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Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis
focuses on the relations among the nodes exploring the properties of each network. We introduce a method for measuring
the strength of the relationship between two nodes of a network and for their ranking. This method is applicable to all kinds
of networks, including directed and weighted networks. The approach extracts dependency relations among the network’s
nodes from the structure in local surroundings of individual nodes. For the tasks we deal with in this article, the key
technical parameter is locality. Since only the surroundings of the examined nodes are used in computations, there is no
need to analyze the entire network. This allows the application of our approach in the area of large-scale networks. We
present several experiments using small networks as well as large-scale artificial and real world networks. The results of
the experiments show high effectiveness due to the locality of our approach and also high quality node ranking comparable

to PageRank.
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1. Introduction

The network representation of complex systems provides
a useful model for studying many real-world processes,
including biological, technological and social networks
(Barabdsi and Frangos, 2002). Most of the previously
studied networks were unweighted binary ones, although
an extensive area of network measures has already been
extended to the notion of weighted networks (Abdallah,
2011; Barrat et al., 2004a; Opsahl et al., 2010) as well
as clustering methods (Farkas et al., 2007; Opsahl and
Panzarasa, 2009). Edge weighting can be based on
different approaches, which are always related to the
type of network. Node weighting (ranking) is usually
understood as directly related to the edges that nodes have
with their neighbors and the weight of those edges.

Due to the enormous and sustained growth of real
world networks, the current trend in analyzing networks
is to focus on local methods and also on weighted
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networks (we can assign weights to the edges as well
as the nodes). This is related to the fact that some
tasks as originally formulated are difficult to solve in
very large networks. Other tasks were formulated only
for unweighted networks, which, however, does not quite
correspond to the development of real networks where, for
example, the relationship between the nodes changes over
time. Nevertheless, it appears that the same or modified
tasks become significant when looking at a relatively
small part of the network.

In this article we will consider only unweighted
undirected networks, despite the fact that the following
approach is directly applicable even to directed and
weighted networks. The reason is to simply illustrate
our approach. The first task that the article addresses is
the ranking of the nodes in the network. We introduce
a dependency centrality measure, which is similar to the
simple degree centrality but includes in its calculation
the relationships between common neighbors.  For
the experiments we use both artificial and real world
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networks and compare the results with measurements of
PageRank. Due to the fact that in the experiments we use
large-scale networks, we describe the details of parallel
implementation of the algorithms. The second task is
to transform an unweighted undirected network into a
weighted network, and in the experiment we show that
applying a dependency measure may help to uncover
interdependent groups of nodes.

The rest of this article is organized as follows. In
Section [2] we discuss the related work. The dependency
measure is presented in Section Bl Section (] addresses
the proposed method for ranking the nodes. In Section[3]
we focus on an experiment with large-scale networks and
its results. Measuring the dependency in an unweighted
network is presented in Section Section [7] presents
an experiment with transforming unweighted networks.
Section[§] concludes the article.

2. Related work

Weighted networks have previously been studied in many
papers and applications. Many of them emphasize the
advantages of weighted networks over classical (binary)
ones (Ghazalpour et al., 2006; Zhang and Horvath, 2005).
There are many approaches to assigning weights to edges
in networks. The most natural ones usually arise from
reality. For example, for a social network of a telephone
company, customers we may assign weight to an edge
based on the total length of conversation between the
nodes (Onnela et al., 2007). Edge weights in a network of
air transport between cities can be assigned on the basis
of the total number of passenger (or seats) on particular
flights (Barrat et al., 2004a). The genes network may also
benefit from assigning weights to edges based on a similar
function of particular genes (Ghazalpour et al., 2006). It
is quite common that more than one weighting approach
based on reality exists.

Community extraction is another area that has
been studied extensively (Newman, 2006; Fortunato,
2010), because analyzing interconnected groups provides
important information about how they function (Newman,
2008). One of the first works on this topic (Newman,
2004) illustrates the problem of community detection
within a group of monkeys. In this particular case, the
unweighted network was unable to separate the monkeys
based on their grooming habits. When considering the
amount of grooming as a weight of an edge within the
network, the problem became solvable.

A weighted network might be also considered a
result of network evolution (Abdallah, 2011; Barrat et
al., 2004b). An interesting area of research with many
potential applications is the field of link prediction,
particularly link weight prediction (Kahanda and Neville,
2009). Zhang and Horvath (2005) described an approach
similar to that presented in this article. A method of

assigning weight to an edge as a measure of topological
overlap between two nodes was used. Han er al. (2009)
introduced the concept of supportiveness, which captures
co-authorship relations in a non-symmetric way and
derived a supportiveness-based author ranking scheme.

It makes sense to assign weights not only to
edges, but also to nodes (Wiedermann et al., 2013).
The centrality of nodes, or the identification of which
nodes are more ‘central’ than others, has been a key
issue in network analysis. Freeman (1979) formalized
three different measures of node centrality: the degree,
closeness and betweenness. The degree is the number of
nodes that a selected node is connected to, and measures
the involvement of the node in the network. Based on
our dependency measure, we propose a novel degree
centrality measure, which provides a ranking of nodes
in the network from the most independent to the most
dependent ones.

The term ‘dependency’ used in this article has
already been used in conjunction with social networks,
but this approach is based on probability and is suited
to collaborative filtering (Heckerman er al., 2001) or
modeling influence (Leenders, 2002). Also, when
constructing partial correlation networks (Kenett et al.,
2010), the ‘dependency’ of one node on another is
calculated for the entire network. The dependency
measure used in this article was also used by Zehnalova
et al. (2013).

3. Local dependency

We understand dependency as a generally asymmetric
measure describing a relationship between two nodes of
a network. In a network or graph G = (V, E), V is a set
of nodes and F is a set of edges.

The computation of the dependency D(z, y) of node
x on node y is done locally, only in the immediate
surroundings of the two nodes. From the surroundings of
node x, only edges that lead to the neighbors of y are taken
into account. This means that only relations between a
‘friend of a friend” have some significance.

3.1. Motivation. We assume that the dependency
between two nodes is influenced not only by the relation
between them, but also by the relationships in their
surroundings. Let us show an example with two adjacent
nodes, z and y, in an unweighted undirected network.
Consider the situation shown in Figs.[Ia) and (b), where
nodes = and y share an edge. The nodes in the first figure
have no additional neighbors. In the second figure, node y
is adjacent to three additional nodes. The intuition behind
the term dependency says that the relation between nodes
in Fig.[I(a) is balanced, while the situation in Fig. [[b) is
different—node y is less dependent on node x than vice
versa. Figure[Ilc) contains two additional edges between
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node x and two different nodes. In this situation, node
x is no longer so highly dependent on node y because
of the two new edges. When thinking about dependency
in Fig. [[(c), we should also consider that the new edges
include common neighbors of nodes x and y (which
transmit some part of the dependency on node y). It is
evident that dependency is an asymmetric measure since
D(z,y) = D(y,x) may not always hold.

Fig. 1. Examples of dependency between two nodes.

3.2. Dependency in a weighted network. In a
weighted network, the weight of edges usually reflects a
similarity between the nodes, while the strength of an edge
describes the level of cooperation or traffic between the
nodes. These weights must be taken into consideration
when calculating dependency. To illustrate how ‘friend
of a friend’ relations affect the dependency between two
nodes, look at the situation in Fig. 2l where we want to
assess the weight from node V; to node V; across node
V.. When w,; is weak, w;; must also be weak, e.g.,
limy,; »0(ViV;)v, = 0; alternatively, when w,; is very
strong (in terms of similarity), meaning that nodes 1, and
V; are almost identical, then w;; is identical to w;,, e.g.,
hmw”—mo(‘/z‘/])VT = Wiy

Fig. 2. Example of weight derived from a path.

We define dependency as follows. Let E(x) be the
set of all non-zero weight edges adjacent to node x. Let
Adj(x, y) be the set of all edges between node x and any
of the neighbors of node y. Clearly, Adj(z,y) C E(x)
and Adj(z,y) does not contain an edge between node
x and node y. Let W(e) be the weight of edge e and
W (v1, v2) the weight of an edge between nodes v1 and v
(W (v1,v2) = 0, if there is no such edge).

Let x be a non-isolated node of the network. The
dependency D(z,y) of node  on node y is defined as

W($7 y) + ZeiEAdj(m7y) W(ez) : R(ez)
ZeiEE(m) W(el)

W(ya Ui)
Wi(e:) + Wiy, vi)’

where R(e;) is the coefficient of the dependency of node x
on node y via the common neighbor v;; therefore, v; € e;.

This dependency describes the relation of one
node to another node from the point of view of their
surroundings. Using this concept, the dependency of one
node on another is calculated for the entire network (see
Algorithm [[). We obtain a directed weighted adjacency
matrix representing the fully connected network, which is
capable of uncovering hidden relationships between the
nodes. Once the adjacency matrix has been constructed, it
is possible to reconstruct the network; several algorithms
may be used, such as the minimum spanning tree (MST),
or just some sort of threshold.

The presented equations infer D(z,y) € [0,1]. The
dependency being equal to zero means that vertices « and
y have no common edge or neighbor. Full dependency
(dependency equal to one) describes the situation where
node x has only one common edge with node y.

D(J),y) =

(D)

R(e;) = )

Remark 1. The dependency is non-zero if at least one of
the following conditions holds:

1. There exists an edge between vertices  and y.

2. Vertices x and y share at least one common neighbor.

Algorithm 1. Calculating dependencies.

Require: agraph G = (V,E),w: E — R
1: for allnode v € V do

2:  for all node = from Adj(v,y) do

3 if x is adjacent to v then

4: SUMpom+ = Wy g

5: end if

6

7

8

SUMpom+ = We,y - R(I, y)
end for
SUMden+ = Wy y
Wy, y +SUMnom
9: D(v,y) = == ——nem
10: end for
11: return D = |V| x |V| {Returns directed weighted
adjacency matrix}

4. Node ranking

In this section we present two methods for node ranking.
The dependency centrality measure is introduced first.
The second one is a well-known method, PageRank,
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which was selected in order to compare it with the
dependency centrality measure. The results of the
application of both methods will be compared in
Section[3

4.1. Dependency degree. We define the dependency
degree of a node as the sum of all calculated dependency
weights of incoming edges from its neighbors. Let N (z)
be the set of all nodes adjacent to node . Let d;; be the
dependency weight of a connection from ¢ to j,

Dege = Y dys. 3)

yEN ()

Since dependency between the nodes D(x,y) €
[0,1], the sum of dependencies will be smaller than the
classical degree centrality of the node. The higher the
dependency degree, the more nodes in the surroundings
of a focal node depend on it. In this manner we are
able to create a natural ranking of nodes based on their
importance in the network. For reference, we calculated
some of the known centrality measures for the unweighted
karate club network of Zachary (Zachary, 1977). In
Table[I] each measure has a different scale of values, but
it is possible to cross-reference them and find differences
in proportionality. In Table [Il only half of the nodes
(those with the highest node degree) listed were (see
Figs. [ and @) with the whole network, where the
size of the nodes corresponds to the dependency degree
and PageRank, respectively (the values here are scaled
to a proper interval). Nodes with a noticeable visible
difference are highlighted.

Remark 2. The dependency degree centrality is by
definition suitable for weighted networks.

Table 1. Centrality measures for Zachary’s karate club network.

| Vertex Degree Dependency Betweenness Closeness  PageRank |
34 17 9,267 160,552 0,017 3,431
1 16 9,108 231,071 0,017 3,298
33 12 6,403 76,690 0,016 2,438
3 10 3,785 75,851 0,017 1,941
2 9 4,456 28,479 0,015 1,798
4 6 2,727 6,288 0,014 1,219
32 6 1,805 73,010 0,016 1,263
9 5 1,120 29,529 0,016 1,012
14 5 1,160 24,216 0,016 1,004
24 5 1,522 9,300 0,012 1,072
6 4 1,875 15,833 0,012 0,990
7 4 1,875 15,833 0,012 0,990
8 4 1,101 0,000 0,013 0,833
28 4 0,822 11,792 0,014 0,872
30 4 1,464 1,543 0,012 0,894
31 4 0,795 7,610 0,014 0,836

4.2. PageRank. The PageRank (Brin and Page, 1998;
Langville and Meyer, 2006) algorithm was conceived
in order to rank linked documents and is inseparably

)&
R

Fig. 4. PageRank.

linked to the area of Web searches. However, from a
more general perspective, it can be seen as a weighting
algorithm that assigns numerical scores (weights) to the
nodes of a network, similarly as LocalDependency does.
In contrast to LocalDependency, which utilizes local
information to infer node weights, PageRank is a global
measure that uses structural information about the whole
network to weight nodes. Some local approximations
have been considered: Fortunato et al. (2008) estimated
PageRank from local knowledge of in-degree (in the
specific case of the Web network) while Bar-Yossef and
Mashiach (2008) studied the effectiveness of Reverse
PageRank. The basics of PageRank are outlined in this
section in order to clarify the similarities and differences
with LocalDependency.

The PageRank algorithm, originally inspired by
bibliometric measures used for ranking scientific papers,
is an objective estimation of the relevance of hypertext
documents on the basis of their position within a hypertext
network. The main idea behind PageRank is very
simple. It assumes that documents that are linked from
other trusted pages (i.e., pages with a high PageRank
score) are trusted. The contribution of an incoming
link is proportional to the trustworthiness of its origin.
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The highest contribution comes from links that are
incoming from prestigious documents. In Google’s search
algorithm, PageRank is utilized for the prioritization of
documents in the result set retrieved by a keyword-based
search. The PageRank of document A, denoted by PR(A),
can be evaluated using (Brin and Page, 1998; Langville
and Meyer, 2006)

L "\ PR(T},)
PR(A) =1 d+d; PR

“)

The variable d in Eqn. (@) represents a dumping
factor (Brin and Page, 1998; Langville and Meyer, 2006)
(or teleportation probability (Witten et al., 2006)) from the
interval [0,1]. The function C'(A) evaluates the number of
hyperlinks leading from document A. PageRank is based
on the so-called random surfer model. The random surfer
starts his or her session at a random Web document. In
every document, the surfer can either follow any of the
hyperlinks linking the page to the rest of the World Wide
Web or, with probability d, teleport to another randomly
chosen Web document (including documents not linked
from the current one). The concept of teleportation allows
documents to be reached that are not linked from any other
document on the Web (Witten et al., 20006).

Practical computation of the page rank vector is
realized by applying power iteration to the sparse
stochastic primitive matrix G, which is a twice-modified
row-normalized hyperlink matrix H. The relationship
between G and H is illustrated as follows:

G=aS+(1-a)E. (5)

Google matrix G depends on the parameter
«, stochastic matrix S and teleportation matrix E.
Stochastic matrix S is used to deal with sinks in the
hyperlink graph. Once the user enters a node (opens
a document) that has no outlinks, she or he is offered
the possibility of jumping to any other document in the
collection with uniform probability. In other words,
stochastic matrix S replaces all Os rows of H with rows
containing 1/n,

1
S=H + Ea,eT, (6)

where vector a is a dangling vector having a; = 1 if page
1 is a dangling node (has no outlinks); otherwise, a; = 0.
Matrix E represents a teleportation matrix. It gives the
surfer the possibility to teleport to any document in the
collection at any time,

E= leeT. (7)
n

In Eqn. @), vector eT is the row vector of all 1s. The
elements of H are set according to

H, = { 7 ifilinksto j, )

0 otherwise.

The non-zero elements of row ¢ represent outlinks
from ¢, non-zero elements of column j represent inlinks
to j. The parameter o € [0, 1] in Eqn. () is a scaling
parameter controlling the priority between link-following
and random teleportation.

The random surfer is bound to the assumptions and
simplifications made by Page and Brin in order to be
able to compute PageRank. A real Web surfer, however,
does not seem to follow all outlinks from a page with
uniform probability or teleport to any document in the
collection randomly. One approach to the improvement
of PageRank is the personalization of hyperlink matrix H
and teleportation matrix E.

4.2.1. Distributed PageRank computation. Since
PageRank processes primarily the Web matrix and other
very large networks, distribution is necessary to obtain
results in a reasonable time. Google uses MapReduce (Lin
and Dyer, 2010) based distributed implementation of the
power iteration method. However, many other studies
have dealt with different types of distributed PageRank
computations in the past.

The design of the fully distributed PageRank for
P2P networks is due to Sankaralingam et al. (2003).
The authors based their solution on the chaotic iterative
solution of linear systems and developed a complex
model of the computation. The method allowed
incremental PageRank updates as documents to be
added and was intended for a ranking and search
application designed for P2P networks. The evaluation
of the proposed algorithm was only theoretical (i.e., no
implementation details were considered). It was, however,
cited as an inspiration for another work dealing with
distributed PageRank computation (de Jager, 2004). The
study proposed three distributed algorithms based on
the original PageRank, which incrementally mitigated
distribution- and communication-related issues of the
distributed PageRank computation.

A practical approach to the distributed PageRank
computation in the environment of a real-word cluster was
presented by Rungsawang and Manaskasemsak (2003).
The proposal included a design of data structures and used
the message passing interface (MPI), namely, the MPICH
library, for communication. The authors performed
computational experiments and showed that their method
scales. Practical issues related to data distribution were
discussed as well.

The communication overhead of the previous
method was addressed by Manaskasemsak and
Rungsawang (2004) and an optimized algorithm was
proposed.  Another improvement involving a hybrid
MPI-multi-threaded implementation which very well fits
the architecture of compute nodes of real-world clusters
was presented and evaluated by Manaskasemsak er al.
(2006).
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The communication overhead which exists when
executing the traditional power iteration method in a
distributed way was also the focus of the work of Zhu
et al. (2005). The authors proposed a divide-and-conquer
algorithm for iterative aggregation and disaggregation
utilizing the block Jacobi smoothing method to reduce the
communication.

An MPI-based library for MapReduce (Lin and
Dyer, 2010) was presented by Plimpton and Devine
(2011) and PageRank was used as one of the examples
of graph algorithms implemented efficiently and in a
portable way using their framework. The framework
isolated application developers from distribution and
communication details, but remained transparent, i.e.,
allowed the client code to call the MPI directly. The
work pointed out and solved a number of issues found
during the implementation of MapReduce in the MPI but,
in contrast to other MapReduce libraries, did not provide
fault-tolerance and redundancy.

A distributed Monte Carlo-based approach to the
PageRank computation was presented by Das Sarma
et al. (2013). The work emphasized the suitability of
random-walk based Monte Carlo methods for scalable
distributed PageRank computation (especially in contrast
to power iteration, which is hard to perform in a
distributed context and is sensitive to the volume
of communication involved).  The study proposed
two PageRank algorithms with good time complexity
O(y/log(n)/e) and O(y/log(n)/e) for directed and
undirected graphs, respectively. Moreover, a proof of
the probability of convergence of the proposed algorithms
was presented as well.

5. Experiment 1: Large-scale networks

For the use in this work, we implemented a simple
MPI-based distributed implementation of the iterative
version of PageRank as defined by Eqn. (4) for execution
on the Anselm cluster. The cluster represents the
first phase (“small cluster”) of the Czech National
Supercompting Centre IT4Innovations. It consists of 209
compute nodes, totaling 3344 compute cores with 15
TB RAM and giving over 94 Tflop/s theoretical peak
performance. Each node is an x86-64 computer with 16
cores and 64+ GB RAM. The nodes are interconnected by
fully non-blocking fat-tree Infiniband networks. A few
nodes are also equipped with an NVIDIA Kepler GPU
or Intel Xeon Phi MIC accelerators. However, GPUs
and MIC accelerators were not used in our computations.
Anselm uses the PBS Pro (Nitzberg et al., 2004) resource
allocation manager in version 12.

5.1. Distributed PageRank and LocalDepen-
dency computation. The distributed implementation
was meant to be simple, intuitive, well portable (e.g.,

to clusters of commodity PCs) and, last but not least,
easy to extend by other graph computations that cannot
be expressed in a vector x matrix form like PageRank
such as LocalDependency. The main aim was to enable
computation of iterative graph algorithms in a distributed
and memory-efficient way. The MPI code quite literally
corresponds to PageRank as defined by eq. @) and
LocalDependency. Each MPI process in this approach
computes the PageRank (or LocalDependency) score
for a portion of nodes of the original graph. It
knows the local topology (i.e., the edges among its
assigned nodes) and neighborhood connections (i.e., the
edges connecting local nodes to remote nodes), and no
other information is stored in the MPI process. Each
PageRank update between local nodes is handled locally
with no communication overhead, and each PageRank
update between remote nodes causes a message to be
sent and received. @ The communication is handled
in an asynchronous manner using the MPI_Isend and
MPI_Irecv MPI functions for message passing and
MPI_Waitall for synchronization. The MPI library used
for our computations was OpenMPI 1.6.5.

5.2 Results. We computed PageRank and
LocalDependency (as defined in Section [4I) on
four different large datasets, two artificial networks
with 100,000 and 1,000,000 nodes, and on two
co-authorship networks constructed from a DBLP
databasd]. We chose the PageRank measure to compare
with LocalDependency, because the results on small
networks (as seen in Table [T) suggested some similarity
between them. Different scales of values of PageRank
and LocalDependency were normalized for the following
comparison.  Figures [Ba) and (b) depict cumulative
distributions of PageRank and LocalDependency values
for artificial networks with 100,000 and 1,000,000
nodes, respectively. Likewise, Figs. Blc) and (d) show
those distributions for unweighted and reduced DBLP,
respectively. The reduced DBLP network was constructed
using the forgetting function, which takes into account
the frequency and regularity of publishing (for details, see
Kudélka et al., 2012), so it became a weighted network.
It is clear that the distribution of LocalDependency
values is similar to PageRank. For the difference in
actual values, see Fig. [l where in the case of the
DBLP networks more than 95% of values fall in the
0-5% range. Since both PageRank and LocalDependency
provide orderings of the data based on the importance
of the nodes, we compare orders given by PageRank
and LocalDependency. We use Kendall’s 7 (Christensen,
2005) as a measure of concordance between the two
ranked list. Kendall’s 7 is a number in the interval

1http ://www.informatik.uni-trier.de/~ley/db/.
2There are several definitions of 7 based on how ties should be
treated; we used the one known as 7.
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Table 2. Kendall’s 7 of two orderings.
| Graph  No. of nodes 7 |

artificial 100k 100,000  0.841
artificial 1M 1,000,000  0.774
DBLP unweighted 1,216,515 0.822
DBLP reduced 318,971  0.969

[—1, 1], where two orders induced by the ranks that are the
same have the value of 1; conversely, two orders that are
opposite of each other have the value of —1, while value 0
can be interpreted as a lack of correlation. High values of
7 measured on our four datasets (see Table[2) suggest that
most pairs of values are in the same order in both lists.

5.3. Note on performance. The performance of the
employed implementation on two artificial data sets and
on two variants of DBLP is presented in this section.
However, we note that the experiments were executed in
a shared production environment which was utilized up to
90% before and during our experiments (i.e., only limited
resources were available). The results of the experiments
in terms of LocalDependency (LD) and PageRank (PR)
execution times are shown for all data sets in Table 3] and
illustrated in Fig.[Zl Table 3 also shows the speedup (or
slowdown) in execution times for 40, 64, 80, 100, and 120
MPI processes when compared with execution using 32
MPI processes.

The results of the performance measurements clearly
confirm the expected: a naive parallel implementation
of PageRank and LocalDependency does not yield a
significant performance boost and scales poorly. The
computation of LocalDependency, which in contrast to
PageRank requires only a single iteration, even slows
down due to the growing communication overhead,
especially for smaller graphs. The speedup on graphs with
a larger number of nodes and edges is superlinear, but the
execution time of the application using 32 MPI processes
was actually slower than a fine-tuned single-process
implementation for small graphs. It can also be seen
that the performance is data bound and depends on the
structure of the graph because the execution times for
IM nodes, DBLP unweighted, and DBLP reduced are
different despite the similar number of nodes.

6. Dependency in an unweighted network

There are many ways of weighting the relations (Barrat et
al., 2004a), it could be based on the traffic between the
nodes, similarity or the amount of collaboration. We may
use the dependency approach to unweighted networks
and obtain a weighted version of the network; again a
directed adjacency matrix is calculated, which is capable
of uncovering hidden relationships between the nodes.

Table 3. Execution time for Anselm.

Pro- Time [s] Speedup
cesses LD PR LD PR
100k nodes

32 1134.57 6512.81 1.00 1.00
40 984.367 365096 1.15 1.78
64 1396.18 2987.83  0.81 2.18
80 1984.11 2783.59 0.57 2.34
100 2143.56 2972.12 0.53 2.19
120 3057.69 311297 0.37 2.09

IM nodes

32 215153  211747.00 1.00 1.00
40 14681 111701.00 1.47 1.90
64 5316.6 29276.20  4.05 7.23
80 6431.91 1691290 335 12.52
100 3260.74 11623.50  6.60 18.22
120 3917.37 9323.83 549 2271

DBLP unweighted

32 70123.7  872217.00 1.00 1.00
40 48034.5 520514.00 1.46 1.68
64 22204.8  147783.00 3.16 5.90
80 15370.6 79201.80 4.56 11.01
100 12889.6  70454.40 5.44 12.38
120 11217.3 49441.00 6.25 17.64

DBLP reduced

32 2324.79 23903.40  1.00 1.00
40 2144.85 12874.50  1.08 1.86
64 1767.31 5154.57 132  4.64
80 2461.76 3973.94 094 6.02
100 2862.5 4274.06 0.81 5.59
120 3198.01 4215.51  0.73 5.67

Dependency degree centrality may be used for assigning
weights to the nodes.

Using Eqns. (1) and @) for an unweighted
network, i.e., all weights are equal 1, and measuring the
dependency only between the neighbors, we get what
follows.

Let x not be a non-isolated node of the network. The
dependency D(z,y) of node = on node y is

1
142 0 cadiey) 3
deg() '

D(z,y) = ©)

For situations depicted in Fig. [I] the following holds:
(a) D(I,y) = D(y,]}) =1,
(b) D(x,y) =1, D(y,z) = 1/4,

© D(z,y) =2/3, D(y,x) = 1/2.

7. Experiment 2: Network edge weighting

In this section we focus on applications of our method on
real-world network data and we analyze two well-known
networks in the literature: Zachary’s karate club network

aamcs



M. Kudé€lka et al.

288
1.1 1.1
1 T
09 09
0.8 0.8
07y 07y
>>\Z 0.6 >>\Z 0.6
T 0.5 r T 0.5 r
04 04
0.3 0.3
0.2 1 02 7 1
01 | PageRank —— | 01} / PageRank —— |
'0 LocalDependency - '0 ‘ LocalDependency -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Centrality (normalized) Centrality (normalized)
(a) (b)
1.1 1.1
1+
09 Tr
0.8
07y _ 0.9 r
x L x
3 0.6 S o8l
04 F 07 b
0.3
0.2 1 1 0.6 [ ]
01 L PageRank —— | PageRank ——
’ 0 _ LocalDependency 05 _ LocalDependency
10 102 107 10° 10 102 107 10°
Centrality (normalized) Centrality (normalized)
© (d)

Fig. 5. Cumulative distributions (normalized): 100k nodes (a), IM nodes (b), DBLP unweighted (c) and DBLP reduced (d).

(Zachary, 1977) and a social network of a community of
bottlenose dolphins (Lusseau, 2003). We took the original
unweighted data and, using our method from the previous
section, transformed those networks into weighted ones.
From the obtained directed adjacency matrix, we retained
only the edges between the nodes that were adjacent in the
original networks. Then, from a pair of dependency edges
between two nodes, we took the value of a maximum of
them. We assigned weights to the nodes according to the
dependency degree centrality. The resulting networks are
presented in Figs. [8land

7.1. Transforming unweighted networks. We may
perform a simple reduction of this network and filter some
of the weakest edges. We define a binary dependency
D(V;,V;) € {0,1} and say that nodes are dependent
when D(V;,V;) = 1 : d(V;,V;) > 0.5; they are not
dependent when D(V;,V;) = 0 : d,(V;,V;) < 0.5.
Using this simple threshold we reduced our weighted
networks—see the emerging community structures in
Figs. @ and[I3] Also, the remaining parts of the network
suggest a strong dependency of nodes with a small
dependency degree on the nodes with a high dependency

degree. In a co-authorship network this is usually a
type of relationship that doctoral students have to their
supervisors.

To obtain yet another view of the network, this
time from the perspective of independency, we made
an inversion of dependency weights I(V;,V;) = 1 —
D(V;,V;); see Figs. [[0and [[4] for the results. Here, the
strong edges are between the nodes that are not dependent
on each other; they represent independent relationships
and their removal would affect the network connectivity.

And after another reduction based on binary division
with independent nodes defined as I(V;,V;) € {0,1}
where I(V;,V;) =1 :4,(V;,V;) > 0.5 and I(V;,V;) =
0:iw(V3, V}) < 0.5, we get the part of the network where
the remaining nodes are independent; see Figs. [11] and
for the results. In a co-authorship network this is a
peer-to-peer type of relationship that professors may have
between each other. Removal of any of the nodes that
are connected in this reduced network would considerably
affect this node’s surroundings; conversely, removal of
any of the isolated nodes from the network would not
affect the network or the surroundings of that node.
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8. Conclusions

In our article we described the dependency relationship
between two nodes of a network. We understand
dependency as a local non-symmetrical property of a
pair of nodes. We used this dependency measure
when proposing a new degree centrality measure that
is well suited for weighted networks. Dependency
centrality is computationally similar to classical degree
centrality; however, it is able to capture more precisely
the importance of a node in a network. The advantage
of both degree and dependency centralities is that
knowledge of the entire graph structure is not required;
nevertheless, dependency centrality naturally evaluates
the local surroundings of a node. Thanks to this,
dependency centrality is applicable in the analysis of
large-scale weighted or unweighted complex networks.

Furthermore, we used the dependency measure for
transformation of an originally unweighted network to a
weighted network. In the resulting network we interpret
the edges as a dependency of a pair of nodes on each other.
We may understand dependency also as a binary property.
In such a case it is possible to detect strongly dependent
or independent subgroups in a network.
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