t2m)]T, (1)

where H(Bi, tk) = minBij∈Bi ‖Bij − tk‖ is the minimal
Hausdorff distance between a bag and an instance (Wang
and Zucker, 2000), and tk is the k-th item in T . Equation

(1) actually defines the global bag-level features for a bag,
whose number is equal to the size of the set of instance
prototypes T (i.e., 2m) since every instance prototype
determines one dimension of the bag-level features. Thus,
given the training set B = {B1, B2, . . . , Bm} and the set
of instance prototypes T = {t1, t2, . . . , t2m}, applying
the mapping (1) yields the matrix representation for all
the training bags as

[D1, D2, . . . , Dm]
= [D(B1), D(B2), . . . , D(Bm)]

=

⎡
⎢⎢⎢⎣

H(B1, t1) . . . H(Bm, t1)
H(B1, t2) . . . H(Bm, t2)

...
. . .

...
H(B1, t2m) . . . H(Bm, t2m)

⎤
⎥⎥⎥⎦ ,

(2)

where every column represents the bag-level features for
a bag. This kind of distance-based bag-level feature
mapping has been actually used by DD-SVM and MILD,
although the former employs weighted bag-level features.
With all the bag-level features for training bags, the
MILPIS algorithm then trains a standard SVM with a
Gaussian kernel, and thus the MIL problem has been
converted to the standard supervised learning problem.

Note that apart from positive instance prototypes
(selected from the positive training bags) the MILPIS
algorithm has also selected negative instance prototypes
from the negative training bags. Our empirical study
shows that including the negative instance prototypes
has improved the classification accuracy by an average
amount of 2.8% for the drug activity prediction task.
Actually, it is not the first time that an ISMIL algorithm
includes the negative instance prototypes in the set of
instance prototypes. This kind of strategy has been
put into practice by several ISMIL algorithms, such as
DD-SVM, MILES and MILIS.

Now we analyze why the MILPIS algorithm satisfies
the two constraints given in Section 3.1. Algorithm 1
shows that MILPIS focuses on the structure within a
bag. In other words, MILPIS puts emphasis on the
relation of instances within a bag rather than that of
instances between different bags. Specifically, MILPIS
establishes the framework of instance selection on the
basis of similarity between paired instances within a
bag, while other ISMIL algorithms are often based on
that between different instances from different bags.
For example, DD-SVM needs to compute the distances
between almost all pairs of instances from all training
bags for a single instance prototype and MILD has
to compute the distances from a candidate instance
prototype to all instances in all training bags in order
to acquire the discriminative ability of this candidate.
Therefore, compared with other ISMIL algorithms, our
MILPIS algorithm can accomplish the searching process
for instance prototypes more quickly. A detailed

Multiple-instance learning with pairwise instance similarity 571

analysis of computational complexities for different
ISMIL algorithms will be presented in Section 3.3.
Moreover, MILPIS tries hard to keep small clusters in
the feature space. In general, there exists one or more
clusters of positive instances in the feature space, which
may be chosen from many small clusters. Unlike the
clustering or quantization procedure, which does not
consider the bag-level structure and may discard small
clusters, MILPIS assumes that there may exist small
clusters within a bag, which are near to the target concept
regions or clusters. Furthermore, MILPIS considers that a
small cluster within a bag is likely to be composed of the
most similar instances in this bag.

3.3. Computational complexity. The ISMIL
algorithm can be roughly divided into three phases,
including instance selection, feature mapping and
classifier learning. Meanwhile, the instance selection
determines the further feature mapping and classifier
learning. Thus, we focus on the analysis of the
computational efficiency of the instance selection
approaches used by various ISMIL algorithms, including
our MILPIS algorithm, DD-SVM, MILES, MILD as
well as MILIS. Note that the names of these algorithms
also represent the corresponding instance selection
approaches in the following discussions. To simplify the
deliberations, we assume that every training bag contains
n instances on the average.

DD-SVM starts from every instance in all positive
training bags to search for an instance prototype, so the
total number of iterations is m+n. In each iteration,
DD-SVM uses the quasi-Newton method to search for
a candidate instance prototype, and thus it needs to
compute the distances between almost all pairs of training
instances, so the amount of computation produced in
each iteration is approximately (mn)2. Therefore,
the computational complexity of DD-SVM is equal to
O((m+n)(mn)2), i.e., O(m2m+n3).

Since MILES initially regards all training instances
as valid instance prototypes, it has to compute the
distances between all pairs of training instances for the
further instance pruning step. Hence, the computational
complexity of MILES is equal to O((mn)2), that is,
O(m2n2). Note that this computational complexity does
not consider the implicit instance pruning process via
1-norm SVM optimization.

In order to assess the discriminative ability of every
instance in all positive training bags, MILD has to
compute the distances from this instance to all training
instances, and thus the computational complexity of
MILD is equal to O((m+n)(mn)), i.e., O(mm+n2).

To achieve the density estimation for every training
instance in the initial instance selection process, MILIS
needs to search for its k-nearest negative instances and
then evaluates the probability of it being generated from

Table 1. Computational complexities for the instance selection
approaches used by various ISMIL algorithms.

Algorithm Complexity

MILPIS O(mn2)
DD-SVM (Chen and Wang, 2004) O(m2m+n3)
MILES (Chen et al., 2006) O(m2n2)
MILD (Li and Yeung, 2010) O(mm+n2)
MILIS (Fu et al., 2011) O(mm−n2)

the negative population. The amount of computation
consumed on searching for its k-nearest negative instances
is m−n, while that consumed on evaluating the
probability is km−n since for this purpose MILIS has
to compute the distances from every instance inside
its k-nearest negative instances to all negative training
instances. Thus, the total amount of computation is (k +
1)m−n for every training instance. Since k is usually less
than m−, the computational complexity of MILIS equals
to O((mn)(m−n)), that is, O(mm−n2). This complexity
is only related to the initial instance selection process,
and the very time-consuming iterative optimization
framework for instance updating and classifier learning
is not considered. The computational complexities of
all the instance selection approaches discussed above are
summarized in Table 1, together with the complexity of
MILPIS introduced below.

Table 1 shows that MILD is the most efficient one
among all the above algorithms. Thus, we only need to
compare MILPIS with MILD in terms of computational
efficiency. From Algorithm 1, we can easily see that
the total number of the outermost iterations is equal to
that of training bags m. In each iteration, MILPIS
needs to compute the distances between all pairs of
instances in a bag. Hence, the computational complexity
of MILPIS is O(mn2), which is less than the complexity
of MILD (O(mm+n2)). The analysis of computational
efficiency for various ISMIL algorithms was validated
by experiments on the MUSK and ANIMAL data sets,
the details of which can be seen in Section 4. The
higher efficiency of our MILPIS algorithm may be very
promising, since we are often faced with large-scale data
sets in real-world applications.

4. Experiments

4.1. Drug activity prediction. The MUSK data sets,
MUSK1 and MUSK2, are standard benchmarks for MIL,
which are publicly available from the UCI Machine
Learning Repository (Blake and Merz, 1998). These data
sets consist of descriptions of molecules and the task is
to predict whether a given molecule is active or inactive.
Each molecule is viewed as a bag whose instances are
the different low-energy conformations of the molecule.

572 L. Yuan et al.

Surface properties of a conformation are extracted as its
feature vector that has 166 dimensions. If one of the
conformations of a molecule binds well to the target
protein, the molecule is said to be active, and otherwise
it is inactive. MUSK1 contains 47 positive bags and
45 negative bags, with an average of 5.17 instances per
bag. MUSK2 contains 39 positive bags and 63 negative
bags, with 64.69 instances per bag on average. MUSK2
shares 72 molecules with MUSK1, but contains more
conformations for those shared molecules.

We used ten random runs of tenfold cross-validation
to test our MILPIS algorithm. LIBSVM (Chang and Lin,
2011) was used to train all the SVMs for MILPIS, and thus
the regularization parameter C and the Gaussian kernel
parameter γ need to be specified. In our experiments,
both of them were chosen from {2−10, 2−8, . . . , 210},
and a pair of values giving the minimum twofold
cross-validation error on the training examples (from nine
of ten folds) were selected to set the two parameters. As
for other ISMIL algorithms, including DD-SVM, MILES,
MILD and MILIS, we used the same setup to determine
the corresponding parameters.1 All the experiments were
performed on a 3.1 GHz PC with four cores.

4.1.1. Classification results. The prediction accuracy
in ten runs varies from 84.8% to 88.2% for MUSK1,
and from 84.3% to 91.4% for MUSK2. Table 2 thus
reports the mean and the 95% confidence interval of the
results of ten runs of tenfold cross-validation for MILPIS.
We also listed some other results on the same data sets
for comparison. Table 2 shows that the APR algorithm
achieves the best performance on both MUSK1 and
MUSK2 data sets in terms of the classification accuracy.
However, the APR algorithm chooses the parameters to
maximize the performance on the test set, rather than
the training set, and thus the superiority of the APR
should not be interpreted as a failure. Table 2 also shows
that our MILPIS algorithm gives the second best overall
prediction accuracy on the MUSK1 and MUSK2 data
sets. In particular, MILPIS outperforms all other ISMIL
algorithms in terms of the classification accuracy on either
MUSK1 or MUSK2, which confirms that our instance
selection approach is very effective. This is mainly due
to the fact that the MILPIS algorithm can make instances
representing small clusters of target concepts remain in
the set of instance prototypes.

4.1.2. Computation time. The analysis of
computational complexity indicated that our MILPIS
algorithm is superior to other ISMIL algorithms with

1We noticed that several ISMIL algorithms, including DD-SVM,
MILES, MILD and MILIS, tuned the SVM parameters on the whole
data set. For a fair comparison, we implemented these algorithms and
run them based on our experimental setup.

respect to computation time. To validate this conclusion,
we give in Table 3 the computation time for various
ISMIL algorithms on both MUSK1 and MUSK2 data
sets. The computation time for various algorithms on
either of the two data sets is the total training and testing
time consumed on tenfold cross-validation. Remember
that we use ten runs of tenfold cross-validation to evaluate
the performance of various ISMIL algorithms on the
MUSK data sets. From Table 3, we can easily see
that MILPIS performs on a par with MILD in terms
of computation time but slightly better than MILD.
Meanwhile, they consume much less computation time
than other ISMIL algorithms. The speedup of MILPIS
over other ISMIL algorithms for the MUSK2 data set is
more obvious due to the large number of instances in this
data set. The results herein demonstrate that our MILPIS
algorithm is more efficient than other ISMIL algorithms,
which mainly ascribes to the very fast instance selection
scheme used by MILPIS. As mentioned above, MILPIS
focuses on the structure within a training bag, specifically,
the similarity between instances in every individual
training bag. In contrast, other ISMIL algorithms often
take into account the relation of instances between
different training bags.

4.2. Automatic image annotation. Automatic image
annotation data sets (Andrews et al., 2003) concern
identification of three kinds of animals in images:
Elephant, Fox and Tiger. For each data set, 100 images
containing the target animal are used as positive bags,
and 100 images randomly drawn from a set of photos of
other animals as negative bags. Each image is represented
by a set of segments and each segment is described by
a 230-dimensional feature vector characterizing color,
texture and shape. The number of instances in a bag
ranges from 1 to 13, with an average of 7, 6.6, and
6.1 instances per bag for Elephant, Fox and Tiger,
respectively. We used the same experimental setup and
parameter selection approach as in Section 4.1 to test the
performance of various ISMIL algorithms on the three
data sets.

4.2.1. Annotation results. We applied tenfold
cross-validation with 10 different random runs to estimate
the prediction accuracy of our MILPIS algorithm on
the three data sets. The prediction accuracy range of
MILPIS over 10 runs is [82.0%, 85.5%] for Elephant,
[64.0%, 69.0%] for Fox and [79.0%, 84.0%] for Tiger.
Therefore, we report in Table 4 the average and 95%
confidence interval of the results of 10 runs of tenfold
cross-validation for MILPIS. Table 4 also summarizes the
results of other ISMIL algorithms on Elephant, Fox and
Tiger for comparison. Table 4 shows that the MILPIS and
MILES algorithms are highly comparable with each other

Multiple-instance learning with pairwise instance similarity 573

Table 2. Classification accuracies (in %) for various MIL algorithms on the MUSK data sets.
Algorithm MUSK1 MUSK2 Avg

MILPIS 86.9:[86.2,87.5] 88.5:[87.1,89.8] 87.7
DD-SVM (Chen and Wang, 2004) 85.6:[83.9,87.2] 87.3:[86.3,88.2] 86.5
MILES (Chen et al., 2006) 86.6:[84.9,88.4] 88.3:[86.8,89.9] 87.5
MILD (Li and Yeung, 2010) 85.0:[82.8,87.1] 85.0:[83.6,86.5] 85.0
MILIS (Fu et al., 2011) 86.4:[84.6,88.2] 88.3:[87.2,89.5] 87.4
APR (Dietterich et al., 1997) 92.4 89.2 90.8
DD (Maron and Lozano-Pérez, 1998) 88.9 82.5 85.7
EM-DD (Zhang and Goldman, 2002) 84.8 84.9 84.9
MI-SVM (Andrews et al., 2003) 77.9 84.3 81.1
mi-SVM (Andrews et al., 2003) 87.4 83.6 85.5

Table 3. Computation time (in minutes) for various ISMIL algorithms on the MUSK data sets.
Algorithm MUSK1 MUSK2

MILPIS 0.04 0.28
DD-SVM (Chen and Wang, 2004) 8.74 122.57
MILES (Chen et al., 2006) 0.13 4.42
MILD (Li and Yeung, 2010) 0.04 0.46
MILIS (Fu et al., 2011) 8.17 3091.39

in terms of classification accuracy, and superior to other
ISMIL algorithms (i.e., DD-SVM, MILD and MILIS),
which once again demonstrates the effectiveness of the
instance selection method used by our MILPIS algorithm.
As stated by Chen et al. (2006), the MILES algorithm
essentially uses the linear SVM feature selection method,
which can take into account the correlations between
features (instances). However, this is not the case for
DD-SVM, MILD and MILIS. For example, DD-SVM
focuses on the individual points (instances) corresponding
to local maxima of DD, not several instances that together
determine a candidate target concept region. Like MILES,
our MILPIS algorithm takes advantage of the relation
between instances, specifically, the similarity between
pairwise instances in every bag. This may be why MILES
and MILPIS perform better in the experiments when
compared with other algorithms.

4.2.2. Computation time. Figure 1 illustrates the
computation time consumed by various ISMIL algorithms
for the automatic image annotation task. Since the
computation time for DD-SVM on each of the three data
sets is nearly one hour and that for MILIS is more than
two hours, we do not show them in Fig. 1. From the
figure, we can see that MILPIS and MILD are highly
competitive with each other in terms of computation time
and much better than MILES for all the three data sets.
Although the MILES algorithm performs on a par with
our MILPIS algorithm in terms of classification accuracy
(see Table 4), MILPIS is superior to MILES with respect
to both effectiveness and efficiency, since it needs much

 0.2

 0.4

 0.6

 0.8

 1

Elephant Fox Tiger

C
om

pu
ta

tio
n

tim
e

(in
 m

in
ut

es
)

MILPIS
MILES
MILD

Fig. 1. Computation time for various ISMIL algorithms on the
Elephant, Fox and Tiger data sets.

less computation time for the whole learning process.
The reason resides in the fact that MILPIS considers the
correlations between instances from the perspective of
local scope, while MILES considers this problem from
the global point of view. Consequently, MILPIS can
accomplish the instance selection process very quickly,
whereas MILPIS needs a great amount of time to learn
a linear SVM for feature selection.

4.3. Region-based image categorization. The
COREL data sets have been widely used for region-based
image categorization. The data sets contain 20
thematically diverse image categories with 100 images
of size 384 × 256 or 256 × 384 in each category.

574 L. Yuan et al.

Table 4. Classification accuracies (in %) for various ISMIL algorithms on the Elephant, Fox and Tiger data sets.
Algorithm Elephant Fox Tiger Avg

MILPIS 83.8:[83.1,84.5] 67.3:[66.3,68.2] 81.9:[81.0,82.8] 77.7
DD-SVM (Chen and Wang, 2004) 80.8:[80.1,81.4] 61.2:[59.7,62.7] 76.7:[76.0,77.4] 72.9
MILES (Chen et al., 2006) 83.2:[82.6,83.8] 66.9:[65.8,68.0] 82.0:[81.2,82.8] 77.4
MILD (Li and Yeung, 2010) 77.3:[76.6,78.1] 60.1:[59.4,60.9] 76.5:[75.7,77.3] 71.3
MILIS (Fu et al., 2011) 83.8:[82.5,85.1] 61.2:[58.8,63.6] 82.5:[81.1,84.0] 75.8

Each image is segmented into several local regions
and features are extracted from each region. The
data sets and extracted features are publicly available
at www.cs.olemiss.edu/~ychen/ddsvm.html.
Details of segmentation and feature extraction are beyond
the scope of this paper and interested readers are referred
to the work of Chen and Wang (2004) for further
information.

For the COREL data sets, we conducted two tests for
the 10-category and 20-category image categorizations.
The first 10 categories in the COREL data sets were
used in the first test while all 20 categories were used
in the second one. For each category, we randomly
selected half of images as training bags and the remaining
half as test bags. We repeated each experiment for
five different random partitions and reported the average
of the results obtained over five different test tests.
Since this is a multi-class classification problem, we
simply applied the one-against-the-rest approach to train
10/20 binary SVMs. A test bag is assigned to the
category with the largest decision value given by a
specific SVM. Both the regularization parameter C and
the Gaussian kernel parameter γ were chosen from
{2−10, 2−8, . . . , 210}, and a pair of values giving the
minimum twofold cross-validation error on the training
examples were selected to set the two parameters.

4.3.1. Categorization results. We compared the
prediction accuracy of MILPIS with that of DD-SVM,
MILES, MILD and MILIS. The average classification
accuracies over five different random test sets and the
corresponding 95% confidence intervals are provided in
Table 5. The table shows that the overall prediction
accuracy of MILPIS on both of COREL data sets is
highly comparable with that of MILES (only 0.1% of
the difference) and slightly higher than that of MILIS.
As for DD-SVM and MILD, Table 5 shows that they
are obviously inferior to MILPIS and the other two
algorithms. The better performance of MILES and
MILPIS with respect to prediction accuracy once again
demonstrates that it is very important for an ISMIL
algorithm to take into account the dependencies between
instances for instance selection. Meanwhile, the similarity
scheme used by MILPIS is an appropriate measure for
the correlations between instances in that it uses paired

instances to capture small concept regions in the feature
space.

4.3.2. Sensitivity to labeling noise. Then we tested
the sensitivity of MILPIS to labeling noise based on
the COREL data sets. We used the same setting as
that in MILES and MILD to perform this experiment.
The tests were conducted using binary classification,
and labeling noise is defined as the probability that an
image is mislabeled. Category 3 (Buses) and Category 4
(Dinosaurs) were used in this experiment, since they can
be almost perfectly separated by all the ISMIL algorithms,
which makes them a good data set for testing noise
sensitivity.2 We randomly selected half of images from
the data set to form a training set and the remaining
half to form a test set. To introduce labeling noise for
training images, we first randomly picked d% of positive
images and d% of negative images from the training
set, and then negated the labels of these images, i.e.,
labeling positive (negative) images as negative (positive)
images. The training set thus contains d% of mislabeled
images. Both the regularization parameter C and the
Gaussian kernel parameter γ were still chosen from
{2−10, 2−8, . . . , 210}, and a pair of values giving the
minimum twofold cross-validation error on the training
set were selected to set them. Training and testing
were repeated for five different random partitions and
the average classification accuracy was computed. We
compared various ISMIL algorithms at different levels of
labeling noise (d = 0 − 30 with step size 2).

The average classification accuracies over five
randomly generated test sets are shown in Fig. 2. Here
we can see that MILPIS and MILD are better than other
ISMIL algorithms when there exists noise in labels, and
even so MILPIS still outperforms MILD slightly with
respect to the overall prediction accuracy at all levels of
labeling noise. Specifically, the classification accuracies
of all the algorithms are almost 100% when there is no
labeling noise (d = 0). When the noise level increases, the
better prediction accuracy of MILPIS, MILD and MILES
can be kept until d = 24 while that of MILIS deteriorates
to a greater extent. Meanwhile, Fig. 2 also shows that

2Unlike with MILES and MILD, we did not use Category 2 (Histor-
ical buildings) and Category 7 (Horses) in this experiment, since they
cannot be almost perfectly separated by all the ISMIL algorithms.

www.cs.olemiss.edu/~ychen/ddsvm.html

Multiple-instance learning with pairwise instance similarity 575

Table 5. Classification accuracies (in %) for various ISMIL algorithms on the COREL data sets.
Algorithm COREL10 COREL20 Avg

MILPIS 82.2:[80.8,83.5] 69.5:[67.6,71.4] 75.9
DD-SVM (Chen and Wang, 2004) 73.0:[71.8,74.1] 54.3:[51.0,57.7] 63.7
MILES (Chen et al., 2006) 82.0:[81.2,82.9] 69.9:[68.3,71.6] 76.0
MILD (Li and Yeung, 2010) 80.1:[77.9,82.3] 66.8:[65.5,68.1] 73.5
MILIS (Fu et al., 2011) 81.2:[79.3,83.2] 69.7:[67.2,72.1] 75.5

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

in
 %

)

Noise level in labels (in %)

MILPIS
DD-SVM
MILES
MILD
MILIS

Fig. 2. Sensitivity of various ISMIL algorithms to labeling
noise.

DD-SVM is the most sensitive one among all the ISMIL
algorithms, which has also been demonstrated by MILES
and MILD. The better performance of MILPIS implies
that its instance selection method is very robust to labeling
noise, which is also due to the perspective adopted by
MILPIS in instance selection. Since MILPIS focuses on
the inner structure of a bag and does not consider the
label of the bag, it can still choose the representative
instance prototypes from the bag even though the bag
is mislabeled. As a result, MILPIS is less sensitive to
labeling noise.

4.4. Evaluation of similarity-based instance selec-
tion. Algorithm 1 shows that the MILPIS algorithm
selects from every training bag a pair of the most similar
instances as instance prototypes. One may wonder if the
prediction accuracy of MILPIS will become higher when
selecting several pairs of instances from every training
bag. To address this issue, we performed the experiments
on the MUSK1 and COREL10 data sets using a simple
instance selection approach which extends Algorithm 1 to
choose from every training bag K pairs of the most similar
instances. The experimental setup and parameter selection
method for MUSK1 and COREL10 were the same as those
described in Sections 4.1 and 4.3, respectively. Figure 3
shows the corresponding classification results of MILPIS
on both MUSK1 and COREL10 data sets.

 70

 75

 80

 85

 90

MUSK1 COREL10

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

in
 %

)

K=1
K=2
K=3

Fig. 3. Classification accuracies for MILPIS on MUSK1 and
COREL10 with different numbers (K) of pairs of in-
stances selected from every training bag.

In Fig. 3 we can see that, when K = 1
(corresponding to Algorithm 1), the MILPIS algorithm
achieves the highest performance on both MUSK1 and
COREL10 data sets. On the other hand, the performance
deteriorates to a smaller extent when adding additional
pairs of instances (K = 2, 3) into the set of instance
prototypes. This is mainly due to the fact that some
instances irrelevant to the target concepts were selected
from the training bags when K = 2, 3. Moreover, adding
more instance prototypes will make the further feature
mapping and classifier learning become slower. Based
on these results, we can assert that it is unnecessary to
choose from every training bag several pairs of the most
similar instances as instance prototypes, and Algorithm 1
is sufficient for common MIL tasks.

5. Conclusions and future work

Based on similarity between instances within a bag, we
proposed a novel instance selection method for an ISMIL
algorithm called MILPIS. The MILPIS algorithm tries to
capture small clusters of target concepts in the feature
space by considering the correlations between instances;
specifically, the similarity between pairwise instances in
a bag. Accordingly, MILPIS achieves results highly
comparable with those of other ISMIL algorithms on
three MIL tasks in the experiments, which confirms that

576 L. Yuan et al.

our instance selection method is very effective. Since
MILPIS focuses on the local scope of every training bag
for instance selection, it showed the highest efficiency in
the experiments compared with other similar algorithms.
In addition, the testing of noise sensitivity demonstrates
that our MILPIS algorithm is very robust to labeling noise.
This mainly ascribes to the fact that MILPIS takes into
account only the inner structure of a bag for instance
selection and thus will not be affected by the label of the
bag.

Following the descriptions of the MILPIS algorithm,
we know that it will select all the instances in a bag as
instance prototypes if the number of instances in this bag
is equal to 2. If we adopt some strategy to choose one from
the two instances, the generalization ability and efficiency
of the algorithm may be improved to some extent.
Moreover, as we know, every individual ISMIL algorithm
performs instance selection from a different point of view.
Thus, it may be interesting to investigate how to integrate
different instance selection methods together, e.g., using
ensemble feature selection techniques.

Acknowledgment

This research has been supported by the National Natural
Science Foundation of China under the grants no.
61173087 and 61370162. The authors would like to thank
the anonymous reviewers for their valuable suggestions
which led to improvement of this paper.

References
Ali, S. and Shah, M. (2010). Human action recognition in videos

using kinematic features and multiple instance learning,
IEEE Transactions on Pattern Analysis and Machine In-
telligence 32(2): 288–303.

Andrews, S. and Hofmann, T. (2004). Multiple instance learning
via disjunctive programming boosting, Proceedings of Ad-
vances in Neural Information Processing Systems 16, Van-
couver and Whistler, BC, Canada, pp. 65–72.

Andrews, S., Tsochantaridis, I. and Hofmann, T. (2003). Support
vector machines for multiple-instance learning, Proceed-
ings of Advances in Neural Information Processing Sys-
tems 15, Vancouver, BC, Canada, pp. 561–568.

Auer, P. and Ortner, R. (2004). A boosting approach to multiple
instance learning, Proceedings of the 15th European Con-
ference on Machine Learning, Pisa, Italy, pp. 63–74.

Babenko, B., Yang, M.-H. and Belongie, S. (2009). Visual
tracking with online multiple instance learning, Proceed-
ings of the 22nd Conference on Computer Vision and Pat-
tern Recognition, Miami, FL, USA, pp. 983–990.

Babenko, B., Verma, N., Dollár, P. and Belongie, S. (2011a).
Multiple instance learning with manifold bags, Proceed-
ings of the 28th International Conference on Machine
Learning, Bellevue, WA, USA, pp. 81–88.

Babenko, B., Yang, M.-H. and Belongie, S. (2011b). Robust
object tracking with online multiple instance learning,
IEEE Transactions on Pattern Analysis and Machine In-
telligence 33(8): 1619–1632.

Bergeron, C., Moore, G., Zaretzki, J., Breneman, C.M.
and Bennett, K. P. (2012). Fast bundle algorithm for
multiple-instance learning, IEEE Transactions on Pattern
Analysis and Machine Intelligence 34(6): 1068–1079.

Blake, C.L. and Merz, C.J. (1998). UCI
repository of machine learning databases,
http://archive.ics.uci.edu/ml/.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A
library for support vector machines, ACM Transac-
tions on Intelligent Systems and Technology 2(27): 1–27,
www.csie.ntu.edu.tw/~cjlin/libsvm/.

Chen, Y., Bi, J. and Wang, J. Z. (2006). MILES:
Multiple-instance learning via embedded instance
selection, IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(12): 1931–1947.

Chen, Y. and Wang, J. Z. (2004). Image categorization by
learning and reasoning with regions, Journal of Machine
Learning Research 5: 913–939.

Czarnowski, I. and Jędrzejowicz, P. (2011). Application
of agent-based simulated annealing and tabu search
procedures to solving the data reduction problem, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 21(1): 57–68, DOI: 10.2478/v10006-011-0004-3.

Dietterich, T. G., Lathrop, R. H. and Lozano-Pérez, T. (1997).
Solving the multiple instance problem with axis-parallel
rectangles, Artificial Intelligence 89(1–2): 31–71.

Dollár, P., Babenko, B., Belongie, S., Perona, P. and Tu, Z.
(2008). Multiple component learning for object detection,
Proceedings of the 10th European Conference on Com-
puter Vision, Marseille, France, pp. 211–224.

Fu, Z., Robles-Kelly, A. and Zhou, J. (2011). MILIS: Multiple
instance learning with instance selection, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
33(5): 958–977.

Fung, G., Dundar, M., Krishnapuram, B. and Rao, R.B. (2007).
Multiple instance learning for computer aided diagnosis,
Proceedings of Advances in Neural Information Process-
ing Systems 19, Vancouver, BC, Canada, pp. 425–432.

Gärtner, T., Flach, P.A., Kowalczyk, A. and Smola, A.J. (2002).
Multi-instance kernels, Proceedings of the 19th Interna-
tional Conference on Machine Learning, Sydney, NSW,
Australia, pp. 179–186.

Li, F. and Sminchisescu, C. (2010). Convex multiple-instance
learning by estimating likelihood ratio, Proceedings of Ad-
vances in Neural Information Processing Systems 23, Van-
couver, BC, Canada, pp. 1360–1368.

Li, M., Kwok, J.T. and Lu, B.-L. (2010). Online multiple
instance learning with no regret, Proceedings of the 23rd
Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, pp. 1395–1401.

http://archive.ics.uci.edu/ml/
www.csie.ntu.edu.tw/~cjlin/libsvm/

Multiple-instance learning with pairwise instance similarity 577

Li, W.-J. and Yeung, D.-Y. (2010). MILD: Multiple-instance
learning via disambiguation, IEEE Transactions on Knowl-
edge and Data Engineering 22(1): 76–89.

Li, Y., Tax, D. M.J., Duin, R.P.W. and Loog, M. (2013).
Multiple-instance learning as a classifier combining
problem, Pattern Recognition 46(3): 865–874.

Maron, O. and Lozano-Pérez, T. (1998). A framework for
multiple-instance learning, Proceedings of Advances in
Neural Information Processing Systems 10, Denver, CO,
USA, pp. 570–576.

Maron, O. and Ratan, A. L. (1998). Multiple-instance learning
for natural scene classification, Proceedings of the 15th
International Conference on Machine Learning, Madison,
WI, USA, pp. 341–349.

Nguyen, D.T., Nguyen, C.D., Hargraves, R., Kurgan, L.A.
and Cios, K.J. (2013). mi-DS: Multiple-instance
learning algorithm, IEEE Transactions on Cybernetics
43(1): 143–154.

Rahmani, R., Goldman, S.A., Zhang, H., Cholleti, S.R.
and Fritts, J.E. (2008). Localized content-based image
retrieval, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 30(11): 1902–1912.

Ramon, J. and De Raedt, L. (2000). Multi instance neural
networks, Proceedings of the 17th International Confer-
ence on Machine Learning/Workshop on Attribute-Value
and Relational Learning, Stanford, CA, USA.

Raykar, V.C., Krishnapuram, B., Bi, J., Dundar, M. and
Rao, R.B. (2008). Bayesian multiple instance learning:
Automatic feature selection and inductive transfer, Pro-
ceedings of the 25th International Conference on Machine
Learning, Helsinki, Finland, pp. 808–815.

Settles, B., Craven, M. and Ray, S. (2008). Multiple-instance
active learning, Proceedings of Advances in Neural Infor-
mation Processing Systems 20, Vancouver, BC, Canada,
pp. 1289–1296.

Tao, Q., Scott, S.D., Vinodchandran, N.V., Osugi, T.T.
and Mueller, B. (2008). Kernels for generalized
multiple-instance learning, IEEE Transactions on Pattern
Analysis and Machine Intelligence 30(12): 2084–2098.

Trawiński, B., Smętek, M., Telec, Z. and Lasota, T. (2012).
Nonparametric statistical analysis for multiple comparison
of machine learning regression algorithms, International
Journal of Applied Mathematics and Computer Science
22(4): 867–881, DOI: 10.2478/v10006-012-0064-z.

Vezhnevets, A. and Buhmann, J. M. (2010). Towards weakly
supervised semantic segmentation by means of multiple
instance and multitask learning, Proceedings of the 23rd
Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, pp. 3249–3256.

Viola, P.A., Platt, J.C. and Zhang, C. (2006). Multiple instance
boosting for object detection, Proceedings of Advances
in Neural Information Processing Systems 18, Vancouver,
BC, Canada, pp. 1417–1424.

Wang, J. and Zucker, J.-D. (2000). Solving the multiple-instance
problem: A lazy learning approach, Proceedings of the
17th International Conference on Machine Learning, Stan-
ford, CA, USA, pp. 1119–1126.

Yang, C. and Lozano-Pérez, T. (2000). Image database retrieval
with multiple-instance learning techniques, Proceedings of
the 16th International Conference on Data Engineering,
San Diego, CA, USA, pp. 233–243.

Zha, Z.-J., Hua, X.-S., Mei, T., Wang, J., Qi, G.-J. and Wang,
Z. (2008). Joint multi-label multi-instance learning for
image classification, Proceedings of the 21st Conference
on Computer Vision and Pattern Recognition, Anchorage,
AK, USA, pp. 1–8.

Zhang, M.-L. and Zhou, Z.-H. (2004). Improve multi-instance
neural networks through feature selection, Neural Process-
ing Letters 19(1): 1–10.

Zhang, Q. and Goldman, S.A. (2002). EM-DD: An improved
multiple-instance learning technique, Proceedings of Ad-
vances in Neural Information Processing Systems 14, Van-
couver, BC, Canada, pp. 1073–1080.

Zhang, Q., Goldman, S.A., Yu, W. and Fritts, J.E. (2002).
Content-based image retrieval using multiple-instance
learning, Proceedings of the 19th International Con-
ference on Machine Learning, Sydney, NSW, Australia,
pp. 682–689.

Liming Yuan received the B.Sc. degree in com-
puter science and technology from Harbin Nor-
mal University, China, in 2005, and the M.Sc. de-
gree in computer applied technology from Harbin
Engineering University, China, in 2009. He is
currently working toward his Ph.D. degree at the
School of Computer Science and Technology,
Harbin Institute of Technology, China. His main
research interest concentrates on using example
selection, instance selection and feature selection

to solve the multiple-instance learning problem.

Jiafeng Liu received his Ph.D. degree from the
Harbin Institute of Technology, China, in 1996.
He is currently an associate professor at the
School of Computer Science and Technology,
Harbin Institute of Technology. His research in-
terests cover image and video analysis, optimal
character recognition, pattern recognition, ma-
chine learning and artificial intelligence. He has
published over 40 papers in refereed international
journals.

Xianglong Tang received his Ph.D. degree from
the Harbin Institute of Technology, China, in
1995. He is currently a professor at the School
of Computer Science and Technology and the di-
rector of the Research Center of Pattern Recogni-
tion, both at the Harbin Institute of Technology.
His main research interests are focused on Chi-
nese character recognition, medical imaging and
biometrics, computer vision and pattern recogni-
tion. He has published over 80 papers in refereed

international journals.

Received: 1 July 2013
Revised: 1 December 2013

	Introduction
	Related work
	MILPIS: Multiple-instance learning with pairwise instance similarity
	Motivation
	MILPIS
	Computational complexity

	Experiments
	Drug activity prediction
	Classification results
	Computation time

	Automatic image annotation
	Annotation results
	Computation time

	Region-based image categorization
	Categorization results
	Sensitivity to labeling noise

	Evaluation of similarity-based instance selection

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

