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The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor time-
varying discrete-time linear systems. A method for computing solutions of fractional systems is proposed. Necessary and
sufficient conditions for the positivity of these systems are established.
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1. Introduction

A dynamic system is called positive if its trajectory
starting from any nonnegative initial condition remains
forever in the positive orthant for all nonnegative inputs.
An overview of the state of the art in positive system
theory is given by Farina and Rinaldi (2000) as well
as Kaczorek (2001; 2011; 1998a; 2015b; 1997). Models
having positive behavior can be found in engineering,
economics, social sciences, biology and medicine, etc.

The Lyapunov, Bohl and Perron exponents as well
as stability of time-varying discrete-time linear systems
were investigated by Czornik (2014), Czornik et al.
(2012; 2013; 2014a; 2014b), Czornik and Niezabitowski
(2013a; 2013b; 2013c) as well as Niezabitowski (2014).
Positive standard and descriptor systems and their stability
were analyzed by Kaczorek (2001; 2011; 1998a; 2015b),
along with positive linear systems with different fractional
orders (Kaczorek, 2011; 2012) and singular discrete-time
linear systems (Kaczorek, 1998a; 2015a). Switched
discrete-time systems were considered by Zhang et al.
(2014a; 2014b) and Zhong (2013), while extremal norms
for positive linear inclusions by Rami et al. (2012).
Positivity and stability of time-varying discrete-time
linear systems were addressed by Kaczorek (2015c).

In this paper the Weierstrass–Kronecker
decomposition theorem will be applied to fractional
descriptor time-varying discrete-time linear systems with
regular pencils to find their solutions, and necessary
and sufficient conditions for positivity and sufficient

conditions for stability will be established.

The paper is organized as follows. In Section 2
the Weierstrass–Kronecker decomposition theorem is
applied to find solutions to standard fractional descriptor
time-varying discrete-time linear systems. Necessary and
sufficient conditions for the positivity of descriptor
systems are established in Section 3. The solution of
fractional positive descriptor systems is analyzed in
Section 4. Concluding remarks are given in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n × m matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; In, the n× n identity matrix.

2. Standard fractional descriptor systems

Consider the fractional descriptor time-varying
discrete-time linear system

E(i)Δαxi+1 = A(i)xi +B(i)ui,

i ∈ Z+ = {0, 1, . . .}, (1a)

yi = C(i)xi, (1b)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input

and output vectors, respectively, A(i) ∈ R
n×n, B(i) ∈

R
n×m, C(i) ∈ R

p×n are matrices with entries depending
on i ∈ Z+, and the fractional difference of the order α is
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defined by

Δαxi =

i∑

j=0

(−1)j
(
α

j

)
xi−j , (1c)

(
α

j

)

=

⎧
⎨

⎩

1 for j = 0,
α(α − 1) . . . (α− j + 1)

j!
for j = 1, 2, . . .

(1d)

It is assumed that detE(i) = 0, i ∈ Z+, and

det[E(i)λ−A(i)] �= 0 (2)

for some λ ∈ C (the field of complex numbers) and
i ∈ Z+.

Substituting (1c) into (1a), we obtain

E(i)xi+1 = [E(i)α−A(i)]xi +

i+1∑

j=2

cjE(i)xi−j+1

+B(i)ui, (3a)

where

cj = (−1)j+1

(
α

j

)
. (3b)

It is well-known (Kaczorek, 2015b; 1998b) that if
(2) holds, then there exists a pair of nonsingular matrices
P (i), Q(i) ∈ R

n×n such that

P (i)[E(i)λ−A(i)]Q(i)

=

[
In1 0
0 N

]
λ−

[
A1(i) 0
0 In2

]
, (4)

i ∈ Z+, where u1 = deg det[E(i)λ − A(i)], A1(i) ∈
R

n1×n1 , N ∈ R
n2×n2 is a nilpotent matrix of index μ

(i.e., Nμ = 0 and Nμ−1 �= 0).
The matrices P (i), Q(i), A1(i) can be found for

example, with the use of elementary row and column
operations (Kaczorek, 1998b).

Premultiplying (1a) by the matrix P (i), introducing
the new state vector

x̄i = Q−1(i)xi =

[
x̄1,i

x̄2,i

]
,

x̄1i =

⎡

⎢⎢⎢⎣

x̄11,i

x̄12,i

...
x̄1n1,i

⎤

⎥⎥⎥⎦ ,

x̄2i =

⎡

⎢⎢⎢⎣

x̄21,i

x̄22,i

...
x̄2n2,i

⎤

⎥⎥⎥⎦ ,

(5)

and using (4), we obtain

x̄1,i+1 = A1α(i)x̄1,i +

i+1∑

j=2

cj x̄1,i−j+1

+B1(i)ui, (6a)

Nx̄2,i+1 = (Nα + In2)x̄2,i +
i+1∑

j=2

cjNx̄2,i−j+1

+B2(i)ui, (6b)

where

A1α(i) = A1(i) + αIn1 ∈ R
n1×n1 ,

P (i)B(i) =

[
B1(i)
B2(i)

]
,

B1(i) ∈ R
n1×m, B2(i) ∈ R

n2×m, (6c)

Theorem 1. The solution x̄1,i of Eqn. (6a) for a known
admissible initial condition x̄10 ∈ R

n1 and input ui ∈
R

m, i ∈ Z+, is given by

x̄1,i = Φ1(i, 0)x̄1,0 +

i−1∑

k=0

Φ1(i, k + 1)B1(k)uk,

(7a)

i ∈ Z+,where

Φ1(i, k + 1) = A1α(k)Φ1(k, 0)

+

k+1∑

j=2

cjΦ1(k − j + 1, 0),

Φ(0, 0) = In, (7b)

and cj is defined by (3b).

Proof. Using (6c), (7a) and (7b), we obtain

A1α(i)x̄1,i +B1(i)ui +

i+1∑

j=2

cj x̄1,i−j+1

= A1α(i)

[
Φ1(i, 0)x̄1,0 +

k+1∑

k=0

Φ1(i, k + 1)B1(k)uk

]

+B1(i)ui +

i+1∑

j=2

cjx̄1,i−j+1

= Φ1(i+ 1, 0)x̄1,0 +

i∑

k=0

Φ1(i + 1, k + 1)B1(k)uk

= x̄1,i+1.

�
To simplify the notation, it is assumed that the matrix
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N in (6b) has the form

N =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R

n2×n2 . (8)

From (6b) and (8), we have

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x̄21,i+1

x̄22,i+1

...
x̄2n2,i+1

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

1 α 0 . . . 0
0 1 α . . . 0
...

...
...

. . .
...

0 0 0 . . . α
0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x̄21,i

x̄22,i

...
x̄2n2,i

⎤

⎥⎥⎥⎦

+
i+1∑

j=2

⎡

⎢⎢⎢⎢⎢⎣

0 cj 0 . . . 0
0 0 cj . . . 0
...

...
...

. . .
...

0 0 0 . . . cj
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x̄21,i−j+1

x̄22,i−j+1

...
x̄2n2,i−j+1

⎤

⎥⎥⎥⎦

+

⎡

⎢⎣
B21(i)

...
B2n2(i)

⎤

⎥⎦ui, i ∈ Z+,

(9)

and

0 = x̄2n2,i +B2n2(i)ui,

x̄2n2,i+1 = x̄2n2−1,i + αx̄2n2,i

+
i+1∑

j=2

cj x̄2n2,i−j+1 +B2n2−1(i)ui,

...

x̄22,i+1 = x̄21,i + αx̄22,i

+

i+1∑

j=2

cj x̄22,i−j+1 +B21(i)ui, i ∈ Z+.

(10)

Solving Eqns. (10) with respect to the components of

the vector x̄2,i, we obtain

x̄2n2,i = −B2n2(i)ui,

x̄2n2−1,i = −B2n2(i + 1)ui+1 + αB2n2(i)ui

+
i+1∑

j=2

cjB2n2(i − j + 1)ui−j+1

−B2n2−1(i)ui,

...

x̄21,i = −B2n2(i+ n2 − 1)ui+n2−1

+ αB2(i + n2 − 2)ui

+
i+1∑

j=2

cjB2n2(i+ n2 − j − 1)ui−j+1

+ · · · −B21(i)ui.

(11)

The admissible initial conditions for the system (6b)
are given by (11) for i = 0.

The solution of Eqn. (6b) for known ui ∈ R
m and

admissible initial conditions x̄20 ∈ R
n2 is given by (11).

The discussion can be easily extended to the case when
the matrix N in (6b) has the form

N = blockdiag[N1, . . . , Nq], q > 1, (12)

and Nk for k = 1, 2, . . . , q has the form (8).

Example 1. Consider the fractional descriptor
time-varying system described by Eqn. (1a) with the
matrices

E(i) =

⎡

⎢⎢⎢⎣

0 0 0 e2i

cos(i)+2

− (i+2)(sin(i)+1)
i+1 ei 0 − e2i(e−i+1)

cos(i)+2
i+2
i+1 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎦ ,

B(i) =

⎡

⎢⎢⎢⎣

1
cos(i)+2

e−i − e−i+1
cos(i)+2

0
0

0
2i(i+2)(cos(i)+1)(sin(i)+1)

i+1 − sin(i)(sin(i) + 1)

sin(i)− 2i(i+2)(cos(i)+1)
i+1

2i(i+2)
i+1

⎤

⎥⎥⎥⎦ ,

A(i) =

⎡

⎢⎢⎣

0 0 a13(i) 0
a21(i) a22(i) a23(i) a24(i)
a31(i) 0 0 a34(i)
0 0 0 a44(i)

⎤

⎥⎥⎦ , (13)
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where

a13(i) =
1

cos(i) + 2
,

a21(i) =
(i + 2)(i+ 2 cos(i) + 2 sin(i)

(i+ 1)(sin(i) + 2)

+
i sin(i) + cos(i) sin(i) + 3)

(i + 1)(sin(i) + 2)
,

a22(i) = 1− 2ei,

a23(i) = − e−i + 1

cos(i) + 2
,

a24(i) =
e2i(i+ 2)(cos(i) + 1)(sin(i) + 1)

i+ 1
,

a31(i) = − i+ 2

sin(i) + 2
,

a34(i) = −e2i(i+ 2)(cos(i) + 1)

i+ 1
,

a44(i) =
e2i(i+ 2)

i+ 1
.

The condition (2) is satisfied since

det[E(i)λ−A(i)]

= − (i+ 2)2(2ei + λei − 1)(2λ+ i+ λ sin(i) + 1)e2i

(i + 1)2(cos(i) + 2)(sin(i) + 2)

�= 0. (14)

In this case,

P (i) =

⎡

⎢⎢⎣

1 + e−i 1 1 + sin(i) 0
0 0 1 1 + cos(i)

2 + cos(i) 0 0 0
0 0 0 i+1

i+2

⎤

⎥⎥⎦ ,

Q(i) =

⎡

⎢⎢⎣

0 i+1
i+2 0 0

e−i 0 0 0
0 0 1 0
0 0 0 e−2i

⎤

⎥⎥⎦

(15)

and

[
In1 0
0 N

]
= P (i)E(i)Q(i) =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ ,

[
A1(i) 0
0 In2

]
= P (i)A(i)Q(i)

=

⎡

⎢⎢⎣

e−i − 2 1 + cos(i) 0 0
0 − i+1

2+sin(i) 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

[
B1(i)
B2(i)

]
= P (i)B(i) =

⎡

⎢⎢⎣

e−i 0
0 sin(i)
1 0
0 2i

⎤

⎥⎥⎦ ,

(n1 = n2 = 2).

(16)

Equations (6) have the form
[

x̄11,i+1

x̄12,i+1

]
=

[
e−i − 2 1 + cos(i)

0 − i+1
2+sin(i)

] [
x̄11,i

x̄12,i

]

+
i+1∑

j=2

cj

[
x̄11,i−j+1

x̄12,i−j+1

]

+

[
e−i 0
0 sin(i)

] [
u1,i

u2,i

]
(17a)

and
[

0 1
0 0

] [
x̄21,i+1

x̄22,i+1

]

=

[
1 α
0 1

] [
x̄21,i

x̄22,i

]

+

i+1∑

j=2

cj

[
0 1
0 0

] [
x̄21,i−j+1

x̄22,i−j+1

]

+

[
1 0
0 2i

] [
u1,i

u2,i

]
. (17b)

The solution of (17a) is given by (7a) and (7b) with
the matrices A1(i) and B1(i) defined by (16).

From (17b), we have

x̄22,i = −2iu2,i,

x̄21,i = −2(i+ 1)u2,i+1 + α2iu2,i

+

i+1∑

j=2

cj2(i− j + 1)u2,i−j+1 − u1,i, i ∈ Z+.

(18)

The solution of Eqn. (1a) with (13) is given by

x(i) =

⎡

⎢⎢⎣

x1(i)
x2(i)
x3(i)
x4(i)

⎤

⎥⎥⎦ = Q(i)

⎡

⎢⎢⎣

x̄11,i

x̄12,i

x̄21,i

x̄22,i

⎤

⎥⎥⎦ , i ∈ Z+, (19)

where Q(i) is defined by (14) and the components of the
state vector x̄(i) by (7a) and (7b) with A1(i) and B1(i)
defined by (16). �

3. Positive systems

Definition 1. The fractional descriptor time-varying
discrete-time linear system (1) is called (internally) po-
sitive if and only if xi ∈ R

n
+ and yi ∈ R

p
+, i ∈ Z+, for
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any admissible initial conditions x0 ∈ R
n
+ and all inputs

ui ∈ R
m
+ , i ∈ Z+.

The matrix Q(i) ∈ R
n×n, i ∈ Z+, is called mono-

mial if in each row and column only one entry is positive
and the remaining entries are zero for i ∈ Z+.

It is well-known (Kaczorek, 2001) that Q−1(i) ∈
R

n×n
+ , i ∈ Z+, if and only if the matrix is monomial.

It is assumed that for the positive system (1) the
decomposition (4) is possible for a monomial matrix Q(i).
In this case,

xi = Q(i)x̄i ∈ R
n
+ ⇔ x̄i ∈ R

n
+, i ∈ Z+. (20)

It is also well-known that premultiplication of
Eqn. (1a) by the matrix P (i) does not change its solution
xi, i ∈ Z+.

From (11) it follows that x̄2,i ∈ R
n2
+ , i ∈ Z+, for

ui ∈ R
m
+ , i ∈ Z+, if and only if

−B2(i) ∈ R
n2×m
+ for i ∈ Z+. (21)

Therefore, the following theorem has been proved.

Theorem 2. Let the decomposition (4) of the system be
possible for a monomial matrix Q(i) ∈ R

n×n
+ , i ∈ Z+.

The substitution (6b) is positive if and only if the condition
(21) is satisfied.

Theorem 3. Let the decomposition (4) of the system be
possible for a monomial matrix Q(i) ∈ R

n×n
+ , i ∈ Z+.

The substitution (6a) for 0 < α < 1 is positive if and only
if

A1α(i) ∈ R
n1×n1
+ , B1(i) ∈ R

n1×m
+ , i ∈ Z+. (22)

Proof. As for sufficiency, if 0 < α < 1, then from (3b)
and (1d) we have

c2 = (−1)3
α(α − 1)

2
> 0 (23a)

and

cj+! = (−1)j+1

(
α

j + 1

)
=

(j − α)

j + 1
cj > 0,

j = 2, 3, . . . . (23b)

From (7) and (23), it follows that x̄1,i ∈ R
n1
+ , i ∈ Z+, for

x0 ∈ R
n
+ and ui ∈ R

m
+ , i ∈ Z+, if the condition (22) is

satisfied. The necessity can be shown in a similar way as
for standard descriptor systems in the work of Kaczorek
(2015b). �

Theorem 4. Let the decomposition (4) of the system be
possible for a monomial matrix Q(i) ∈ R

n×n
+ , i ∈ Z+.

The system (1) for 0 < α < 1 is positive if and only if

1. the conditions (22) are satisfied,

2. (21) holds,

3. C(i) ∈ R
p×n
+ for i ∈ Z+.

Proof. By Theorems 3 and 2 the solutions (6a) and (6b)
are positive if and only if the conditions (21) and (22) are
met. From (1b) and (5), we have

yi = C(i)Q(i)Q−1(i)xi = C̄(i)x̄i, i ∈ Z+, (24a)

where

C̄(i) = C(i)Q(i). (24b)

For a monomial matrix Q(i) ∈ R
n×n
+ , from (22) we

have

C̄(i) ∈ R
p×n
+ , i ∈ Z+

⇔ C(i) ∈ R
p×n
+ , i ∈ Z+, (25)

and

yi ∈ R
p
+, i ∈ Z+,⇔ C(i) ∈ R

p×n
+ , i ∈ Z+. (26)

�

Example 2. Consider now the fractional descriptor
time-varying system described by Eqn. (1) with the
matrices

E(i) =

⎡

⎢⎢⎢⎣

0 0 0 1
2 sin(i)+4

− cos(i)− 1 1
cos(i)+2 0 − e−i+2

2 sin(i)+4

1 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦ ,

B(i) =

⎡

⎢⎢⎢⎣

− 1
sin(i)+2

e−i + e−i+2
sin(i)+2

0
0

0
−(cos(i) + 1)(e−i + sin(i) + 2)

e−i + sin(i) + 2
−1

⎤

⎥⎥⎦ ,

(27)

C(i) =

[
0 1

cos(i)+2 0 0.5
i+2
i+1 0 e−i

e−i+1 0

]
,

A(i) =

⎡

⎢⎢⎣

0 0 a13(i) 0
a21(i) a22(i) a23(i) a24(i)
a31(i) 0 0 a34(i)
0 0 0 a44(i)

⎤

⎥⎥⎦ ,
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where

a13(i) =
1

(sin(i) + 2)(e−i + 1)
,

a21(i) = −e−i − cos(i)− sin(i)− e−i cos(i),

a22(i) =
i+ 1

(i+ 2)(cos(i) + 2)
,

a23(i) = − e−i + 2

(sin(i) + 2)(e−i + 1)
,

a24(i) =
(i+ 2)(cos(i) + 1)(e−i + 1)

2(i+ 1)
,

a31(i) = e−i + 1,

a34(i) = − (i+ 2)(e−i + 1)

2(i+ 1)
,

a44(i) =
i+ 2

2(i+ 1)
.

The condition (2) is satisfied since

det[E(i)λ −A(i)]

=
(e−i − λ+ 1)(i− 2λ− λi + 1)

2(i+ 1)(cos(i) + 2)(sin(i) + 2)(e−i + 1)

�= 0.

(28)

In this case,

P =

⎡

⎢⎢⎣

2 + e−i 1 1 + cos(i) 0
0 0 1 1 + e−i

2 + sin(i) 0 0 0
0 0 0 i+1

i+2

⎤

⎥⎥⎦ ,

Q =

⎡

⎢⎢⎣

0 1 0 0
2 + cos(i) 0 0 0

0 0 1 + e−i 0
0 0 0 2

⎤

⎥⎥⎦

(29)

and

[
In1 0
0 N

]
= P (i)E(i)Q(i)

=

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ ,

[
A1(i) 0
0 In2

]
= P (i)A(i)Q(i)

=

⎡

⎢⎢⎣

i+1
i+2 1− sin(i) 0 0

0 1 + e−i 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

[
B1(i)
B2(i)

]
= P (i)B(i) =

⎡

⎢⎢⎣

e−i 0
0 1 + sin(i)
−1 0
0 − i+1

i+2

⎤

⎥⎥⎦ ,

C̄(i) = C(i)Q(i) =

[
1 0 0 1
0 i+2

i+1 e−i 0

]
.

The descriptor system is positive since the tree
conditions of Theorem 3 are satisfied. The matrix Q(i)
defined by (29) is monomial, the conditions (21) and (22)
are met,

−B2(i) =

[
1 0
0 i+1

i+2

]
∈ R

2×2
+ ,

A1(i) =

[
i+1
i+2 1− sin(i)

0 1 + e−i

]
∈ R

2×2
+ ,

and

B1(i) =

[
e−i 0
0 1 + sin(i)

]
∈ R

2×2
+ , i ∈ Z+

and

C(i) =

[
0 1

cos(i)+2 0 0.5
i+2
i+1 0 e−i

e−i+1 0

]
∈ R

2×4
+

for Z+.
The solution to Eqn. (1) with the matricesE(i), A(i),

B(i) given by (27) can be found in a similar way as in
Example 1. �

4. Stability of fractional positive descriptor
systems

First we shall recall the basic definition and tests on
stability of positive time-varying linear systems described
by the equation (Kaczorek, 2015b)

xi+1 = A(i)xi,

A(i) ∈ R
n×n
+ , i ∈ Z+ = {0, 1, . . .}. (30)

Definition 2. The positive system (30) is called asympto-
tically stable if the norm ‖x1‖ of the state vector xi ∈ R

n
+,

i ∈ Z+, satisfies the condition

lim
i→∞

‖xi‖ = 0 (31)

for any finite x0 ∈ R
n
+.

Theorem 5. The positive system (30) is asymptotically
stable if the norm ‖A(i)‖ of the matrix A(i), i ∈ Z+,
satisfies the condition

‖A‖ < 1 for i ∈ Z+, (32a)

where

‖A‖ ≥ max
0≤i≤∞

‖A(i)‖ for i ∈ Z+. (32b)
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The proof is given by Kaczorek (2015b).

Theorem 6. The positive system (30) is asymptotically
stable if its system matrix A(i) = [ajk(i)] ∈ R

n×n
+ satis-

fies the condition

max
0≤j≤n

n∑

k=1

ajk(i) < 1 for i ∈ Z+ (33a)

or

max
0≤k≤n

n∑

j=1

ajk(i) < 1 for i ∈ Z+. (33b)

The proof is given by Kaczorek (2015b).

Theorem 7. The positive system (31) is asymptotically
stable if its system matrix

A(i) =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0(i) a1(i) a2(i) . . . an−1(i)

⎤

⎥⎥⎥⎥⎥⎦

∈ R
n×n
+

(34)

satisfies the condition

n−1∑

k=0

ak(i) < 1 for i ∈ Z+. (35)

The proof is given by Kaczorek (2015b).
Consider the fractional descriptor system (1) for

B(i)ui = 0, i ∈ Z+,

E(i)Δαxi+1 = A(i)xi, i ∈ Z+ = {0, 1, . . .}. (36)

If the assumption (2) is satisfied, then the system can be
decomposed into the subsystems

x̄1,i+1 = A1α(i)x̄1,i +

i+1∑

j=2

cj x̄1,i−j+1, (37)

Nx̄2,i+1 = (Nα + In2 )x̄2,i +

i+1∑

j=2

cjNx̄2,i−j+1, (38)

where x̄1,i, x̄2,i and A1α(i) are defined by (5) and (6c),
respectively.

Note that x̄2,i = 0 for i = 1, 2, . . . , and the
stability of the fractional descriptor system (36) depends
only on that stability of the subsystem (37). Therefore, the
following theorem has been proved.

Theorem 8. The positive system (36) is asymptotically
stable if its system matrix

‖A1α‖ < 1, (39a)

where

‖A1α‖ ≥ max
0≤i≤∞

‖A1(i)‖ for i ∈ Z+. (39b)

Proof. By Theorem 8 and Definition 2, the fractional
descriptor positive system (36) is asymptotically stable if
and only if

lim
i→∞

‖x̄1,i‖ = lim
i→∞

‖Φ1(i, 0)x̄10‖
= lim

i→∞
‖Φ1(i, 0)‖ = 0

(40)

for any finite x̄10.

From (40), it follows that

lim
i→∞

‖Φ1(i, 0)‖ = 0

if (39a) holds since

cj <
1

aj
, j = 2, 3, . . . , (41a)

and

‖Φ1(i+ 1, 0)‖ ≤ ‖A1α(i)‖ ‖Φ1(i)‖

+

i+1∑

j=2

1

aj
‖Φ1(i − j + 1, 0)‖ . (41b)

�

To check the asymptotic stability of the fractional
descriptor positive system (36), Theorems 5–7 can be used
in the condition (39a).

Example 3. Consider now the fractional descriptor
time-varying system (36) with the matrices

E(i) =

⎡

⎢⎢⎢⎣

0 0 0 1
2 sin(i)+4

− cos(i)− 1 1
cos(i)+2 0 − e−i+2

2 sin(i)+4

1 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦ ,

A(i) =

⎡

⎢⎢⎣

0 0 a13(i) 0
a21(i) a22(i) a23(i) a24(i)
a31(i) 0 0 a34(i)
0 0 0 a44(i)

⎤

⎥⎥⎦,

(42)
where

a13(i) =
1

(sin(i) + 2)(e−i + 1)
,

a21(i) = 0.1− 0.1 cos(i)− 0.2 sin(i)

− 0.03e−i cos(i)− 0.03e−i,

a22(i) =
0.1(i+ 1)

(i+ 2)(cos(i) + 2)
,
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a23(i) = − e−i + 2

(sin(i) + 2)(e−i + 1)
,

a24(i) =
(i + 2)(cos(i) + 1)(e−i + 1)

2(i+ 1)
,

a31(i) = 0.03e−i + 0.1,

a34(i) = − (i+ 2)(e−i + 1)

2(i+ 1)
,

a44(i) =
i+ 2

2(i+ 1)
,

and α = 0.5. �
The condition (2) is satisfied since

detE(i)

=

∣∣∣∣∣∣∣∣∣

0 0 0 1
2 sin(i)+4

− cos(i)− 1 1
cos(i)+2 0 − e−i+2

2 sin(i)+4

1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣

= 0 (43a)

and

det[E(i)λ−A(i)]

=
−10(i+ 2)λ2 + [0.6e−i + i(0.3e−i + 2) + 3]λ

(e−i+1)(i+1)(10 sin(2i)+40 cos(i)+40 sin(i)+80)

− [0.03e−i + i(0.03e−i + 0.1) + 0.1]

(e−i+1)(i+1)(10 sin(2i)+40 cos(i)+40 sin(i)+80)

�= 0. (43b)

In this case,

P =

⎡

⎢⎢⎣

2 + e−i 1 1 + cos(i) 0
0 0 1 1 + e−i

2 + sin(i) 0 0 0
0 0 0 i+1

i+2

⎤

⎥⎥⎦ ,

Q =

⎡

⎢⎢⎣

0 1 0 0
2 + cos(i) 0 0 0

0 0 1 + e−i 0
0 0 0 2

⎤

⎥⎥⎦

(44)

and

[
In1 0
0 N

]
= P (i)E(i)Q(i) =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ ,

[
A1(i) 0
0 In2

]
= P (i)A(i)Q(i)

=

⎡

⎢⎢⎣

0.1 i+1
i+2 0.2(1− sin(i)) 0 0

0 0.1(1 + 0.3e−i) 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ .

(45)

Note that the matrix Q(i) is monomial and the matrix

A1(i) =

[
0.1 i+1

i+2 0.2(1− sin(i))

0 0.1(1 + 0.3e−i)

]
∈ R

2×2
+ (46)

for i ∈ Z+ satisfies the condition (39a) since, by (33a),
we have

‖A1α‖
= ‖A1(i) + In1α‖

=

∥∥∥∥

[
0.1 i+1

i+2 + 0.5 0.2(1− sin(i))

0 0.1(1 + 0.3e−i) + 0.5

]∥∥∥∥

< 1 for i ∈ Z+.

(47)

Therefore, the fractional descriptor system is
asymptotically stable.

5. Concluding remarks

The Weierstrass–Kronecker theorem on the
decomposition of the regular pencil were extended
to fractional descriptor time-varying discrete-time linear
systems. A method for computing solutions of fractional
systems were proposed. Necessary and sufficient
conditions for positivity were established. Sufficient
conditions for asymptotic stability and some simple tests
for checking stability were proposed. The discussion was
illustrated by examples of fractional descriptor positive
systems. The findings can be extended to fractional
descriptor time-varying continuous-time linear systems.
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