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INCREASING PURSUER CAPTURABILITY BY USING HYBRID DYNAMICS

VALERY Y. GLIZER a, VLADIMIR TURETSKY a,∗

aDepartment of Applied Mathematics
Ort Braude College of Engineering, 51 Snunit Str., P.O.B. 78, Karmiel 2161002, Israel

e-mail: {valery48,turetsky1}@braude.ac.il

A robust interception of a maneuverable target (evader) by an interceptor (pursuer) with hybrid dynamics is considered.
The controls of the pursuer and the evader are bounded. The duration of the engagement is prescribed. The pursuer has
two possible dynamic modes, which can be switched once during the engagement, while the dynamics of the evader are
fixed. The case where for both dynamic modes there exists an unbounded capture zone was analyzed in our previous work.
The conditions under which the pursuer can increase its capturability by utilizing the hybrid dynamics were established
and the new robust capture zone was constructed. In the present paper, we extend this result to the cases where at least for
one dynamic mode of the pursuer the capture zone is bounded. For these instances, conditions of increasing the pursuer’s
hybrid capturability are derived. Respective capture zones are constructed. Illustrative examples and results of extensive
simulation for a realistic non-linear engagement model in the presence of a random wind are given.
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1. Introduction

The interception problem is formulated for an engagement
of two vehicles: an interceptor (pursuer) and a target
(evader). In the simplified model, the dynamics of each
vehicle are described by a first-order transfer function
with time constants τe and τp. The lateral acceleration
commands of the players (controls) are bounded by the
constants amax

e and amax
p . Thus, the dynamics of each

vehicle are completely described by the respective pair
ωi = (amax

i , τi), i = e, p. The interception problem
admits two main mathematical formulations. If a target
behavior can be predicted, this problem is modeled by an
optimal control problem (see, e.g., the works of Glizer
(1996; 1997) and the references therein). If a target
behavior is unpredictable, the interception problem should
be formulated as a robust control problem (Glizer and
Turetsky, 2012). An important type of robust control
problem is a differential game (see, e.g., Isaacs, 1965; Ho
et al., 1965; Leitmann, 1980; Glizer, 1999; Turetsky and
Shinar, 2003; Patsko and Turova, 2004; Shinar et al.,
2013). Note that an unpredictable target maneuver can
be regarded as a fault in the interception. Therefore,
robustness with respect to such a target maneuver actually

∗Corresponding author

is fault tolerance (Noura et al., 2009) in the interception.

The interception problem is frequently modeled by
a planar linear pursuit-evasion differential game with a
given duration, bounded controls, fixed players’ dynamics
and a cost function in the form of the miss distance.
The solution of such a game is well known (Gutman and
Leitmann, 1976; Shinar, 1981; Shima and Shinar, 2002;
Gutman, 2006; Shinar et al., 2013). The key elements of
this solution are (i) a scalarization of the original game and
(ii) a decomposition of the space of the new (scalar) game
into two regions, regular and singular. The regular region
of the game space is completely covered by a family of
candidate optimal trajectories. In this region, the optimal
strategies of both players are of a “bang-bang” type and
the value of the game depends on the initial conditions.
In the singular region, which is the complement to the
regular region in the game space, the optimal strategies of
both players are arbitrary admissible and the game value
is constant. The game space decomposition is completely
determined by the pair (ωe, ωp). Note that, if the game
value in the singular region is zero, the singular region
closure becomes the maximal robust capture zone, i.e.,
the set of all initial positions from which the zero miss
distance (capture) is guaranteed by the optimal pursuer
strategy against an arbitrary admissible evader control.
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Recently, interception problem formulations have
been extended by assuming the hybrid dynamics of the
opponents (see, e.g., Shinar et al., 2009; 2010; 2012;
2014; Poveda et al., 2012). This is motivated by the
fact that modern intercepting vehicles can be equipped
by guidance control systems of two types: aerodynamic
control (in the atmosphere), and the thrust vector control
(both in the space and in the atmosphere). The first type
provides relatively large acceleration but is more inertial
(larger values of amax

p and τp), while in the second type
the values of amax

p and τp are smaller. The switch from
one type of the guidance system to the other during the
interception makes the dynamics hybrid.

Hybrid dynamics systems arise naturally in various
real-life applications (see, e.g., Lin and Antsaklis, 2003;
Lygeros et al., 1999). Control problems with a single
decision maker (Bartolini and Zolezzi, 1986; Chen and
Fukuda, 1997; Utkin, 1983) as well as hybrid dynamics
games (Gao et al., 2007; Mitchell et al., 2005; Shinar
et al., 2009; 2010; 2012) have been studied. Shinar et
al., 2009; 2010; 2012) consider the hybrid pursuit-evasion
game separately with the hybrid pursuer and the hybrid
evader.

In this paper, the robust interception problem with
the pursuer’s hybrid dynamics is treated. It is assumed
that the pursuer can switch from the dynamic mode
ωp1 to ωp2 once during the engagement. Note that by
Shinar et al. (2009) it is assumed that in both pairs
(ωe, ωp1) and (ωe, ωp2) the pursuer has the advantage
in maneuverability, as well as in agility. Subject to
these conditions, in the work of Shinar et al. (2009),
the extended pursuer strategy, consisting of the control
strategy and the dynamic schedule (order of the dynamic
modes and the switch moment), was constructed. It was
shown that its capture zone is larger than both maximal
capture zones of a fixed dynamics game strategy. The
objective of the present paper is searching some additional
cases, where the condition of the pursuer’s advantage both
in the maneuverability and the agility is relaxed, while its
hybrid dynamics increase the capture zone.

The paper is organized as follows. In Section 2, the
problem is formulated rigorously. Its preliminary analysis
leading to formulation of an auxiliary differential game,
is presented in Section 3. In Section 4, this auxiliary
game is solved. Section 5 is devoted to the main results
of the paper. Simulation results for realistic engagement
conditions are presented in Section 6. Concluding
remarks are placed in Section 7. Some technical proofs
are placed in Appendices.

2. Problem formulation

2.1. Engagement model. The engagement between
two moving vehicles—an interceptor (pursuer) and a
target (evader)—is considered. The mathematical model

of this scenario is based on the following assumptions:
(i) the engagement takes place in a horizontal plane, (ii)
both the players have constant velocities and bounded
lateral accelerations, (iii) the dynamics of each player
is expressed by a first-order transfer function, (iv) the
relative trajectory can be linearized with respect to the
nominal collision geometry.

In Fig. 1, the schematic engagement geometry is
depicted. The points (xp, yp) and (xe, ye) are current
coordinates of the pursuer and the evader, respectively, ap,
ae are their lateral accelerations, ϕp, ϕe are the respective
angles between the velocity vectors and the x-axis (initial
line of sight).
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Fig. 1. Interception geometry.

Based on the small angles assumption (Shinar, 1981;
Shima and Shinar, 2002; Glizer et al., 2012; Shinar
et al., 2013), the trajectories of the pursuer and the evader
can be linearized with respect to the nominal collision
geometry, leading to a constant closing velocity Vc. The
final interception time tf can be easily calculated for any
given initial range r0: tf = r0/Vc. This leads to the
following linear model for 0 ≤ t ≤ tf :

ẋ1 = x2, x1(0) = 0,

ẋ2 = x3 − x4, x2(0) = x20,

ẋ3 = (amax
e v − x3)/τe, x3(0) = 0, (1)

ẋ4 = (amax
p u− x4)/τp, x4(0) = 0,

where x1 = ye − yp is the relative separation normal to
the initial line of sight, x2 is the relative normal velocity,
x3 and x4 are the lateral accelerations of the evader and
the pursuer, respectively, both normal to the initial line of
sight, τe, τp are the respective time constants, amax

e , amax
p

are the respective maximal absolute values of the lateral
accelerations; x20 = Veϕ

0
e − Vpϕ

0
p, ϕ0

e and ϕ0
p are initial

values of ϕe and ϕp, respectively.
The controls v and u of the evader and the pursuer,

respectively, are the players’ acceleration commands in
the y-direction, normalized by amax

e and amax
p , i.e., v =

ace/a
max
e , u = acp/a

max
p , where ace, a

c
p are the actual

acceleration commands.
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Thus, the controls satisfy the constraints

|v(t)| ≤ 1, |u(t)| ≤ 1, 0 ≤ t ≤ tf . (2)

The system (1) can be rewritten in a matrix form as

ẋ = Ax + bu+ cv, x(0) = x0, (3)

where xT = (x1, x2, x3, x4), xT0 = (0, x20, 0, 0),

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp

⎤
⎥⎥⎦ , (4)

bT = (0, 0, 0, amax
p /τp), cT = (0, 0, amax

e /τe, 0), (5)

and the superscript T denotes the transposition.

Remark 1. The engagement model (3) is completely
determined by two pairs of parameters, ωe = (amax

e , τe)
and ωp = (amax

p , τp).

Consider the differential game with the dynamics (3),
the control constraints (2) and the performance index

J = |x1(tf )|. (6)

Note that (6) is the miss distance. The objective of
the pursuer is minimizing (6), while the evader tends
to maximize this value, by means of feedback strategies
u(t, x) and v(t, x), respectively. This is called the original
fixed dynamics game (OFDG).

2.2. Problem scalarization. Let introduce the
function

Z(t) = Z(t;ωe, ωp) = dTΦ(tf , t; τe, τp)x(t;ωe, ωp),
(7)

where x(t;ωe, ωp) is the solution of (3), Φ(tf , t; τe, τp) is
the transition matrix of the homogeneous system ẋ = Ax,
dT = (1, 0, 0, 0).

The value of the function Z(t) has the following
physical interpretation: If u ≡ 0 and v ≡ 0 on the
interval [t, tf ], then the miss distance |x1(tf )| equals
|Z(t)|. Therefore, this function is called the zero-effort
miss distance (ZEM).

By introducing the new independent variable ϑ =
tf − t (time-to-go) and using (7), the ZEM can be
expressed explicitly as

Z(ϑ) = Z(ϑ, ωe, ωp)

= x1(tf − ϑ) + ϑx2(tf − ϑ)

+ τ2eΨ(ϑ/τe)x3(tf − ϑ)

− τ2pΨ(ϑ/τp)x4(tf − ϑ), (8)

where

Ψ(ξ) � exp(−ξ) + ξ − 1 > 0, ξ > 0. (9)

Using (1) and (8) yields the differential equation for
Z(ϑ),

Z ′ = h(ϑ, ωp)u− h(ϑ, ωe)v, (10)

where the derivative with respect to ϑ is denoted by the
prime, h(ϑ, ω) = τamaxΨ(ϑ/τ), ω = (amax, τ), and
ϑ0 = tf , Z(ϑ0) = z0 = ϑ0x20. Note that Z(0) =
x1(tf ), i.e., the performance index (6) can be rewritten
as J = |Z(0)|. This allows us to associate the OFDG
with a scalar game with the dynamics

z′ = h(ϑ, ωp)u− h(ϑ, ωe)v, z(ϑ0) = z0, (11)

the performance index

J = |z(0)|, (12)

and the control constraints

|v(ϑ)| ≤ 1, |u(ϑ)| ≤ 1, 0 ≤ ϑ ≤ ϑ0, (13)

where the pursuer and the evader controls u(ϑ) and v(ϑ)
are actually u(tf − ϑ) and v(tf − ϑ) of the OFDG. The
game (11)–(13) is called the scalar fixed dynamics game
(SFDG). In the next subsection, a brief description of
the well-known SFDG solution (Shinar, 1981; Shima and
Shinar, 2002) is presented.

2.3. SFDG solution. The solution of the SFDG is
based on the decomposition of the game space (ϑ, z) into
two regions of different strategies. In the first (singu-
lar) regionD0, the optimal control strategies u0(ϑ, z) and
v0(ϑ, z) are arbitrary subject to (13), and the value of the
game is constant (zero or positive). If this game value is
zero, the closure clo(D0) of the singular region becomes
the maximal robust capture zone, i.e., the set of all initial
positions, from which the pursuer can guarantee zero miss
distance against any admissible evader strategy.

In the second (regular) region D1 = R2\D0, the
optimal strategies have a “bang-bang” structure:

u0(ϑ, z) = v0(ϑ, z) = sign(z(ϑ)), (14)

and the value of the game is non-zero, depending on the
initial conditions. Note that D0 and D1 are symmetrical
with respect to the ϑ axis. Below, all cases where the
maximal robust capture zone exists are presented.

2.3.1. Unbounded capture zone. In the case

amax
p > amax

e ,
amax
p

τp
≥ amax

e

τe
, (15)

the singular region is

D0 = D0(ωe, ωp)

= {(ϑ, z) : ϑ > 0, |z| < z∗(ϑ, 0, ωe, ωp)},
(16)
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where

z∗(ϑ, ϑ̄, ωe, ωp) =

ϑ∫

ϑ̄

H(ξ, ωe, ωp) dξ, (17)

H(ξ, ωe, ωp) � h(ξ, ωp)−h(ξ, ωe) > 0, ξ > 0. (18)

For any initial position (ϑ0, z0) the value of the game
is given by

J∗

= J∗(ϑ0, z0, ωe, ωp)

=

{
0, (ϑ0, z0) ∈ D0(ωe, ωp),
|z0| − z∗(ϑ0, 0, ωe, ωp), (ϑ0, z0) /∈ D0(ωe, ωp).

(19)

Thus, in this case, clo(D0) is the maximal robust
capture zone. Note that there exist positions inside the
capture zone for any ϑ0 > 0, or, in other words, for any
tf > 0 (“unbounded capture zone”). An example of the
decomposition (for tf = 4 s, τe = 0.2 s, amax

e = 50 m/s2,
τp = 0.15 s, amax

p = 70 m/s2) is shown in Fig. 2.
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Fig. 2. Game space decomposition: an unbounded capture
zone.

Remark 2. The vehicle maneuverability is determined
by the value of its maximal lateral acceleration, while the
vehicle agility is given by the ratio between its maximal
lateral acceleration and its time constant. Thus, the
condition (15) reads: “the interceptor is superior over the
target both in maneuverability and agility”.

2.3.2. Bounded capture zone. In case

amax
p < amax

e ,
amax
p

τp
>
amax
e

τe
, (20)

there exists ϑc > 0 such that the singular region is

D0 = D0(ωe, ωp)

= {(ϑ, z) : 0 < ϑ < ϑc,

|z| < z∗(ϑ, 0, ωe, ωp)},
(21)

and z∗(ϑc, 0, ωe, ωp) = 0.
The game value is given by (19), i.e., clo(D0) also is

the (bounded) maximal robust capture zone. An example
of the decomposition (for tf = 8 s, τe = 0.5 s, amax

e =
100 m/s2, τp = 0.1 s, amax

p = 90 m/s2) is shown in Fig. 3.
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Fig. 3. Game space decomposition: a bounded capture zone.

2.4. Scalar hybrid robust capture problem. In what
follows, the pair ωe is assumed to be fixed. The pair ωp
is chosen by the pursuer from the prescribed set Ωp =
{ωp1, ωp2} once during the engagement:

ωp =

⎧
⎨
⎩

ωp1, ϑ0 ≥ ϑ > ϑp,

ωp2, ϑp ≥ ϑ > 0.
(22)

Thus, the pursuer has hybrid dynamics.
In the sequel, we assume that each of the pairs

(ωe, ωp1) and (ωe, ωp2) satisfies one of the conditions (15)
or (20), i.e., for each of the pursuer’s dynamic modes,
there exists the robust capture zone clo(D0), unbounded
or bounded. This assumption extends considerably the
assumption of Shinar et al. (2009) that for both pursuer’s
dynamic modes there exists an unbounded capture zone.

Let C0(ωe, ωpi), i = 1, 2, denote the pursuer’s
robust capture zone for the respective fixed dynamics.
The objective of the paper is to find out in which case
the pursuer can benefit from its hybrid dynamics, i.e.,
to increase its capturability. The latter means that by
switching its dynamic mode and by choosing a proper
control strategy the pursuer can guarantee the zero miss
distance, robustly against any admissible evader behavior,
from some set Cp of initial positions, satisfying

Cp ⊃ C0(ωe, ωp1) ∪ C0(ωe, ωp2). (23)

This problem is called the scalar hybrid robust capture
problem (SHRCP). Thus, the objective of the paper is to
distinguish the cases of SHRCP solvability.

Remark 3. In the case of hybrid dynamics, the
physical meaning of the value (8) is no longer applicable.
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Nevertheless, for the sake of convenience, we continue to
call it the ZEM.

Remark 4. In the case where both the pairs (ωe, ωp1) and
(ωe, ωp2) satisfy the condition (15), the SHRCP is solved
by Shinar et al. (2009). In this paper, the other cases are
examined.

3. Basic observations

Although in the work of Shinar et al. (2009) it is
assumed that for both the dynamic modes there exists an
unbounded capture zone, the approach of this paper is
rather general and can be applied in the other cases. This
approach is based on the following basic observations.

3.1. Jump phenomenon. Due to (8), for ϑ = ϑp, the
ZEM has a jump

ΔZ(ϑp) = δap(ϑp), (24)

where

δ = τ2p1Ψ(ϑp/τp1)− τ2p2Ψ(ϑp/τp2), (25)

the function Ψ(ξ) being given by (9). The graph of the
ZEM with such a jump is shown in Fig. 4 for tf = 5 s,
z0 = 1200 m, ϑp = 4.6 s and the data given in Table 1
with j1 = 1, j2 = 2. The players employ the strategies

u(ϑ, z) = v(ϑ, z) = sign(z(ϑ)). (26)

Table 1. Players’ dynamics data: Set 1.

Time constant [s] Max. acc. command [m/s2]

Evader τe = 0.5 amax
e = 100

Pursuer
τpj1 = 0.1 amax

pj1 = 150

τpj2 = 0.8 amax
pj2 = 240
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Fig. 4. Jump phenomenon.
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Fig. 5. Jump direction.

The jump is characterized by its direction (towards
or outwards the ϑ-axis) and magnitude.

It should be noted that, due to (11), a reasonable
pursuer behavior is to keep sign(u) = sign(z). The latter,
along with the fourth equation in (1), yields sign(ap) =
sign(z). In such a case, the jump direction with respect
to the ϑ-axis is completely determined by the following
equality (Shinar et al., 2009, Lemma 3):

sign(δ) = sign(τp1 − τp2). (27)

In Fig. 5, the graphs of ZEM are depicted for tf = 5 s,
z0 = 1200 m, ϑp = 4.6 s, the strategies (26) and the data
of Table 1 with different orders of dynamic modes. It is
seen that in the first case (j1 = 1, j2 = 2) the jump is
directed towards the ϑ-axis, because τp1 < τp2, yielding
δ < 0. In the second case (j1 = 2, j2 = 1) the opposite
jump direction is observed.

Due to (24) and (25), the jump magnitude depends
both on the order of the pursuer dynamic modes and on
the switch moment ϑp. In Fig. 5, |ΔZ(4.6)| = 383.71
m for j1 = 1, j2 = 2, while |ΔZ(4.6)| = 242.85 m for
j1 = 2, j2 = 1. In Fig. 6, the dependence of the jump
magnitude on the switch moment is shown for the data of
Table 1 with j1 = 1, j2 = 2, for tf = 5 s, z0 = 1200 m,
for the strategies (26) and for different switch moments
ϑp. It is seen that, for different switch moments, the
jump magnitudes differ. Namely, |ΔZ(4.6)| = 383.71
m, |ΔZ(4.1)| = 337.74 m, |ΔZ(3.6)| = 285.64 m,
|ΔZ(3.1)| = 232.94 m.

3.2. Requirements for pursuer dynamic modes.
Since we assume that the initial interception position
satisfies

(ϑ0, z0) /∈ C0(ωe, ωp1) ∪ C0(ωe, ωp2), (28)

the first pursuer dynamic mode for ϑ ∈ (ϑp, ϑ0], along
with the ZEM jump at ϑ = ϑp, should steer the ZEM into
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Fig. 6. Jump magnitude.

the capture zone C0(ωe, ωp2):
(
ϑp, z(ϑp + 0) + ΔZ(ϑp)

)
∈ C0(ωe, ωp2). (29)

It is reasonable to require that this jump be directed
towards the ϑ-axis, i.e.,

δ < 0. (30)

This, due to (27), leads to the requirement

τp1 < τp2. (31)

In what follows, we assume that the condition (31) holds.
In Fig. 7, two ZEM trajectories are depicted for the

data of Table 1 with j1 = 1, j2 = 2, for ϑ0 = 5 s,
z0 = 1200 m, for the strategies (26) and for two switch
moments ϑp = 4.6 s and ϑp = 3.1 s. For these data,
both pairs (ωe, ωp1) and (ωe, ωp2) satisfy (15), i.e., both
capture zones C0(ωe, ωp1) �= ∅ and C0(ωe, ωp2) �= ∅ are
unbounded. The initial position (ϑ0, z0) satisfies (28). It
is seen that for ϑp = 4.6 s the inclusion (29) is satisfied,
while for ϑp = 3.1 s, it is not.
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Fig. 7. Steering the ZEM to unbounded C0(ωe, ωp2).

A similar effect is demonstrated in Fig. 8 for the data
presented in Table 2 with j1 = 1, j2 = 2, for ϑ0 = 1.9

s, z0 = 0.01 m, for the strategies (26) and for two switch
moments ϑp = 1.85 s and ϑp = 1.75 s. For these data,
both pairs (ωe, ωp1) and (ωe, ωp2) satisfy (20), i.e., both
the capture zones C0(ωe, ωp1) �= ∅ and C0(ωe, ωp2) �= ∅
are bounded. The initial position (ϑ0, z0) satisfies (28). It
is seen that for ϑp = 1.85 s the inclusion (29) is satisfied,
while for ϑp = 1.75 s it is not.

Table 2. Players’ dynamics data: Set 2.

Time constant [s] Max. acc. command [m/s2]

Evader τe = 0.2 amax
e = 150

Pursuer
τpj1 = 0.08 amax

pj1 = 120

τpj2 = 0.1 amax
pj2 = 135
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Fig. 8. Steering the ZEM to bounded C0(ωe, ωp2).

3.3. Requirements for the pursuer strategy and the
switch moment. In the examples presented in Figs. 7
and 8, the condition (29) is met for v = sign(z). However,
it is extremely important that this condition be fulfilled
robustly with respect to any admissible evader control v.
This is guaranteed by an optimal pursuer strategy in the
following auxiliary differential game of kind (ADGK).
Consider the system

z′ = h(ϑ, ωp1)u− h(ϑ, ωe)v, z(ϑ0) = z0, (32)

a′p = (ap − amax
p1 u)/τp1, ap(ϑ0) = 0,

where the controls satisfy the constraints

|u(ϑ)| ≤ 1, |v(ϑ)| ≤ 1, ϑ0 ≥ ϑ ≥ ϑp. (33)

The objective of the pursuer is to provide the inclusion
(29) for all admissible evader controls v by using a
feedback strategy u = u(ϑ, z, ap).

Remember that the original aim of the pursuer is
not only guaranteeing z(0) = 0, but making it from as
wide a set of initial positions (ϑ0, z0), as possible i.e.,
from the capture zone Cp. This means that among all
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strategies solving the ADGK (32)–(33), (29), the pursuer
has to choose the one for which |z0| is maximal possible.
This allows us to reformulate the ADGK as the differential
game consisting of the dynamics (32), the constraints (33)
and the performance index

Jaux = |z(ϑp) + ΔZ(ϑp)|, (34)

to be minimized by the pursuer and maximized by the
evader by using feedback strategies u = u(ϑ, z, ap) and
v = v(ϑ, z, ap), respectively. This is called the auxiliary
differential game of degree (ADGD).

For the above-mentioned maximal possible |z0|,
the ADGD optimal trajectory terminates at the point
(ϑp, z(ϑp)), which is brought by the jump ΔZ(ϑp) onto
the boundary of C0(ωe, ωp2). Thus, due to (16) and (21),
the requirement (29) becomes

|z(ϑp) + ΔZ(ϑp)| = z∗(ϑp, 0, ωe, ωp2), (35)

where the function z∗ is given by (17).
In Fig. 9, such an optimal trajectory is shown for the

data of Table 1, ϑp = 4.6 s. This trajectory emanates
from the initial position (ϑ0 = 5 s, z0 = 1375 m) /∈
C0(ωe, ωp1) ∪ C0(ωe, ωp2) and terminates at the point
(4.6 s, 1266.5 m). The latter, due to the jump, is brought
onto the boundary of C0(ωe, ωp2).
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Fig. 9. Jump to boundary of C0(ωe, ωp2).

At the final stage of constructing the capture zone
Cp, the pursuer can additionally increase |z0| by a proper
choice of the switch moment ϑp.

4. Solution of the ADGD

In the case where the pair (ωe, ωp1) satisfies the condition
(15), the ADGD (32)–(34) is solved by Shinar et al.
(2009). The solution was obtained based on scalarization
of the differential game by the terminal projection
transformation

w(ϑ) = w(ϑ, z(ϑ), ap(ϑ))

= dTϑp
Λ(ϑp, ϑ)

[
z(ϑ)
ap(ϑ)

]
,

(36)

where dTϑp
= [1, δ] and Λ(ϑ, ϑ0) is the transition matrix

of the homogeneous system, corresponding to (32), for
τp = τp1:

Λ(ϑ, ϑ0) =

[
1 0
0 exp ((ϑ− ϑ0)/τp1)

]
. (37)

By virtue of (36),

Jaux = |w(ϑp)|. (38)

Due to (36) and (37),

w(ϑ) = z(ϑ) + δ
(
exp ((ϑp − ϑ)/τp1)

)
ap(ϑ). (39)

By using (32) and (39), w(ϑ) satisfies the differential
equation

w′ = ĥ(ϑ, ϑp, τp1, τp2, a
max
p1 )u− h(ϑ, ωe)v (40)

and the initial condition

w0 � w(ϑ0) = z0, (41)

where we have

ĥ(ϑ, ϑp, τp1, τp2, a
max
p1 )

= h(ϑ, ωp1)− (δamax
p1 /τp1) exp((ϑp − ϑ)/τp1).

Thus, the scalar auxiliary differential game has the
dynamics (40) with the initial condition (41), the control
constraints (33) and the cost function (38), to be
minimized by the pursuer and maximized by the evader.

In the present paper, we solve this differential game
in the cases where (ωe, ωp1) satisfies either (15) or (20).
We propose here an approach to the solution different
from the one by Shinar et al. (2009). Due to Glizer and
Turetsky (2008), the solution is determined by the sign of
Ĥ(ϑp), where

Ĥ(ϑ) = Ĥ(ϑ, ωe, ωp1, τp2)

� ĥ(ϑ, ϑp, τp1, τp2, a
max
p1 )− h(ϑ, ωe)

= H(ϑ, ωe, ωp1)

− (δamax
p1 /τp1) exp((ϑp − ϑ)/τp1).

(42)

The sign of this function, along with some additional
conditions, yields the decomposition of the state strip
D̂ = {(ϑ,w) : ϑ ∈ [ϑp, ϑ0], w ∈ R} into two regions:
the regular region D̂1, completely covered by the optimal
trajectories, and the singular region D̂0 = D̂\D̂1. The
regular region D̂1 is closed and is the invariant set of the
system (40) for optimal strategies of both players.

In some cases the initial point (ϑ0, w0) belongs only
to the regular region, while in the other cases it can belong
to the regular as well as singular regions.
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Note that, if (ωe, ωp1) satisfies (15), then Ĥ(ϑp) > 0,
while in the case (20) the sign of Ĥ(ϑp) can be either
positive or negative. Let

w∗(ϑ, ϑ̄) = w∗(ϑ, ϑ̄;ωe, ωp1, τp2) �
ϑ∫

ϑ̄

Ĥ(ξ) dξ. (43)

4.1. Case I: Ĥ(ϑp) ≥ 0.

4.1.1. Subcase I.1: w∗(ϑ, ϑp) > 0,∀ ϑ ∈ [ϑp, ϑ0].
In this subcase, the optimal strategies are

û(ϑ,w) = v̂(ϑ,w)

=

⎧⎨
⎩

arbitrary s.t. (33), |w| < w∗(ϑ, ϑp),

sign(w), |w| ≥ w∗(ϑ, ϑp).
(44)

The game value is

J∗
aux(ϑ0, w0)

=

⎧
⎨
⎩

0, |w0| < w∗(ϑ0, ϑp),

|w0| − w∗(ϑ0, ϑp), |w0| ≥ w∗(ϑ0, ϑp).
(45)

Note that the set

D̂0 = {(ϑ,w) : ϑ ∈ [ϑp, ϑ0], |w| < w∗(ϑ, ϑp)} (46)

is the singular region in the scalar auxiliary differential
game. Its closure clo(D̂0) is the maximal robust capture
zone in this game. In Fig. 10, the singular region is
depicted for τe = 0.5 s, amax

e = 100 m/s2, τp1 = 0.1
s, amax

p1 = 150 m/s2, τp2 = 0.8, ϑ0 = 4 s, ϑp = 2 s.
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Fig. 10. Singular region in Case I.1: (ωe, ωp1) satisfies (15).

In Fig. 11, the singular region is depicted for the data
presented in Table 3 and for ϑp = 0.5 s, ϑ0 = 2 s.

Table 3. Players’ dynamics data: set 3.

Time constant [s] Max. acc. command [m/s2]

Evader τe = 0.2 amax
e = 50

Pursuer
τp1 = 0.06 amax

p1 = 48

τp2 = 0.2 amax
p2 = 55

0 0.5 1 1.5 2
−10

−5

0

5

10

ϑ

w

D̂0

ϑp

Fig. 11. Singular region in Case I.1: (ωe, ωp1) satisfies (20).

4.2. Subcase I.2: ∃ϑ ∈ (ϑp, ϑ0) : w∗(ϑ, ϑp) < 0.
Let

ϑ1 � min
{
ϑ ∈ (ϑp, ϑ0) :

w∗(ϑ− 0, ϑp) > 0, w∗(ϑ+ 0, ϑp) < 0
}
. (47)

In this subcase, the optimal strategies are

û(ϑ,w)

= v̂(ϑ,w)

=

⎧
⎨
⎩

arbitrary s.t. (33), |w| < w∗(ϑ, ϑp), ϑp ≤ ϑ < ϑ1,

sign(w), otherwise.
(48)

The set

D̂0 = {(ϑ,w) : ϑ ∈ [ϑp, ϑ1), |w| < w∗(ϑ, ϑp)}
is the singular region in the scalar auxiliary differential
game. In this subcase, (ϑ0, w0) /∈ D̂0. The game value is

J∗
aux(ϑ0, w0) = |w0| − w∗(ϑ0, ϑp). (49)

In Fig. 12, the singular region is depicted for the data
presented in Table 3 and for ϑp = 0.7 s, ϑ0 = 8 s. In this
example, ϑ1 = 6.9 s.

4.3. Case II: Ĥ(ϑp) < 0. Due to (30) and (42),
the value Ĥ(ϑp) can be negative if and only if
H(ϑp, ωe, ωp1) < 0. By virtue of the SFDG solution, this
inequality is fulfilled only for the pair (ωe, ωp1), satisfying
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Fig. 12. Singular region in Case I.2: (ωe, ωp1) satisfies (20).

(20) (the capture zone C0((ωe, ωp1) is bounded, 0 ≤ ϑ ≤
ϑc1), and for

ϑp > ϑc1. (50)

Lemma 1. Let the pair (ωe, ωp1) satisfy (20), the inequal-
ity (50) hold and Ĥ(ϑp) < 0. Then

Ĥ(ϑ) < 0, ϑ ∈ [ϑp, ϑ0]. (51)

The proof of the lemma is presented in Appendix A.
In this case, there is no singular region or capture

zone. For all ϑ ∈ [ϑp, ϑ0), the optimal strategies are
û(ϑ,w) = v̂(ϑ,w) = sign(w), w �= 0, while the game
value is given by (49).

Remark 5. Due to the results of this section, in all cases
either the game value J∗

aux is zero or it is given by (49).

5. SHRCP solution

Due to (34) and (38), the condition (35) becomes

J∗
aux = z∗(0, ϑp, ωe, ωp2). (52)

If for the initial position (ϑ0, z0), J∗
aux = 0, then the

condition (52) is not satisfied. This means that the value
|z0| can be increased such that the game value is given by
(49), implying the inclusion (ϑ0, z0) ∈ D̂1. By solving
Eqn. (52) with respect to |z0|,

|z0| = H(ϑp, ϑ0)

�
ϑ0∫

ϑp

H(ξ, ωe, ωp1) dξ +

ϑp∫

0

H(ξ, ωe, ωp2) dξ

+ δamax
p1

(
exp((ϑp − ϑ0)/τp1)− 1

)
.

(53)

For any fixed ϑ0, the function H(ϑp, ϑ0) is considered on
the set Θp(ϑ0) = {ϑp ∈ (0, ϑ0) : H(ϑp, ϑ0) ≥ 0}.

Similarly to Shinar et al. (2009), we obtain that the
derivative of H(ϑp, ϑ0) with respect to ϑp has two zeros

on the interval ϑp ∈ (−∞,+∞). One of these zeros is
ϑp = 0, while the second is, subject to the condition

amax
p2 > amax

p1 , (54)

ϑp = ϑ∗p
�
= ϑ0 −Δϑp, (55)

where

Δϑp = τp1 ln
amax
p1 (τp2 − τp1)

τp1(amax
p2 − amax

p1 )
. (56)

Like in the work of Shinar et al. (2009), it is shown
that ϑp = ϑ∗p is the unique point of the local maximum of
the function H(ϑp, ϑ0) with respect to ϑp ∈ (−∞,+∞).

Note that the value of Δϑp is independent of ϑ0. The
obtained value of ϑ∗p is feasible if ϑ∗p ∈ Θp(ϑ0). The latter
implies two inequalities:

0 < Δϑp < ϑ0, (57)

H(ϑ∗p, ϑ0) ≥ 0. (58)

If the condition (57) is valid, ϑp = ϑ∗p is the unique
absolute maximum point of the function H(ϑp, ϑ0) with
respect to ϑp ∈ [0, ϑ0]. Moreover, if both conditions
(57)–(58) hold, then ϑ∗p is the optimal switch point. If (57)
holds and the point (ϑ0,H(ϑ∗p, ϑ0)) lies above the upper
boundary of the union C0(ωe, ωp1) ∪ C0(ωe, ωp2), then
it is a point of the upper boundary of Cp. Note that this
condition guarantees the fulfilment of (58).

If 0 < ϑ0 ≤ Δϑp, then the condition (57) is
not satisfied. In this case, due to Shinar et al. (2009),
the maximum of the function H(ϑp, ϑ0) with respect to
ϑp ∈ [0, ϑ0] is attained for ϑ∗p = 0. This point is feasible
if

H(0, ϑ0)

=

ϑ0∫

0

H(ξ, ωe, ωp1) dξ ≥ 0, ∀ϑ0 ∈ (0,Δϑp]. (59)

If the capture zone C0(ωe, ωp1) is unbounded, the
latter is satisfied for all Δϑp > 0. Therefore, in this case,
for ϑ0 ≤ Δϑp, the pursuer should employ its first dynamic
mode on the entire interval [0, ϑ0], and the boundary of Cp
coincides with the boundary of C0(ωe, ωp1).

If the capture zone C0(ωe, ωp1) is bounded, the
condition (59) is satisfied if and only if

0 < Δϑp ≤ ϑc1. (60)

Thus, in this case, for ϑ0 ≤ Δϑp, if the condition (60)
holds, the boundary of Cp coincides with the boundary of
C0(ωe, ωp1).

For further analysis, we distinguish two cases:
(A) (ωe, ωp2) satisfies (15), where the capture zone
C0(ωe, ωp2) is unbounded, and (B) (ωe, ωp2) satisfies
(20), where the capture zone C0(ωe, ωp2) is bounded.
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If (ωe, ωp) satisfies (20), for further analysis, let us
define the function

Z∗(ϑ, ωe, ωp) �

⎧
⎨
⎩

z∗(ϑ, 0, ωe, ωp), 0 < ϑ ≤ ϑc,

0, ϑc < ϑ ≤ ϑ0.
(61)

5.1. Construction of Cp in Case A. Since the case
where the capture zones for both pursuer dynamic modes
are unbounded was studied by Shinar et al. (2009), we
consider here case where the pair (ωe, ωp1) satisfies (20),
i.e., the capture zoneC0(ωe, ωp1) is bounded. Due to (56),
the inequality (57) is equivalent to the inequality

1 <
amax
p1 (τp2 − τp1)

τp1(amax
p2 − amax

p1 )
< exp(ϑ0/τp1). (62)

Lemma 2. Let the condition (62) be valid. Then, the
point (ϑ0,H(ϑ∗p, ϑ0)) lies above the upper boundary of
the union C0(ωe, ωp1) ∪ C0(ωe, ωp2).

The proof of the lemma is presented in Appendix B.
Remember that Δϑp is independent of ϑ0. Then,

based on Lemma 2 and the inequalities (59)–(60), we
obtain, by replacing ϑ0 with any ϑ ∈ (0, ϑ0], the
following theorem.

Theorem 1. In Case A, the SHRCP is solvable if the con-
ditions (62) and (60) hold. The capture zone of the pur-
suer’s hybrid dynamics is

Cp =
{
(ϑ, z) : ϑ ∈ [0, ϑ0], |z| ≤ Zp(ϑ)

}
, (63)

where

Zp(ϑ) =
⎧
⎨
⎩

H(ϑ−Δϑp, ϑ), Δϑp < ϑ ≤ ϑ0,

z∗(ϑ, 0, ωe, ωp1), 0 < ϑ ≤ Δϑp.
(64)
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Fig. 13. Hybrid capture zone in Case A.

In Fig. 13, the upper boundaries of C0(ωe, ωp1),
C0(ωe, ωp2), Cp and the ZEM trajectory are depicted

for the data of Table 3 and for ϑ0 = 8 s. For these
data, C0(ωe, ωp1) is bounded (ϑc1 = 6.85 s) while
C0(ωe, ωp2) is unbounded. In this example,Δϑp = 0.17 s
(Δϑp < ϑc1), i.e., the condition (58) is satisfied. The
ZEM trajectory emanates from the initial point (ϑ0, z0) =
(8, 180): (ϑ0, z0) /∈ C0(ωe, ωp1) ∪ C0(ωe, ωp2) and
(ϑ0, z0) ∈ Cp. This trajectory is generated by the
strategies

u = v =

⎧
⎨
⎩

sign(w), ϑ0 −Δϑp < ϑ ≤ ϑ0,

sign(z), 0 ≤ ϑ < ϑ0 −Δϑp.
(65)

It is seen that, for ϑ ∈ [0, 8], Cp ⊃ C0(ωe, ωp1) ∪
C0(ωe, ωp2), and the ZEM trajectory terminates at the
point (0, 0).

5.2. Construction of Cp in Case B. If, in this case, the
pair (ωe, ωp1) satisfies (15), then amax

p1 > amax
e , amax

p2 <
amax
e , leading to amax

p2 < amax
p1 , i.e., the condition (54) is

not satisfied. In this case, ∂H(ϑp, ϑ0)/∂ϑp ≤ 0, for all
ϑp ∈ (−∞,+∞), i.e., the maximal value of H(ϑp, ϑ0)
with respect to ϑp ∈ [0, ϑ0] is attained for ϑp = 0. The
latter means that the pursuer should use its first dynamic
mode on the entire interval [0, ϑ0], which does not lead to
increasing its capturability.

Thus, in Case B, the only possibility to increase the
pursuer’s capturability is when the pair (ωe, ωp1) satisfies
(20), i.e., both capture zonesC0(ωe, ωp1) andC0(ωe, ωp2)
are bounded, meaning that they exist for ϑ ∈ [0, ϑc1] and
ϑ ∈ [0, ϑc2], respectively.

Remark 6. If ϑc2 < ϑp < ϑ0, then z∗(0, ϑp, ωe, ωp2) <
0, meaning that the equality (52) is impossible. Therefore,
in the case B, the maximum of H(ϑp, ϑ0) should be
searched for ϑp ∈ [0, ϑc2]. If ϑ∗p ∈ (0, ϑc2] and the
condition (58) holds, ϑ∗p is the optimal switch moment.
If ϑ∗p > ϑc2, then the maximum value of H(ϑp, ϑ0) is
attained for ϑp = ϑc2, which becomes the optimal switch
moment subject to the condition

H(ϑc2, ϑ0) =

ϑ0∫

ϑc2

H(ξ, ωe, ωp1) dξ +ΔZ(ϑc2) ≥ 0.

Remark 7. Note that the inclusion ϑ∗p ∈ (0, ϑc2] is
equivalent to the inequality

exp

(
ϑ0 − ϑc2
τp1

)
≤ amax

p1 (τp2 − τp1)

τp1(amax
p2 − amax

p1 )
< exp

(
ϑ0
τp1

)
.

(66)
Based on Remarks 6 and 7, similarly to Theorem 1,

we have the following statement.

Theorem 2. Let the pairs (ωe, ωpi) satisfy (20), i =
1, 2. Then two following SHRCP solvability conditions
are valid:
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I. When the inequality (66) holds, then the SHRCP is
solvable if for ϑ ∈ (Δϑp, ϑ0],

H(ϑ−Δϑp, ϑ) > max{Z∗(ϑ, ωe, ωp1), Z∗(ϑ, ωe, ωp2)}.
(67)

In this case, Cp is given by (63)–(64).
II. When the inequality (66) is not satisfied, then the

SHRCP is solvable if, for ϑ ∈ (Δϑp, ϑc2 + Δϑp], (67) is
satisfied and, for ϑ ∈ (ϑc2 +Δϑp, ϑ0],

H(ϑc2, ϑ) > Z∗(ϑ, ωe, ωp1). (68)

In this case, Cp is given by (63), where

Zp(ϑ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(ϑc2, ϑ), ϑc2 +Δϑp < ϑ ≤ ϑ0,

H(ϑ−Δϑp, ϑ), Δϑp < ϑ ≤ ϑc2 +Δϑp,

z∗(ϑ, 0, ωe, ωp1), 0 < ϑ ≤ Δϑp.
(69)

Remark 8. Similarly to Lemma 2, it is shown that, if

ϑc1 ≤ ϑc2 (70)

and
0 < Δϑp ≤ ϑc2, (71)

then for all ϑ ∈ (Δϑp, ϑc2] the inequality (67) is valid.
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Fig. 14. Hybrid capture zone in Case B.

In Fig. 14, the upper boundaries of C0(ωe, ωp1),
C0(ωe, ωp2), Cp and the ZEM trajectory are depicted
for the data of Table 2 and for ϑ0 = 1.92 s. For
these data, bothC0(ωe, ωp1) andC0(ωe, ωp2) are bounded
(ϑc1 = 1.02 s, ϑc2 = 1.87 s). In this example,
Δϑp = 0.056 s, leading to ϑ∗p = 1.86 s< ϑc2. The
condition (66) is satisfied. The ZEM trajectory emanates
from the initial point (ϑ0, z0) = (1.9, 0): (ϑ0, z0) /∈
C0(ωe, ωp1) ∪ C0(ωe, ωp2) and (ϑ0, z0) ∈ Cp. This
trajectory is generated by the strategies (65). It is seen
that, for ϑ ∈ [0, 1.92], Cp ⊃ C0(ωe, ωp1) ∪ C0(ωe, ωp2),
and the ZEM trajectory terminates at the point (0, 0).

5.3. Pursuer’s robust capturing strategy. Based
on the results of Sections 2.3 and 4, the pursuer’s
strategy, guaranteeing the capture from any initial position
(ϑ0, z0) ∈ Cp, robustly with respect to any admissible
evader behavior, is the following. If (ϑ0, z0) belongs to
at least one of the capture zones clo(C0(ωe, ωpi)), i =
1, 2, then the pursuer chooses the corresponding dynamic
mode and the corresponding optimal strategy, and does
not switch from this dynamic mode to the other till the
end of the interception. If (ϑ0, z0) /∈ C0(ωe, ωp1) ∪
C0(ωe, ωp2), then at the beginning the pursuer chooses
the first dynamic mode ωp1. Also, it chooses the optimal
switch moment ϑp = ϑ̄∗p from the dynamic mode ωp1 to
the dynamic mode ωp2. Due to results of two previous
subsections, ϑ̄∗p can be either ϑ∗p = ϑ0 − Δϑp or ϑc2.
Then, on the interval ϑ ∈ (ϑ̄∗p, ϑ0] (before the switch) the
pursuer uses the strategy u(ϑ, z, ap) = sign(w), while on
the interval ϑ ∈ [0, ϑ̄∗p) (after the switch) the pursuer uses
the strategy u(ϑ, z) = sign(z).

Remark 9. The robustness of the capture zones Cp
constructed in Theorems 1 and 2 and the robustness of
the pursuer’s capturing strategy mean the following. If the
pursuit starts in Cp, then by using the capturing strategy
the pursuer guarantees the capture (zero miss distance)
at t = tf (ϑ = 0) against arbitrary admissible evader
control. Indeed, at the first stage, including the switch
moment, the pursuer uses its optimal strategy in the
ADGD, thus steering the trajectory into the capture zone,
corresponding to its second dynamic mode. At the second
stage, after the switch, the pursuer employs its optimal
strategy in the SFDG with the second dynamic mode,
steering the trajectory to zero. Since the pursuer strategies
at both stages are the optimal differential game strategies,
they take into account the worst case evader admissible
control, and therefore are definitely robust with respect to
the evader’s behavior.

Remark 10. The approach developed in this paper can
be extended to analysis of the reliability issue. Indeed,
the abrupt pursuer actuator fault, i.e., deterioration either
of the maneuverability (decreasing amax

p ) or of the agility
(decreasing the value amax

p /τp), can be considered in
the framework of the hybrid dynamics. In this case,
by using a method similar to the one described in this
paper, the pursuer’s robust and reliable capture zone can
be constructed.

6. Simulation results

In order to evaluate the theoretical results, numerical
simulations were carried out under the following realistic
assumptions: (I) nonlinear engagement model, (II)
random wind disturbance. Due to these assumptions, the
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engagement is described by

ẋe = Ve cosϕe +Wxe(t), xe(0) = r0,

ẏe = Ve sinϕe +Wye(t), ye(0) = 0,

ϕ̇e = ae/Ve, ϕe(0) = ϕe0,

ȧe = (amax
e v − ae)/τe, ae(0) = 0,

ẋp = Vp cosϕp +Wxp(t), xp(0) = 0, (72)

ẏp = Vp sinϕp +Wyp(t), yp(0) = 0,

ϕ̇p = ap/Vp, ϕp(0) = ϕp0,

ȧp = (amax
p u− ap)/τp, ap(0) = 0,

where Wi(t) = [Wxi(t),Wyi(t)]
T , i = e, p, are

time-varying wind velocity vectors, influencing the evader
and the pursuer, respectively.

In the wind model, it is assumed that the magnitude
and the direction angle of the wind are combined from
constant and time-varying parts. The constant part is the
wind magnitudeA0 and direction angleψ0 at the vehicles’
collision point. The time-varying part is considerable
when the vehicles are far from the collision point, while
it decreases when the vehicles approach this point and
vanishes at this point. Let Ai0 and ψi0, i = e, p, be
the magnitude and the angle of the wind, influencing the
evader and the pursuer, respectively, for t = 0. Then,
by assuming additionally the linear time dependance of
the magnitudes and the direction angles of the wind,
influencing the vehicles, we can represent these functions
as

Ai(t) = A0 + (1− t/tf)ΔAi, (73)

ψi(t) = ψ0 + (1 − t/tf)Δψi, (74)

i = e, p, where ΔAi � Ai0 − A0, Δψi � ψi0 − ψ0, i =
e, p. Thus, the components of the wind velocity vectors in
the x- and y-directions are

Wxi(t) = Ai(t) cosψi(t), (75)

Wyi(t) = Ai(t) sinψi(t), (76)

i = e, p, and t ∈ [0, tf ].

In this simulation study, the magnitude and the
direction of the wind are modeled following Wolf et al.
(2010). Namely, the values A0, ΔAi, i = e, p, were
chosen as normally distributed random ones: A0 ∼
N(μA0 , σA0), ΔAi ∼ N(μΔAi , σΔAi), i = e, p. For
the values ψ0, Δψi, i = e, p, the von Mises distribution
(Jammalamadaka and Sengupta, 2001) was employed. It
is an analogue of a Gaussian distribution on the circle. Its
probability density function is

fVM(ψ;μ, κ) =
exp(κ(μ− ψ))

2πI0(κ)
, (77)

where I0(κ) is the modified Bessel function of the
first kind of order 0, μ is the mean, κ characterizes

the concentration of the random value around μ. In
what follows, we write the random value, distributed in
accordance with (77), as ψ ∼ VM(μ, κ), and assume
ψ0 ∼ VM(μψ0 , κψ0), Δψi ∼ VM(μΔψi , κΔψi),
i = e, p.

In the simulation, the pursuer uses the optimal
strategy, described in Section 5.3. For the evader, two
different control types were employed:

(a) the bang-bang control with a single fixed switch
moment tsw ∈ (0, tf ):

v =

⎧⎨
⎩

1, 0 ≤ t < tsw,

−1, tsw ≤ t < tf ,
(78)

(b) the bang-bang control (78) with a random switch
moment tsw ∼ U [0, tf ].

Remark 11. The evader controls (a) and (b) are widely
used in the literature (Shinar et al., 2007; Glizer and
Turetsky, 2009; Shinar and Turetsky, 2009; 2013a; 2013b)

In the simulation, the vehicles’ dynamics data are
chosen from Table 3. The vehicles’ velocities are Ve =
2700m/s andVp = 2300m/s, the initial range between the
vehicles is r0 = 40 km, the initial values of the vehicles
aspect angles are ϕe0 = 2.2 deg, ϕp0 = 2 deg, resulting
in tf = ϑ0 = 8 s, z0 = 187.1 m. Note that (see Fig. 13)

(ϑ0, z0) /∈ C0(ωe, ωp1) ∪ C0(ωe, ωp2), (ϑ0, z0) ∈ Cp.
(79)

The wind model data is chosen from Table 4.

Table 4. Wind amplitude and angle simulation data.

A0 [m/s] ΔAe [m/s] ΔAp [m/s]

μ 10 15 12

σ 2 3 2.4

ψ0 [rad] Δψe [rad] Δψp [rad]
μ 0 : π/4 : π 0 0

κ 100 0.15 0.2

Remark 12. In the simulation, the miss distance cannot
be calculated as |ye(tf )− yp(tf )| and it is defined as

r̃f = min
t≥0

√
(xe(t)− xp(t))2 + (ye(t)− yp(t))2.

In Fig. 15, the average miss distance for various mean
values μψ0 of the wind direction angle at the vehicles’
collision point is depicted for the evader control (78) as a
function of tsw. The pursuer employs its robust capturing
hybrid strategy, described in Section 5.3. The average
miss distance is obtained by 100 Monte Carlo simulations
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for each switch moment tsw = 0 : 0.08 : 8. It is seen
that for each μψ0 the presence of the wind increases the
average miss distance when tsw approaches tf . Moreover,
the worst case μψ0 is 90 deg. Nevertheless, the maximal
average miss distance is less than 90 cm.
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Fig. 15. Average miss distance.

In Figs. 16 and 17, the cumulative distribution
of the miss distance is shown for the pursuer’s robust
capturing hybrid strategy (Fig. 16) and fixed dynamics
optimal strategy (Fig. 17) against the evader’s bang-bang
strategy with random switch. In these simulations,
μψ0 = 90 deg. The number of Monte Carlo runs was
500. It is seen that the robust capturing hybrid strategy
improves considerably the outcome of the interception,
in comparison with the fixed dynamics optimal strategy.
Namely, the huge 95th miss distance percentiles 197.3 m
and 35.4 m, obtained by using the optimal strategy for
the first and the second dynamics modes, are reduced to
9.2 cm, obtained by using the robust capturing hybrid
strategy. This result is a direct consequence of Eqn. (79).
The simulation with different mean values of the wind
direction angle at the vehicles’ collision point showed that
the value of μψ0 does not influence significantly on the
miss distance cumulative distribution, including its 95th
percentile.

7. Conclusions

In this paper, a robust interception problem of a
maneuverable fixed dynamics target by a hybrid dynamics
interceptor with two different dynamic modes was
considered. The solution of this problem utilizes the
discontinuity of the zero-effort miss distance.

Previously, it was shown that the interceptor’s
capturability can be increased by using hybrid dynamics
in the case where for both dynamic modes the interceptor
is superior in maneuverability and agility. In the
present paper, two additional cases of capturability
increasing are established: (A) for the first dynamic
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Fig. 16. Pursuer’s robust capturing hybrid strategy against the
evader’s bang-bang strategy with random switch.
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Fig. 17. Pursuer’s fixed dynamics optimal strategy against the
evader’s bang-bang strategy with random switch.

mode, the interceptor is inferior in maneuverability and
superior in agility; for the second, it is superior both in
maneuverability and agility, (B) for both dynamic modes,
the interceptor is inferior in maneuverability and superior
in agility. In both the cases, the respective capture zones
are constructed. The pursuer’s robust capturing strategy is
derived.

The theoretical results were evaluated by extensive
simulation for the realistic non-linear engagement model,
in the presence of a random wind and various types of
evader control. The simulation results show that: (a)
the pursuer’s robust capture zone and robust capturing
strategy, constructed based on the linearized engagement
model and the hybrid dynamics of the pursuer, are
also valid for the non-linear engagement model, (b) if
the engagement starts in the pursuer’s robust capture
zone, its robust capturing strategy is low-sensitive to the
random wind, (c) employing the hybrid dynamics of the
pursuer improves dramatically the interception outcome,
comparing with the fixed dynamics cases.

The future issues of the topic, requiring further
investigations, are (i) construction of the robust escape
zone of the hybrid dynamics evader in the cases where at
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least for one of its dynamic modes the pursuer’s capture
zone is bounded, (ii) a study of capture and escape
zones for both the pursuer and the evader having hybrid
dynamics, (iii) a study of the reliability of the pursuer’s
robust capturing strategy and the evader’s robust escaping
strategy when at least one of the counterparts has hybrid
dynamics.
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Appendix A

Proof of Lemma 1

Since Ĥ(ϑp) < 0, then, in order to prove (51), it is
sufficient to show that

dĤ

dϑ
=

dH(ϑ, ωe, ωp1)

dϑ

+
δamax
p1

τ2p1
exp

(ϑp − ϑ

τp1

)
≤ 0.

(A1)

Due to (30), the second term in (A1) is negative. Hence,
in order to prove the inequality in (A1), it is sufficient to
prove that, for ϑ ∈ [ϑp, ϑ0],

dH(ϑ, ωe, ωp1)

dϑ

= amax
p1

(
1− exp

(
− ϑ

τp1

))

− amax
e

(
1− exp

(
− ϑ

τe

))

≤ 0.

(A2)

Note that, due to the SFDG solution (Shinar, 1981;
Shima and Shinar, 2002), there exists ϑ1 ∈ (0, ϑc1) such
that H(ϑ1, ωe, ωp1) = 0 and

dH(ϑ1, ωe, ωp1)

dϑ
< 0. (A3)
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Moreover,
dH(0, ωe, ωp1)

dϑ
= 0, (A4)

and, due to (20),

lim
ϑ→∞

dH(0, ωe, ωp1)

dϑ
= amax

p1 − amax
e < 0. (A5)

Let us assume that the inequality (A2) is violated,
i.e., there exists ϑ2 ∈ [ϑp, ϑ0] such that

amax
p1

(
1−exp

(
− ϑ2
τp1

))
−amax

e

(
1−exp

(
− ϑ2
τe

))
> 0.

(A6)
Thus, due to (A3)–(A6), there exist at least
three non-negative distinct zeros of the function
dH(ϑ, ωe, ωp1)/dϑ. Therefore, the second derivative

d2Hϑ, ωe, ωp1
dϑ2

=
amax
p1

τp1
exp

(
− ϑ

τp1

)
− amax

e

τe
exp

(
− ϑ

τe

)
, (A7)

should have at least two non-negative distinct zeros.
However, the function (A7) can have no more than one
non-negative zero. This contradiction proves that the
inequality (A2) holds for ϑ ∈ [ϑp, ϑ0], which completes
the proof of the lemma.

Appendix B

Proof of Lemma 2

In the proof of the lemma, we distinguish two cases: (i)
ϑ0 ≤ ϑc1 and (ii) ϑ0 > ϑc1. Let us start with the first
case. In this case, H(0, ϑ0) satisfies the inequality (59),
meaning that the point (ϑ0,H(0, ϑ0)) lies on the upper
boundary of C0(ωe, ωp1). Moreover, due to (53),

H(ϑ0, ϑ0) =

ϑ0∫

0

H(ξ, ωe, ωp2) dξ,

meaning that the point (ϑ0,H(ϑ0, ϑ0)) lies on the upper
boundary of C0(ωe, ωp2). On the other hand, since ϑ∗p
is the unique point of absolute maximum of H(ϑp, ϑ0)
on the interval ϑp ∈ [0, ϑ0], then H(ϑ∗p, ϑ0) >
max{H(0, ϑ0),H(ϑ0, ϑ0)}, which proves the lemma in
the case (i). In the case (ii), similarly to the case (i),
the point (ϑ0,H(ϑ0, ϑ0) lies on the upper boundary of
C0(ωe, ωp2), and the point (ϑ0,H(ϑ∗p, ϑ0)) lies above
it. On the other hand, since ϑ0 > ϑc1, then the point
(ϑ0,H(ϑ∗p, ϑ0)) lies outside of clo(C0(ωe, ωp1)). Thus, in
the second case, the statement of the lemma also is valid.
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