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This article presents a single model active fault detection and isolation system (SMAC-FDI) which is designed to efficiently
detect and isolate a faulty actuator in a system, such as a small (unmanned) aircraft. This FDI system is based on a single
and simple aerodynamic model of an aircraft in order to generate some residuals, as soon as an actuator fault occurs. These
residuals are used to trigger an active strategy based on artificial exciting signals that searches within the residuals for the
signature of an actuator fault. Fault isolation is carried out through an innovative mechanism that does not use the previous
residuals but the actuator control signals directly. In addition, the paper presents a complete parameter-tuning strategy for
this FDI system. The novel concepts are backed-up by simulations of a small unmanned aircraft experiencing successive
actuator failures. The robustness of the SMAC-FDI method is tested in the presence of model uncertainties, realistic sensor
noise and wind gusts. Finally, the paper concludes with a discussion on the computational efficiency of the method and its
ability to run on small microcontrollers.
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1. Introduction

On-line fault diagnosis is an essential part of autonomous
systems when safe operation and reliability are of primary
concern. This is the case for unmanned aerial vehicles
(UAVs) that perform missions in the vicinity of humans
or infrastructures.

A reliable FDI system is necessary to assess the
vehicle health status in order to decide on whether to
continue the mission or to abort it as safe as possible. In
addition, the information provided by such an FDI system
may be used to overcome the presence of a fault in the
system through a fault-tolerant control (FTC) architecture.
Based on the on-line FDI outputs, the FTC system may
be reconfigured or continuously adapted (Rodrigues et al.,
2007; Bonfè et al., 2011), and thus increase significantly
the overall operation range and safety (Blanke et al., 2006;
Theilliol et al., 2008; Benini et al., 2009).

Among the possible FDI techniques, a distinction
can be made between those which are model based and
others which are non-model based (Isermann, 2006; Alwi
et al., 2011). Still, most fault diagnosis approaches rely

on a mathematical model of the plant being monitored
(Simani et al., 2003). The detection of a fault is
achieved by assessing whether a “constructed signal”
goes beyond a certain threshold. For example, such
a “constructed signal” may be a residual, which is the
deviation between the current hardware-measured value
of a certain system-state variable and its expected value
generated by the plant’s model. However, other diagnosis
signals may be constructed and evaluated (Isermann,
2006). There has been a lot of research on actuator-fault
diagnosis and also some fewer works on sensor-fault
diagnosis (e.g., Castaldi et al., 2010). A list of techniques
that are commonly encountered in the literature for the
design of fault detection and isolation (FDI) systems can
be found, e.g., in the works of Ducard (2009) and Alwi
et al. (2011).

Designing a reliable FDI system is a challenging
task, because it needs to provide an accurate evaluation
of the systems’ “health” despite external disturbances,
model uncertainties, and sensor noise. Moreover, the FDI
system has to be sensitive enough to detect faults without
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triggering false alarms. Therefore, the robustness of the
FDI system against the above-mentioned deficiencies is
of particular concern. Examples of robustness analysis
within the context of failure detection are provided, for
example by Patton and Chen (1997), Zhang and Jiang
(2000) as well as Belcastro and Chang (2002). In the work
of Chen and Patton (1999), the robustness of FDI systems
is enhanced by incorporating during the FDI-design phase
the effects of disturbance signals, model uncertainties and
measurement noise.

It is often the case that several model-based filters
are organized in a bank in which one filter is sensitive to
a specified failure but the other filters remain insensitive
to that failure. Examples of this technique are (i) robust
fault diagnosis for a spacecraft attitude control system
(Patton et al., 2008), and (ii) the multiple model adaptive
estimation (MMAE) method. This scheme is used to
detect and isolate actuator or sensor faults on an aircraft
by Magill (1965), Athans (1977), Maybeck and Stevens
(1991), Eide and Maybeck (1996), Maybeck (1999), and
Fekri et al. (2006).
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Fig. 1. Classical MMAE-FDI scheme.

As shown in Fig. 1, the classical MMAE-FDI scheme
is based on a bank of parallel Kalman filters (KFs), each
of which matches a particular fault status of the system,
and is thus responsive for detecting deviations between
model parameters and their true values. However, the
MMAE method possesses three major limitations which
are reported by Ducard and Geering (2008), who modified
the MMAE method to compensate these limitations.

In this context, there are two families of fault
detection and isolation systems, namely, passive FDI
and active FDI systems. The former “wait” until a
fault or failure occurs (Maybeck and Stevens, 1991;
Maybeck, 1999), whereas the latter will artificially excite
the aircraft, either by flying health check maneuvers
(Elgersma et al., 1998; Azam et al., 2005), or by injecting
test signals in the actuator commands and then assessing
the individual health status of actuators and sensors
(Elgersma and Glavaski, 2001; Campbell and Nikoukhah,
2004; Ducard and Geering, 2006; 2008; Boskovic et al.,
2007; Ducard, 2009; Bateman et al., 2011).

This paper presents a new method that is inspired
by the artificial actuator excitation mechanism used in
conjunction with the EMMAE scheme as presented by
Ducard and Geering (2006; 2008). Some fundamental
differences, however, are that (i) the FDI system in this
paper only employs a single EKF to generate residuals
used for fault detection and trigger a fault alarm, and (ii)
these residuals are then not used to assess the origin of
the system’s behavior discrepancy, but rather an active
diagnostic procedure is engaged that artificially excites
actuators and an additional stage performs fault isolation.
Thus, the method presented in this paper is named a
single model active fault detection and isolation system
(SMAC-FDI).

Various variants of Kalman filters have been
constructed for detecting and isolating faults or for state
estimation and state reconstruction. The use of extended
Kalman filters (EKFs) applied to nonlinear systems
for FDI purposes has lately regained interest (Tanaka
et al., 2006; Ducard and Geering, 2008). Campbell
et al. (2007) discuss the implementation of a sigma
point filter (SPF) which was originally introduced as the
unscented Kalman filter (UKF), where the distributions
are approximated by a finite set of points. It is used to
estimate aircraft states and aerodynamic derivatives in real
time. This is a nonlinear estimation algorithm that can be
performed on-line, which possesses robustness properties
against parameter uncertainties, filter tuning and initial
conditions.

However, all of the techniques described above are
computationally quite demanding. The FDI system of this
paper is designed with three main requirements: (i) to
use a single model, as simple as possible, of the aircraft,
whose actuators are to be monitored, (ii) to require very
low computational effort, so that the algorithm can run
on a small microcontroller, (iii) to be robust to model
uncertainties, sensor noise and external perturbation. A
first version of this SMAC-FDI system was presented
by Ducard and Geering (2010) and improved by Ducard
(2013).

The main contributions of this article are to (i)
present an innovative architecture of an FDI system
based on a single filter for the generation of residuals
independently of the actuator fault scenario, (ii) describe
an active strategy that searches in the generated residuals
for the signature of an actuator fault and test the actuators
in a systematic way, (iii) present an actuator-fault isolation
procedure that is not based on residuals’ manipulations
but on the direct observation of control signals only,
(iv) provide some tuning guidelines for the parameters
involved in this FDI system, (v) show that the SMAC-FDI
method is highly computationally efficient, and therefore,
can run on microcontrollers with low computational
resources, and (vi) demonstrate the performance of this
simple method in simulation and despite the presence of
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model uncertainties.
The article continues with briefly recalling the

aircraft model used throughout this work.

2. System configuration and dynamics

2.1. Aircraft configuration. The five control surfaces
of the aircraft under consideration are one left aileron,
one right aileron, one left elevator, one right elevator, and
one rudder as shown in Fig. 2. All actuators are fully
independent. The control vector for the aircraft involving
only actuator deflections is thus

δ = [δa1 δa2 δe1 δe2 δr]
�.
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Fig. 2. Aircraft actuator configuration.

2.2. Aircraft nonlinear dynamics. For the design of
the filter which is the core of the FDI system suggested
in this paper, the equation for the dynamics of the turn
rates is considered. The explicit relationship between the
turn-rate vector ω = [p q r]�, with the roll, pitch and
yaw rates denoted by p, q, r, respectively, the inertia
matrix Ib and the torques applied to the aircraft, i.e., Γ =

[LM N ]
�, expressed in the body-axes frame (xb, yb, zb)

of the aircraft, is as follows:

ω̇ = (Ib)−1
(
Γ− ω × Ibω

)
. (1)

The aerodynamic moments of the small aircraft of this
work are modeled as in the work of Möckli (2006) and
Ducard (2009):

L = q̄SbCL(δa1, δa2, δe1, δe2, p, r, β) ,

M = q̄Sc̄CM (δa1, δa2, δe1, δe2, α, q) ,

N = q̄SbCN (δa1, δa2, δe1, δe2, δr, r, β) , (2)

where the dynamic pressure is q̄ = ρV 2
T /2, the total

airspeed of the aircraft is VT , the air density is ρ, and the
other parameters are summarized in Table A1, whereas
details regarding the measurement system part of the FDI
system are summarized in Table 1.

The aerodynamic derivatives are expressed as a linear
combination of the state elements and control inputs as

CL = CLa1δa1 + CLa2δa2 + CLe1δe1 + CLe2δe2

+ CLp̃p̃+ CLr̃ r̃ + CLββ ,

CM = CM1 + CMa1δa1 + CMa2δa2 + CMe1δe1

+ CMe2δe2 + CMq̃ q̃ + CMαα ,

CN = CNδr
δr + CNr̃ r̃ + CNββ ,

with

p̃ =
bp

2VT
, q̃ =

c̄q

2VT
, r̃ =

br

2VT
.

The last two differential equations concern the angle
of attack α and the sideslip angle β as follows (see the
work of Ducard (2009) for derivation):

α̇ ≈ q +
g

VT

{
1 +

q̄S

mg
([CX1 + CZα]α+ CZ1)

}
,

β̇ ≈ −r +
q̄SCY 1

mVT
β . (3)

3. Actuator fault detection and isolation

Figure 3 shows the architecture of the SMAC-FDI
system and its four main components, which are detailed
subsequently.

Fig. 3. Architecture of the SMAC-FDI system.

3.1. Residual generator. The residual generator
monitors the control signals sent to the actuators and
the behavior of the aircraft through the reading of
selected measurement of the aircraft’s dynamics. In the
SMAC-FDI system, the turn rates p, q, and r are measured
and compared with the expected turn rates p̂, q̂, and r̂,
respectively, which are obtained using a model of the
aircraft. This model receives the same actuator commands
as the real aircraft. A filter is used to take into account
model uncertainties and sensor measurement data noise.
This filter is an EKF, whose useful output (for the FDI
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purpose) is the vector of residuals ω̃k defined as follows

ω̃k = yk − x̂k|k−1 =

⎡
⎣

p̃
q̃
r̃

⎤
⎦
k

=

⎡
⎣

pk − p̂
(k|k−1)

qk − q̂
(k|k−1)

rk − r̂
(k|k−1)

⎤
⎦
k

,

where the measurement vector at the discrete-time instant
k is yk = [pk qk rk]

�, and the filter’s state vector is
the estimate of the turn rates. These residuals indicate
whether the aircraft has dynamics that deviate from the
model-expected dynamics. If the residual values are
higher than a certain threshold, it is most likely that an
actuator fault is present in the system. The equations of
the EKF used in this residual generator are well known
but briefly recalled here below for completeness (Brown
and Hwang, 1997).

3.1.1. Filter equations.

1. The Kalman gain matrix Lk is computed as Lk =

Σk|k−1H
T
k

[
HkΣk|k−1H

T
k +Rv,k

]−1

, where the

last propagated state-error covariance matrix is
Σk|k−1, the measurement noise covariance matrix is
Rv,k and the measurement matrix is Hk = I3.

2. The measurement update of the state estimate is
x̂k|k = x̂k|k−1 + Lk[yk − x̂k|k−1] , where the last
extrapolated state estimate is x̂k|k−1.

3. The update of the state-error covariance matrix
is Σk|k = E{ek|keTk|k} with ek|k = x(k) −
x̂k|k, where x(k) is the true (unknown) value of
the state vector at the discrete instant k. The
matrix Σk|k is recursively computed as Σk|k =
[I −LkHk]Σk|k−1.

4. The forward propagation of the state error covariance
matrix is Σk+1|k = φkΣk|kφ

T
k + Rw,k, where the

matrix Rw,k represents the covariance of the discrete
process noise on the elements of the state vector.

5. The state-estimate propagation step is done with
x̂k+1|k = x̂k|k + ˙̂xk|kTs, where the time derivative

of the state ˙̂xk|k = f
(
x̂k|k,uk

)
is obtained by direct

calculation of Eqn. (1).

3.1.2. Discrete transition matrix. The discrete
transition matrix φk is computed as φk = I3 +
F (k)Ts. The continuous transition matrix F (k) ∈ R

3×3

is obtained using the model of the aircraft described
in Section 2 and updated at each sample time by the
estimates of the turn rates p̂(k|k), q̂(k|k), r̂(k|k) and with
the measurement data for the airspeed VT involved in the

dynamic pressure q̄ = 1
2ρVT

2 as follows:

F (k) =

⎡
⎣

A11q q +A11q q A12p p+A12r r
A21p p+A21r r A22q q
A31q q +A31q q A32p p+A32r r

A13q q +A13q q
A23p p+A23r r
A33q q +A33q q

⎤
⎦ ,

with each term of F (k) being evaluated at the current
estimated operating point given by p = p̂(k|k), q = q̂(k|k),
r = r̂(k|k) and q̄ = q̄(k). The terms of the transition matrix
are defined as follows:

A11q =
IzzSb

2CL ¯̄p

2D1VT
,

A11q = A12p =
−N1

D1
,

A12r = A13q =
IyyIzz − I2xz − I2zz

D1
,

A13q =
Sb2[IzzCL¯̄r − IxzCN ¯̄r]

2D1VT
,

A21r = A23p =
Izz − Ixx

Iyy
,

A21p = −A23r =
2Ixz
Iyy

,

A22q =
S c2 CM ¯̄q

2VT Iyy
,

A31q =
I2xx − IxxIyy + I2xz

D1
,

A31q = −IxzSb
2CL ¯̄p

2D1VT
,

A32q = A31p,

A33q =
Sb2[IxxCN ¯̄r − IxzCL¯̄r]

2D1VT
,

A32r = A33q =
N1

D1
,

using the auxiliary constants D1 = IxxIzz − Ixz
2 and

N1 = Ixz(Ixx−Iyy+Izz), taking into account Ixz = Izx.

3.1.3. Process noise covariance matrix. The value
of Rw,k is found from the continuous process noise
covariance matrix Rw and the continuous transition
matrix φ according to

Rw,k =

∫ Ts

0

φ(τ)Rwφ
�(τ) dτ,

Rw = E(ww�) = diag(w2
1 , w

2
2 , w

2
3),

w = [w1, w2, w3]
�, E(wiwj) = 0, ∀i �= j ,

(4)
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where the process-noise vector acting on the state vector
dynamics is w. The matrix Rw,k ∈ R

3×3 is symmetric
and the lower-triangle terms are obtained as follows:

Rw,k(1, 1) = w2
1Ts

[
1 + φ(1,1)Ts + φ2

(1,1)

Ts
2

3

]

+
Ts

3

3

[
w2

2φ2
(1,2) + w3

2φ(1,3)
2
]
,

Rw,k(2, 2) = w2
2Ts

[
1 + φ(2,2)Ts + φ2

(2,2)

Ts
2

3

]

+
Ts

3

3

[
w1

2φ(2,1)
2 + w3

2φ(2,3)
2
]
,

Rw,k(3, 3) = w2
3Ts

[
1 + φ(3,3)Ts + φ2

(3,3)

Ts
2

3

]

+
Ts

3

3

[
w1

2φ2
(3,1) + w2

2φ(3,2)
2
]
,

Rw,k(2, 1) = A1φ(2,1) +A2φ(1,2)

+ w3
2Ts

3

3
φ(1,3)φ(2,3),

Rw,k(3, 1) = A1φ(3,1) +A3φ(1,3)

+ w2
2Ts

3

3
φ(1,2)φ(3,2),

Rw,k(3, 2) = A2φ(2,1) +A3φ(2,3)

+ w1
2Ts

3

3
φ(2,1)φ(3,1),

with the constants

A1 = w1
2Ts

2

2

[
1 +

2

3
Tsφ(1,1)

]
,

A2 = w2
2Ts

2

2

[
1 +

2

3
Tsφ(2,2)

]
,

A3 = w3
2Ts

2

2

[
1 +

2

3
Tsφ(3,3)

]
,

where φ(i,j) and Rw,k(i, j) designate the terms found
at the i-th line and the j-th column of the matrix φ and
matrix Rw,k, respectively.

3.1.4. Sensor noise and filter tuning. The
measurement vector involved in the EKF of the
SMAC-FDI system is y = [p, q, r]�, where the
body-axis turn rates p, q, and r are measured by
gyrometers. The measurement noise is assumed to
be Gaussian distributed with zero mean. The noise
standard deviations are σpqr = 0.08 [rad/s] (variance
Σpqr = 0.0064 [rad/s]2) for the turn rates measured by
three identical gyrometers, each on its respective body
axis.

In order to build these residuals, the Kalman filter
uses a model of the aircraft’s turn rate dynamics.

However, this model contains parameters which are
uncertain. In order to cope with uncertainties, the
Kalman filter possesses intrinsically a mechanism to
compute the observer gain matrix (Kalman gain) that
mitigates the confidence level between the quality of the
model (through the process noise covariance matrix Rw)
and the quality of the measurement data (through the
measurement noise covariance matrix Rv).

In this work, the filter is initialized with the initial
state estimate x̂0|−1 = [0 0 0]� and initial state error
covariance matrix Σ0|−1 = I3. The EKF is tuned
by selecting the measurement noise covariance matrix
Rv = 0.1 × I3 [rad/s]2 whose values are chosen higher
than those of the sensor characteristics mentioned above.

The process noise covariance matrix is chosen to
be sufficiently large (in this case, for example, Rw =
2 × I3 [rad/s]2) to ensure the proper convergence of the
filter in nominal conditions, as may be understood from
the condition in Eqn. (10). From a practical point of view,
it is interesting to note that (i) increasing the process noise
makes the amplitude of the residuals larger, and (ii) better
results are obtained when the terms of Rw are larger than
those of Rv.

3.2. Fault detector.

3.2.1. Architecture of the fault detector. The success
of fault detection is dependent on the possibility to create
relevant signals that deviate from a nominal value in the
case of a fault. In this work, the residuals of the Kalman
filter are used and assembled as shown in Fig. 4. First, the
vector of turn rate residuals ω̃ coming from the EKF is
filtered by a first-order low-pass filter LP1 with a cut-off
frequency f1. Second, the residuals are assembled as
follows:

Γ1 = |LP1(p̃)|+ |LP1(q̃)|+ |LP1(r̃)| . (5)

Third, the integrating effect of the first-order low-pass
filter with cut-off frequency f2 is used to transform the
signal Γ1 into the signal Γ2. Fourth, if the signal Γ2

exceeds the threshold value Γ2,thresh, the fault detector
indicates that there is a fault somewhere in the system by
setting to “1” the output signal labeled “ThereIsaFault”,
shown in Fig. 4. The origin of the fault is not known at
this stage. It is the task of the fault isolator subsystem in
Section 3.5 to investigate the origin of the fault.

3.2.2. Tuning of the low-pass filters. As shown in
Fig. 4, two low-pass filters are used, namely, LP1 and LP2.
Their purpose is to attenuate oscillations in the residuals
when excitation signals δs are used during a fault isolation
process. As shown in Section 3.3, these excitation signals
are of sinusoidal form with a fixed frequency of 1 Hz (in
this work). Thus, the cut-off frequencies f1 and f2 are
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Fig. 4. Architecture of the fault detector subsystem.

both chosen is the range ]0, 1[Hz. They were chosen as
f1 = f2 = 0.4Hz, which provides a trade-off between
smoothing and delaying the residual signals.

3.2.3. Threshold value Γ2,thresh. For the
determination of a suitable value for Γ2,thresh, a linear
SISO model is constructed for the roll, pitch and yaw axis
as follows:

χ̇ = (âχ +Δaχ)χ+
(
b̂χ +Δbχ

)
δχ, (6)

where the variable χ is p, q, r, respectively, and the real
control input to the system δχ (that may include a fault) is
δa, δe, δr, respectively. Note that (6) is used as a template
for three different equations.

The terms âχ and b̂χ represent the uncertain model
parameters in use in the FDI system. The “true values” aχ
and bχ are the sum of the model terms and their respective
uncertainty part Δaχ and Δbχ as follows:

aχ = âχ +Δaχ, bχ = b̂χ +Δbχ . (7)

For analytical purposes, let us consider a linear
Kalman-type estimator of the form

˙̂χ = âχχ̂+ b̂χδχ, c + Lχ(χ− χ̂), (8)

where the Kalman gain is Lχ and the control signal
generated by the flight controller is δχ,c. By substracting
(8) from (6), the differential equation for the residuals of
turn-rate dynamics is obtained as follows:

˙̃χ = −(Lχ − âχ)χ̃+ b̂χΔδχ +Δε(χ(t), x(t)), (9)

where the term Δδχ = δχ − δχ, c is the deviation between
a true actuator position and its commanded value. All
of the uncertainty contributions are regrouped in the term
Δε(χ(t), x(t)), which may be dependent on the turn rate
itself χ(t) and other state elements, such as the angle of
attack α, the sideslip angle β and the aircraft total airspeed
VT . The stability of the filter is obtained if the condition

Lχ − âχ > 0 (10)

is satisfied, in which case the residual χ̃ converges to
a certain value if the system approaches steady-state
conditions. This condition is fulfilled if the terms in Rw

are chosen sufficiently large.
In the presence of model uncertainties or actuator

faults, the residuals will no longer be zero-mean centered.
This is precisely what will trigger the detection of a fault
in the system. Therefore, it is necessary to be able to
assess the amount of bias in the residuals that is due to
model uncertainties.

To this end, suppose that an actuator failure occurs;
the flight controller will compensate it by actuating the
remaining actuators in order to stabilize the turn rates of
the vehicle, i.e., p = q = r = 0. Moreover, if the vehicle
is flying straight, at constant level and speed, the terms
Δδχ and Δε will reach constant values Δδχ,ss and Δεss,
respectively. Therefore, the residual in (9) reaches the
following steady-state value:

χ̃ss =
b̂χΔδχ,ss +Δεss

Lχ − âχ
=

b̂χ (Δδχ,ss +Δγss)

Lχ − âχ
, (11)

with Δγss = Δεss/b̂χ. Once the maximum amount
of uncertainty in the model, sup |Δε|, is specified, the
threshold value Γ2, thresh of the signal Γ2 is chosen
according to the following inequality:

b̂χ sup |Δγ|
Lχ − âχ

< Γ2, thresh

<
b̂χ (|Δδχ,min| − sup |Δγ|)

Lχ − âχ
.

(12)

Remark 1.

• The results shown in Section 4 are obtained with a
constant value of Γ2, thresh = 0.025 rad/s. However,
an adaptive value of Γ2, thresh can be computed
on-line based on Eqn. (12) to take into account the
current flight conditions.

• If the value of the true model term bχ is known within
some uncertainty bounds b̂χ = bχ ±Δbχ, in the FDI
system it is better to choose an overestimated value
for b̂χ, i.e., b̂χ = bχ+ |Δbχ|, as this tends to increase
the ratio between: (a) the detectable fault-amplitude
level and (b) the uncertainty level.

3.2.4. Effect of model uncertainties on actuator
fault detection performance. The effect of model
uncertainties on the minimum detectable value of the
actuator fault Δδχ,min is visible in (12), where it appears
that a lower bound for Δδχ,min, given the maximum
uncertainty level sup |Δγ|, is

|Δδχ,min| > 2 sup |Δγ| . (13)
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Clearly, the actuator-fault amplitude that can be detected
is bounded from below by the amount of uncertainty in
the model.

3.3. Excitation signals generator (ESG). As shown
in Fig. 3, the fault isolator selects which actuator the
ESG is to test. The ESG superimposes on the selected
actuator’s input an artificial excitation signal of the form

δs(t) = A sin(ωt). (14)

The frequency ω has to be chosen within the bandwidth
of the aircraft considered. Indeed, as explained in
Section 3.4, the excitation signal must be of sufficiently
low frequency such that the aircraft dynamics get
disturbed by this excitation signal. As a result, the flight
controller will generate actuator commands to compensate
this perturbation. If the presence of this excitation signal
is visible in the actuator control signals, this means that
the tested actuator has actually not failed, and vice versa.

In order to discuss a suitable value for the amplitude
A, let us consider the dynamics of the residuals when
the control signal δs is applied to a failed actuator. The
dynamics of the residual vector χ̃ are as follows:

˙̃χ = −(Lχ − âχ)χ̃+ b̂χ (Δδχ −A sinωt+Δγ) . (15)

It can be shown that the asymptotic solution to (15) is

χ̃∞ = C1 − C2 sin(ωt− φ0), (16)

with the terms

C1 =
b̂χ

Lχ − âχ
(Δδχ +Δγ) ,

C2 =
b̂χA√

ω2 + (Lχ − âχ)2
,

and

φ0 = tan−1

(
ω

Lχ − âχ

)
.

In the presence of an actuator fault in the system, it
is shown in Fig. 4 that the signal Γ2 must exceed a certain
threshold Γ2,thresh for the fault to be detected. The signal
Γ2 is obtained by low-pass filtering the signal Γ1. In order
to simplify the discussion, let us assume that the signal
Γ1 = |χ̃|, which is the case when the residuals build up
dominantly on a certain aircraft axis.

In view of (16), it can be shown that the mean value
of Γ2 is mostly given by the “constant” part of |χ̃|, i.e., C1.
As soon as the excitation signal is triggered, additional
calculations show that irrespective of the amplitude of C2

compared with C1, (C2 > C1 or C2 < C1), the condition
Γ2 > Γ2,thresh, which triggered the excitation signal, still
remains satisfied after the addition of excitation signals. In
fact, if the term C1 is smaller than C2, the excitation term

has the positive effect of contributing to a higher value of
Γ2.

Therefore, the amplitude A is chosen as a
compromise between (i) a value of A as large as possible
such that the fault isolation explained in Section 3.4
can maximize the amplitude of the isolation signals Λi,
despite the possible presence of external perturbation,
such as wind gusts or aircraft maneuvers, thus improving
FDI robustness, and (ii) a sufficiently small value of A, so
as not to unnecessarily destabilize the aircraft as it flies if
the excitation signal is applied to a non-failed actuator.

Remark 2. In Section 4, the results shown are obtained
with a frequency ω = 2π [rad/s] and an amplitude A =
2π/180 [rad].

3.4. Actuator health evaluator (AHE). The actuator
health evaluator (AHE) is responsible for assessing
whether a selected actuator δi is properly functioning. As
shown in Fig. 3, the AHE module receives the control
signals δc = [δc,1 . . . δc,n] of n actuators generated by
the flight controller and the excitation signals δs =
[δs,1 . . . δs,n] generated by the ESG module.

Fig. 5. Architecture of the i-th actuator health evaluator, AHE
subsystem.

For the i-th actuator, the output of the AHE is given
by the following equation:

Λi(k) = LPi3

(|δs,i(k − λTs) + [δc,i − δc,i](k)|
)
,
(17)

where LPi3(X) means that the signal X is filtered
through a first-order low-pass filter 1/(1 + τi3s) with
cut-off frequency fi3 = 1/2πτi3 [Hz]. The choice of
the frequency fi3 is not that important, as its value is
decreased if the signal γ gets small and below a certain
threshold, and vice versa. This low-pass filter is only
meant to attenuate the noise level of its incoming signal.
In steady-state conditions, the signal δc,i equals the mean
value of δc,i. The excitation signal δs,i is delayed by an
integer number of sampling periods λTs, λ ∈ N

+, such
that the signals [δc,i − δc,i](k) and δs,i(k − λTs) are in
opposite phase when Actuator i is non-failed. The delay λ
is determined experimentally and corresponds to the delay
of the flight controller to react to the disturbance caused by
δs,i superimposed onto Actuator i when non-failed. For
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a better understanding, let us consider the following two
cases (Ducard and Geering, 2010).

3.4.1. Case 1: Testing a failed actuator. If Actuator
i being tested has really failed, the excitation signal δs,i
has no effect on the control signal δc,i but has an effect
on the residuals generated by the residual generator. The
AHE detects the non-response of the flight controller
to the excitation δs,i and thus generates the signal Λi

whose amplitude is compared with a threshold value
(Ail1FaultThresh, Ail2FaultThresh, Elev1FaultThresh,
Elev2FaultThresh, and RuddFaultThresh, respectively)
inside the fault isolator. If Λi is above the threshold,
Actuator i is declared faulty, as shown in Figs. 9 and 10.

3.4.2. Case 2: Testing a non-failed actuator. If
Actuator i has actually not failed, the superimposed
excitation signal δs,i has influence on the aircraft
dynamics and the flight controller will try to compensate
the disturbance input signal. However, there is a small
delay in the controller response. The term δs,i is delayed
in such a way so as to be in opposite phase with the
term [δc,i − δc,i]. Therefore, their sum Λi is close to
zero and below the threshold value (Ail1FaultThresh,
Ail2FaultThresh, Elev1FaultThresh, Elev2FaultThresh,
and RuddFaultThresh, respectively) in the fault isolator
module. Actuator i is thus declared non-faulty, as shown
in Figs. 9 and 10.

3.4.3. Tuning of the AHE. The tuning of the AHE
subsystem consists in finding the appropriate cut-off
frequency denoted by fi1, as shown in Fig. 5. The
frequency fi1 is chosen in such a way that the term δc,i
converges to the mean value of δc,i, E(δc,i), after a time
interval ΔT :

∣∣∣∣
E(δc,i)− δc,i(t > ΔT )

E(δc,i)

∣∣∣∣ < ε , (18)

with the relative error ε = 5%, for example. The
frequency fi1 is chosen as

fi1 >
ln (1/ε)

2πΔT
. (19)

3.4.4. Selection of the threshold values for actuator
fault diagnosis. The threshold values (Ail1FaultThresh,
Ail2FaultThresh, Elev1FaultThresh, Elev2FaultThresh,
RuddFaultThresh) are used inside the fault isolator
module (Section 3.5) to declare an actuator to have failed.

The signal Λi at the output of the i-th AHE
subsystem has a value close to zero in the non-fault case
and a maximum value of

Λi,max =
2A

π
(20)

if Actuator i experiences a complete failure case. If
Actuator i experiences a fault, such as a loss of
effectiveness, the signal Λi takes an intermediate value
within the range 0 < Λi < 2A/π.

Example 1. The simulations provided in Section 4
have been performed with A = 2π/180 [rad]. According
to (20), during the complete failure of Aileron1 and
Aileron2, the values of Λ1 and Λ2 should be 0.022 [rad],
which is confirmed by the results shown in Fig. 9.
Therefore, the threshold values for actuator fault diagnosis
are chosen to be Λi,thresh = 0.01 [rad]. �

3.5. Fault isolator. The complete architecture of the
fault isolator is detailed in Fig. 6. It manipulates the
residuals in order to choose which actuator group to
test (the aileron group, the elevator group or the rudder
group). In each of these groups the fault isolator selects
an actuator to test. It is the responsibility of the ESG
subsystem shown in Fig. 3 to generate the artificial
excitation signals to superimpose on the selected actuator.
The threshold values p̃thresh, q̃thresh and r̃thresh that
appear in Fig. 6 are chosen according to (12) for each
axis. For example, in the following simulations, p̃thresh =
0.03 [rad], q̃thresh = 0.2 [rad] and r̃thresh = 0.5 [rad].

4. Simulations

The simulations were performed in Matlab/Simulink
using a nonlinear six-degrees-of-freedom model of an
aircraft controlled by its autopilot described by Ducard
(2009). The aircraft is flying straight, at a constant level
and at a constant speed of 30 m/s. These conditions
correspond to difficult circumstances for an FDI system
due to the lack of excitation. The actuator fault
scenario consists of the failure of Aileron 1 at a small
deflection of 1 deg during the time interval [10 . . .40 s],
the failure of aileron 2 that gets also stuck at 1 deg
during [70 . . .100 s], the rudder stucks at −1 deg during
[130 . . .160 s], Elevator 1 gets stuck at 2 deg during
[190 . . .220 s], and finally Elevator 2 also stucks at 2 deg
during [250 . . .280 s].

Simulations were carried out with Gaussian sensor
noise with zero mean and a standard deviation as
summarized in Table 1. Moreover, uncertainties (in the

Table 1. Sensor-suite description and accuracy.
Sensor Description Standard Deviation

Gyrometers Angular velocity σp,q,r = 0.08 rad/s
Pitot Tube Airspeed σVT = 5 m/s
Flow vane Angle of attack σα = 0.049 rad
Flow vane Sideslip angle σβ = 0.049 rad

aircraft model used in the prediction step of the EKF
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Fig. 6. Architecture of the fault isolator subsystem.
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in the SMAC-FDI system) are introduced in the form
of reducing by 25% the values of the torque vector
[L,M,N ]� involved in Eqn. (1). This is similar to taking
an underestimated value of the model input coefficient
b̂χ used in Section 3.2.3, and it corresponds to a worse
case scenario in terms of the FDI performance, than if
the coefficient b̂χ had been overestimated, as explained
in Remark 1 in Section 3.2.3. This simulation scenario is
chosen to show the capability of the SMAC-FDI system
(i) to detect actuator failure even if the angle of the
stuck control surface is very small, and (ii) to distinguish
the precise location of an actuator failure despite the
ambiguity that may arise due to actuator redundancies in
the system. It is indeed shown by Ducard and Geering
(2008) how, e.g., the MMAE or the EMMAE FDI scheme
performs poorly to isolate a failed actuator between two
actuators having the same aerodynamic effect on the
aircraft. SMAC-FDI is run in simulation at a rate of 50Hz.
Figure 7 shows that the SMAC-FDI detects the presence
of the fault after at most 1 s.

Figure 10 shows that the isolation of a faulty actuator
takes at maximum about 4 s and the detection of a fault
removal is detected in all cases in less than 2 s. Figures 8
and 9 show the actuator control signals and the results
of the AHE subsystem, respectively. Finally, Fig. 10
shows the satisfactory diagnostic results of the isolator
subsystem.

2,thresh�

ThereIsaFault (boolean)

Fig. 7. Results of the fault detector: Boolean variable
“ThereIsaFault” in black, and the grey curve is the sig-
nal Γ2 in [rad]. The threshold value is Γ2,thresh =
0.025 [rad/s].

The approach is also tested in the presence of a
significant wind disturbance. A Dryden wind model is
used to generate wind gusts, with velocities up to 25% of
the aircraft cruising speed (30 m/s). For wind conditions
weaker than those shown in Fig. 11, the FDI results are
those of Fig. 10. However, for wind conditions equal
or stronger than those shown in Fig. 11, an accurate
diagnosis becomes more challenging as shown in Fig. 12.

First, at t = 31 s and t = 106 s, two short glitches
in the SMAC-FDI diagnosis appear. At t = 250 s, the
left elevator is declared faulty when it is actually the right
one that is faulty, because the wind masks the effects of
artificial exciting signals for some time. However, in all
cases, the correct faulty-actuator group is detected and no

Time [s]

Fig. 8. Control signals (in [deg]) of the actuators during the se-
quence of failures.

Aileron left

Aileron right

Elevator left

Elevator right

Rudder

[rad]

Fig. 9. Results of the actuator health evaluator subsystem. The
dashed line is Λthresh = 0.01 [rad].

false alarm is triggered despite the external disturbance. A
possible solution, in windy conditions, is to retune some
thresholds and enlarge the time allowed to the FDI system
to make a decision on whether and which actuator should
be declared failed.

5. Properties of the SMAC-FDI system

The benefits of the SMAC-FDI system are the following:

• It is able to detect the presence of an actuator fault,
using a single EKF for residual generation with
only three state elements, p, q, r. It is of low
computational load (no need for a bank of EKFs) and
could be implemented on a small microcontroller.

• Fault isolation is based on an active and systematic
actuator testing procedure, thus reducing isolation
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Fig. 10. Diagnostic results of the fault isolator: 0 means no
fault, 1 means an actuator fault.
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Fig. 11. Wind gusts used in the simulations to test the robust-
ness of SMAC-FDI.

latencies, removing isolation ambiguities among
equivalent actuators and increasing the robustness of
this FDI method against external perturbations and
model uncertainties. However, significant wind gusts
may shortly contribute to trigger false alarms or mask
the artificial exciting signals for some time, thus the
approach here could be retuned or adapted online
when windy conditions arise.

• The SMAC-FDI system is well suited for locked- or
floating-actuator failure type. It is scalable to a larger
number of actuators and can deal with simultaneous
faults. It is easy to tune, and it does not require any
additional sensors.

• The isolation process is insensitive to the control
signals’ amplitude, contrary to methods based on
residuals. However, the fault isolation process works
best if during this phase the aircraft is commanded to
fly straight and at a given level.

• The SMAC-FDI system can also track a fault once
detected even with low natural excitation.

5.1. Discussion of computational load requirements.
The SMAC-FDI algorithm automatically reduces to the
minimum amount of computation required. Indeed, the
fault isolator is disabled when the flag ThereIsaFault=0
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Fig. 12. Diagnostic results in the windy conditions of Fig. 11: 0
means no fault, 1 means actuator fault.

and enabled when ThereIsaFault=1. On the other hand,
in an MMAE or an EMMAE structure, the whole bank
of N + 1 EKFs (with at least six states) is constantly
running to monitor N actuators. The MMAE method is
even more computationally intensive. In SMAC-FDI, the
computational load is considerably reduced since only one
EKF is constantly running with only three states which
are actually sufficient for FDI purposes. Most other FDI
methods require additional state elements in their state
vector. In addition, most of them focus on residuals at the
system’s output, whereas in this new scheme the output
residuals on the turn rates only serve to detect the presence
of a fault and the flight controller’s output is used to isolate
the fault. Therefore, SMAC-FDI is a very fast method and
well suited for a small microcontroller.

6. Conclusion and outlook

This FDI system is based on a single-model EKF filter
that generates residuals as soon as the behavior of the
aircraft deviates from expected. If a fault is detected, the
aircraft is commanded to fly straight and at a given level.
A procedure is engaged to systematically excite each
suspected actuator and decide whether it is failed. The
isolation process is done by observing the control signals.
The tuning of this FDI system is shown and is quite
straightforward. The paper presented successful detection
and isolation during a sequence of actuator failures
and recoveries in no or moderate wind disturbances.
For higher wind disturbances, the performance of the
fault diagnosis degrades, and future works will address
this issue, in particular by adapting, during the flight,
some parameters involved in different thresholds of the
proposed FDI system (for example, thresholds Γ2 and
Λthresh), depending on the flight and wind conditions.
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Appendix

Table A1. Aircraft model parameters
Parameter Value Definition

Ib [kg·m2]

[
2.56 0 0.5
0 10.9 0

0.5 0 11.3

]
airplane inertia matrix

S [m2] 1.80 wing surface

c̄ [m] 0.58
mean aerodynamic

chord

b [m] 3.1 wing span

CZ1 1.29× 10−2
lift derivative

CZα −3.25 lift derivative

CX1 −2.12× 10−2
drag derivative

CXα −2.66× 10−2
drag derivative

CY 1 −3.79× 10−1
side force derivative

CLa1 = −CLa2 −3.395× 10−2
roll derivative

CLe1 = −CLe2 −0.485× 10−2
roll derivative

CLβ −1.30× 10−2
roll derivative

CL ¯̄p −1.92× 10−1
roll derivative

CL¯̄r 3.61× 10−2
roll derivative

CM1 2.08× 10−2
pitch derivative

CMe 5.45× 10−1
pitch derivative

CMe1 = CMe2 2.725 × 10−1
pitch derivative

CMa1 = CMa2 0.389 × 10−1
pitch derivative

CMα −9.03× 10−2
pitch derivative

CM ¯̄q −9.83 pitch derivative

CNδr
5.34× 10−2

yaw derivative

CNβ 8.67× 10−2
yaw derivative

CN ¯̄r −2.14× 10−1
yaw derivative
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