
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 1, 215–229
DOI: 10.1515/amcs-2016-0015

THE PERFORMANCE PROFILE: A MULTI–CRITERIA PERFORMANCE
EVALUATION METHOD FOR TEST–BASED PROBLEMS

WOJCIECH JAŚKOWSKI a,∗, PAWEŁ LISKOWSKI a, MARCIN SZUBERT a ,
KRZYSZTOF KRAWIEC a

aInstitute of Computing Science
Poznań University of Technology, ul.Piotrowo 2, 60-965 Poznań, Poland

e-mail: {wjaskowski,pliskowski,mszubert,kkrawiec}@cs.put.poznan.pl

In test-based problems, solutions produced by search algorithms are typically assessed using average outcomes of inter-
actions with multiple tests. This aggregation leads to information loss, which can render different solutions apparently
indifferent and hinder comparison of search algorithms. In this paper we introduce the performance profile, a generic,
domain-independent, multi-criteria performance evaluation method that mitigates this problem by characterizing the per-
formance of a solution by a vector of outcomes of interactions with tests of various difficulty. To demonstrate the usefulness
of this gauge, we employ it to analyze the behavior of Othello and Iterated Prisoner’s Dilemma players produced by five
(co)evolutionary algorithms as well as players known from previous publications. Performance profiles reveal interesting
differences between the players, which escape the attention of the scalar performance measure of the expected utility. In
particular, they allow us to observe that evolution with random sampling produces players coping well against the mediocre
opponents, while the coevolutionary and temporal difference learning strategies play better against the high-grade oppo-
nents. We postulate that performance profiles improve our understanding of characteristics of search algorithms applied to
arbitrary test-based problems, and can prospectively help design better methods for interactive domains.

Keywords: coevolutionary algorithms, evolution strategies, Othello, Reversi, games, multi-objective analysis.

1. Introduction

Test-based problems (Bucci et al., 2004; de Jong, 2004)
are learning and co-optimization problems in which
candidate solutions and tests interact with each other.
Every interaction has an outcome, typically expressed as
a scalar, and the goal of the search is to find a solution
with a desired characteristic of interaction outcomes.
Common scenarios of solving test-based problems are
learning game strategies, evolving designs for different
environments, or algorithms tested on instances. One
approach to this class of problems are evolutionary and
coevolutionary algorithms (Hillis, 1990).

The challenge in designing effective algorithms for
test-based problems lies, among others, in obtaining
accurate evaluation of solutions. An objective assessment
of a solution’s performance is often computationally too
expensive to be useful in practice. For example, the ex-
pected utility, one of the popular performance measures in

∗Corresponding author

the game domain, is the expected score of a game playing
strategy against a random opponent strategy. Even for
the apparently trivial problem of learning strategies for
the game of tic-tac-toe, Jaśkowski and Krawiec (2011)
showed that calculating the exact expected utility requires
playing games against roughly 3.47 × 10162 unique
opponent strategies.

Therefore, effective algorithms employ heuristic
methods of evaluating solution performance, which rely
on a limited number of interactions between solutions
and tests. The most commonly used evaluation measures
are (i) an average score against a pool of fixed,
manually-designed tests (Lucas and Runarsson, 2006;
Fogel, 2001), (ii) a round-robin tournament between the
co-evolving entities (Jaśkowski et al., 2008; Samothrakis
et al., 2012; Szubert et al., 2013a), or (iii) an estimated
expected utility (the average score obtained against
a random sample of tests) (Chong et al., 2012; Jaśkowski
et al., 2013).

216 W. Jaśkowski et al.

A common feature of all conventional performance
measures (both heuristic and the exact ones) is that
they aggregate the results of multiple interactions into
a single scalar value. Though convenient and compact,
the performance value obtained in this manner tells
very little about the differences between the compared
solutions. In particular, Jaśkowski (2011) showed that
aggregation leads to compensation: the rewards received
in interactions with a group of tests can cancel out the
penalties incurred in interactions with another group of
tests. As a result, solutions can receive the same value
of the performance measure, even if the results of their
interactions with the same tests are completely different.

The compensation of interaction outcomes affects
the internal dynamics of algorithms that use them to
drive the search, as well as the post-hoc comparison
of solutions they produce. In this paper, we address
this problem in the latter context, proposing a means
for a many-aspect assessment of solutions produced
by algorithms applied to any search-based problems.
Jaśkowski et al. (2013) introduced the performance pro-
file, a multi-criteria performance evaluation method that
characterizes performance using, rather than a scalar,
a vector of results against tests of various difficulty.
Here, we extend that work in four directions. First, we
formalize the performance profiles. Second, we introduce
an evolutionary method of sampling tests for performance
profiles, which allows us to obtain robust performance
estimates on tests varying from the most difficult to the
easiest ones. Third, we demonstrate the versatility of
performance profiles by applying them not only to Othello
(as in our previous work (Jaśkowski et al., 2013)), but
also to a variant of Iterated Prisoner’s Dilemma. Last, we
carry out a comparative analysis of performance profiles
of a well-performing evolved Othello player and a set
of players known from the previous work, including
a hand-designed standard heuristic player, a temporal
difference learning player, and a strategy learned by
preference learning. The observed differences, which
would pass unnoticed or remain unexplained when using
scalar performance measures, provide new insights into
the characteristics of the algorithms considered.

2. Performance profiles

2.1. Test-based problems. Test-based problems
(Bucci et al., 2004; de Jong, 2004) belong to a broad
class of co-optimization problems (Popovici and De Jong,
2009). While being aware of various framings of this
concept (Popovici et al., 2011), we rely here on the
following, most useful in practice, definition.

A test-based problem is the quadruple
(S, T ,GS , QT), where

• S is a space of candidate solutions,

• T is a set of tests, on which candidate solutions are
evaluated,

• Gs : T → R is a payoff function for a candidate
solution s ∈ S so that Gs(t) returns the result of an
interaction between s and a test t, and

• QT : S → R is a candidate solution quality function.

The goal in a test based-problem is to find a candidate
solution s∗ ∈ S that maximizes QT .

The quality function of interest in this paper is the
expected utility, which for an s ∈ S is defined as

QT (s) = IEt∈T [Gs(t)] , (1)

where IE is the expectation operator.
The expected utility performance measure

corresponds to the maximization of the expected
utility solution concept (Ficici, 2004) in co-optimization
and is also known as generalization performance (Chong
et al., 2008; 2009). Examples of other solutions concepts
considered in the literature include the Pareto optimal
set, the Nash equlibrium (Ficici, 2004) and the correlated
equlibrium (Hart and Mas-Colell, 2000).

Trivial problems aside, it is computationally
infeasible to calculate (1), because the set of tests T is
too large. Instead, an estimator is used, leading to the ap-
proximate quality function:

Q̂T (s) =
1

|T |
∑

t∈T

Gs(t), (2)

where T ⊂ T is a (computationally manageable) subset
of tests. When t ∈ T are uniformly drawn from T , Q̂T is
an unbiased estimator of QT .

2.2. Test difficulty. A quality function, whether exact
or approximate, aggregates multiple interaction outcomes.
This makes it possible for them to cancel each other,
which in turn blurs the differences between candidate
solutions, and in an extreme case renders them apparently
indistinguishable. To alleviate this problem, we propose
to ‘multi-objectivize’ (term borrowed from Knowles et al.
(2001)) the assessment of candidate solutions and present
the underlying information in a structural way.

Let us notice that while candidate solutions differ in
quality, tests can be likewise said to vary in difficulty.
A test can be said to be difficult if a candidate solution
is expected to get a low payoff from an interaction with it;
and vice versa: it is easy if a candidate solution is expected
to get a high payoff on it.

In order to formalize test difficulty, we assume that
(i) an interaction of a candidate solution s and a test t,
besides producing a payoff for s, generates also a payoff
for t, denoted by Gt(s), and (ii) that Gt(s) fulfills Gt(s) +
Gs(t) = C for all s ∈ S and t ∈ T , where C is

The performance profile: A multi-criteria performance evaluation method for test-based problems 217

a problem-specific constant. Without loss of generality,
we assume that C = 1 and 0 ≤ Gt,Gs, thus Gt,Gs ≤ 1.
For example, if an Othello player s wins against a player
t, Gs(t) = 1 and Gt(s) = 0; when s loses against t,
Gs(t) = 0 and Gt(s) = 1, and Gs(t) = Gt(s) = 0.5 in
the case of draw.

We define the difficulty of a test as the following
function DS : T → R:

DS(t) = IEs∈S [Gt(s)] = IEs∈S [1− Gs(t)] .

Note that both the quality of a candidate solution and the
difficulty of a test range in [0, 1].

By analogy to solution quality, computing DS(t) is
infeasible in practice, so we approximate it using a finite
sample:

D̂S(t) =
1

|S|
∑

s∈S

Gt(s),

where S ⊂ S is a (computationally manageable) subset of
tests. When s ∈ S are uniformly drawn at random from
S, D̂S is an unbiased estimator of DS .

Notice that for symmetric problems, where S = T ,
every candidate solution is a test, and vice versa. In such
domains, the higher the quality of a solution, the more
difficult it is as a test, i.e., DS(t) = QT (s) for s = t ∈
S = T . However, performance profiles, introduced in the
following section, handle asymmetric problems as well.

2.3. Performance profile. The key idea of the method
presented in this paper is to characterize the performance
of a candidate solution as a function of test difficulty.
We will call such a function a performance profile of
a candidate solution. We define the performance profile
ps of a candidate solution s ∈ S as

ps(d) = QTd
(s) for d ∈ [0, 1] such that Td �= ∅, (3)

where Td ⊂ T is the set of all tests of difficulty d,
i.e., Td = {t ∈ T |DS(t) = d} . Let us note that ps(d) is
undefined when there are no tests of difficulty d.

In general, ps may be incomputable, because there
may be infinitely many difficulty values d for which ps(d)
is defined, and for each such d the set of tests Td can
be infinite or large. Thus, to estimate ps, we discretize
difficulty by splitting it into disjoint intervals of equal
width. For example, in this paper, we use 100 bins of
width 0.01. We define the discretized profile Ps as

Ps(B) = QTB (s) for B ∈ B such that TB �= ∅, (4)

where B is a bin, B is the set of bins, and TB ⊂ T is
a set of tests t of difficulty D(t) ∈ B. Notice that Ps is
undefined for empty bins.

As in practice TB can be too large to compute QTB ,
we fall back to its approximation Q̂TB (Eqn. (2)), where
TB is a (computationally manageable) sample of TB .

ca
nd

id
at

e
so

lu
tio

n
qu

al
ity

test difficulty

performance
profile

0 1

1

0

Fig. 1. Sample performance profile. The height of each bar
(y-axis) represents the quality of the candidate solution
when interacting with tests of difficulty represented by
the range occupied by the bar on the x-axis.

Figure 1 presents the performance profile of an
imaginary candidate solution. Each bar represents the
performance on a separate bin. We expect typical
performance profiles to be weakly decreasing functions
of test difficulty, since it is usually easier to get higher
payoff from interactions with easier tests than from the
more difficult ones. However, there are no fundamental
reasons that would prevent a performance profile from
taking on an arbitrary shape.

Let us notice that each bin B gives rise to a separate
performance criterion, and Ps(B) is the quality of
candidate solution s on that criterion. In other words,
a bin determines one dimension of candidate solution
characteristics. In this sense, the performance profile can
be considered a multi-criteria performance measure.

In a related work, Ashlock and Lee (2013)
presented agent-case embedding, which could be also
used for characterizing and comparing the performance
of solutions of a test-based problem. In contrast to
performance profiles, which provide a multi-objective
solution evaluation on tests of increasing difficulty,
agent-case embeddings measure the diversity of evolved
phenotypes and visualize them in the Euclidean space.

2.4. Test sampling methods. The fidelity of
a discretized performance profile (Eqn. (4)) with respect
to its exact counterpart (Eqn. (3)) depends on the
characteristics of the test samples supporting particular
bins. Ideally, bins should be backed by statistical evidence
of the same strength, which in turn means that every one
of them should contain the same number of tests, and the
tests in each bin should be generated independently.

We propose two methods for generating test samples
for bins: random sampling and evolutionary sampling.
Both methods make an attempt to fill every bin up to
bin capacity N (|TB| = N for B ∈ B). This can be
computationally demanding, especially when both N and
the number of bins are high. Nevertheless, this is a one-off
process: once the bins have been filled up, they can be

218 W. Jaśkowski et al.
nu

m
be

r o
f t

es
ts

 in
 a

 b
in

bins with tests of certain difficulty0 1

N = capacity

0

test generated by
a sampling method

Fig. 2. Visual illustration of a random sampling method for gen-
erating tests for the bins.

used ad infinitum to assess the performance profiles of
arbitrary many candidate solutions.

2.4.1. Random sampling. In random sampling
(Jaśkowski et al., 2013), we fill the bins with tests via
repetitive independent sampling. In each iteration, we
draw at random a test t from the set of all tests T , estimate
its difficulty, and place it in the appropriate bin if that
bin’s capacity has not yet been reached; otherwise, the
test is discarded. The difficulty of a test is approximated
using M candidate solutions drawn at random from S,
independently for every evaluated test (see Fig. 2).

The advantage of this method is that it guarantees the
independence of tests, within every bin as well as across
bins. We thus call the bins generated in this way unbiased.

Unfortunately, random sampling does not scale well
with bin capacity N and the number of bins. Typically,
some bins can be easily filled up, but filling up others
is computationally infeasible. For example, in Othello
it is difficult to draw very weak or very strong players
(which are, at the same time, very easy or very difficult
tests, respectively) at random. We can expect to run
into a similar problem for most nontrivial symmetric
test-based problems: a problem for which a very good
candidate solution can be easily generated at random
is simple. This makes us abandon this technique in
this study, and employ a more sophisticated evolutionary
sampling that provides more balanced bin occupancy.

2.4.2. Evolutionary sampling. In the face of
challenges troubling the random sampling algorithm, we
propose evolutionary sampling. In this method, we
run an evolutionary process that evolves a population of
tests, where a test’s fitness is defined as its difficulty,
approximated using a small number of candidate solutions
(n samplesfit = 200). At every generation, we pick the
fittest test and calculate a more accurate estimate of its
difficulty using a greater number of candidate solutions
(e.g., n samplesdiff = 1 000). If this estimate matches a
bin that has not yet reached its capacity, the test is placed
in that bin and the evolutionary process is stopped. The
pseudocode of this procedure is shown in Algorithm 1.

Algorithm 1. Evolutionary sampling.
1: function EVOL-SAMPLING(n samplesfit , n samplesdiff ,

N,B, popsize ,maxgen)
2: for B ∈ B do
3: TB ← ∅
4: end for
5: S ← SAMPLE-SOLUTIONS(n samplesdiff)

� for difficulty estimation
6: while not stopped do
7: F ← SAMPLE-SOLUTIONS(n samplesfit)

� for fitness function
8: P ← SAMPLETESTS(popsize) � initial population
9: for gen← 1, maxgen do

10: P ← EVOLVE-NEXT-GENERATION(P, D̂F)
11: t← argmaxx∈P D̂F (x)
12: d← D̂S(t)
13: B ← B′ ∈ B : d ∈ B′

14: if |TB | < N then
15: TB ← TB ∪ {t}
16: break
17: end if
18: end for
19: end while
20: return {TB}B∈B
21: end function

The main advantage of evolutionary sampling is its
capability to generate tests of extreme values of difficulty,
i.e., the very difficult and the very easy ones. To provide
for both, we run two types of evolutionary processes.
In the first one, fitness is defined as test difficulty, so
evolution is driven to produce tests of increasing difficulty
in consecutive generations. In the second type, fitness is
the negated difficulty of a test. Thus, evolution tends to
produce the easy tests (note that the extremely easy tests
may be as rare as the extremely difficult ones). Compared
with random sampling, evolutionary sampling is more
likely to fill the extreme bins (the far-left and the far-right
ones) up to the desired capacity N . From a practical
perspective, having well populated difficult bins is usually
more important, as this part of the performance profile
provides information on how a given candidate solution
copes with the most challenging tests.

On the downside, evolutionary sampling is biased.
Although each test is a result of an independent
evolutionary run, the underlying evolutionary processes
may favor certain parts of the test space. However, in
Section 6 we show that, at least for Othello, the bias is
in practice negligible.

3. Coevolutionary algorithms

In Sections 4 and 5, we will use performance profiles
to characterize and compare the candidate solutions
produced by different flavors of coevolutionary algo-
rithms, stochastic metaheuristics which, in their compet-

The performance profile: A multi-criteria performance evaluation method for test-based problems 219

itive flavor (Reynolds, 1994), are popular tools for solving
test-based problems (Popovici et al., 2011). Similarly
to conventional evolutionary algorithms, a coevolutionary
one maintains a population of candidate solutions, and
uses the fitness function to select some of them and
thus form the next generation of solutions. The fitness
function is typically some estimate of the expected utility
(Eqn. (1)), and as such requires a sample of tests (T
in Eqn. (2)). In the simplest one-population coevo-
lution (Luke and Wiegand, 2002), the other candidate
solutions in the population serve that purpose. This
limits the applicability of this approach to symmetric
problems (where S = T), and, more importantly,
is arguably controversial, as candidate solutions are to
maximize performance, while the tests in T should
differentiate them and thus provide a learning gradient
(Juillé and Pollack, 1998). This led to the concept of two-
population competitive coevolution (Nolfi and Floreano,
1998), where tests evolve in a second separate population.

Note that, by being based on interactions between
the constantly changing entities (whether in one or in
two populations), the fitness function in coevolutionary
algorithms is internal and subjective, contrary to
conventional evolutionary algorithms, where fitness
evaluation is independent for each candidate solution and
thus external and objective. As a result, a highly fit
candidate solution is not guaranteed to be objectively
good. Therefore, the coevolutionary dynamics are
usually more complex than in conventional evolutionary
search (Watson and Pollack, 2001). Nonetheless,
coevolutionary algorithms belong nowadays to the most
successful methods for learning game strategies (Pollack
and Blair, 1998).

In the following subsections we describe three
one-population and two two-population (co)evolutionary
algorithms considered in this study. All of them
employ the (μ+λ) generational evolution strategy (Beyer
and Schwefel, 2002) independently for each maintained
population. A population is initialized with μ randomly
generated individuals (candidate solutions or tests). In
every generation, each of the μ fittest individuals produces
λ/μ offspring via mutation (thus, all populations consist
of μ parents and λ offspring of those parents). Following
Chong et al. (2012), we use μ = 25 and λ = 25.

The algorithms vary only in the way they assign
fitness to individuals, which is illustrated in Fig. 3.
More specifically, the fitness of the candidate solutions is
defined as the approximate quality function Q̂T (Eqn. (2)),
but the algorithms differ in the way they choose the
sample of tests T .

3.1. Evolutionary learning with random sampling
(EVOL-RS). EVOL-RS (Fig. 3(a)) is a degenerated
one-population coevolutionary algorithm in which
candidate solutions in the population do not interact with

each other. Instead, each candidate solution is evaluated
against an external set of random opponents. The sample
of tests T is drawn at random from T once per generation.
In order to maintain the same number of interactions
per generation as in the coevolutionary methods, we set
|T | = μ+ λ = 50.

EVOL-RS was shown to surpass one-population
coevolution on generalization performance for 1-ply
Othello and Iterated Prisoner’s Dilemma (Chong et al.,
2012).

3.2. One-population coevolution (1-COEV). 1-COEV

(Fig. 3(a)) is a one-population coevolutionary algorithm.
All candidate solutions in population interact with each
other (in a round-robin tournament). Formally then, the
sample T is simply the current population.

3.3. One-population coevolution with random sam-
pling (1-COEV-RS). 1-COEV-RS (Fig. 3(a)) is a hybrid
of 1-COEV and EVOL-RS that combines the competitive
fitness with random sampling. Technically, the sample
T is filled in half by the other candidate solutions drawn
uniformly from the current population, and in half by the
tests drawn at random from T .

3.4. Two-population coevolution (2-COEV). 2-COEV

(Fig. 3(b)) is a two-population competitive coevolutionary
algorithm, where individuals are bred in two separate
populations, one for the candidate solutions and one for
the tests. The population of tests employs a (μ + λ)
evolutionary strategy, where μ = 25 and λ = 25. The
fitness of a candidate solution s is Q̂T (s) with the sample
T being the current population of tests. Conversely, the
fitness of a test t is D̂S(t) with S being the current
population of candidate solutions.

3.5. Two-population coevolution with random sam-
pling (2-COEV-RS). 2-COEV-RS (Fig. 3(b)) is 2-COEV

hybridized with random sampling. The fitness of
a candidate solution s is Q̂T (s), with T filled in half by
the tests from the current population of tests, and in half
by the tests generated at random. Compared to 2-COEV,
the population of tests in this method is half the size of
the population of candidate solutions. Tests’ fitness is
assessed as in 2-COEV.

4. Experimental analysis of Iterated
Prisoner’s Dilemma

In this section, we apply the algorithms presented in
Section 3 to the Iterated Prisoner’s Dilemma game and
compare the resulting strategies using the single-objective
expected utility and the performance profiles.

220 W. Jaśkowski et al.

μ+ λ

population
ρ random
individuals

1-coev

evol-rs

1-coev-rs

μ+ λ

1◦population

ρ random
individuals

μ+ λ

2◦population

2-coev

2-coev-rs

(a) (b)

Fig. 3. Visualization emphasizes the differences in fitness assignment among methods considered in the paper. An arrow means that
a game is played between two players: EVOL-RS and 1-COEV-* (a), 2-COEV-* (b).

Table 1. Payoff matrix in the classic Prisoner’s Dilemma. A tu-
ple (pA, pB) denotes the payoffs for players A and B,
respectively. R is the payoff granted to each player for
mutual cooperation, S for cooperating when the other
player defects, T for defecting when the other player
cooperates, and P for mutual defection.

Player B
choice Cooperate Defect

Player A
Cooperate (R, R) (S, T)

Defect (T , S) (P , P)

4.1. Classical Prisoner’s Dilemma. The classical
Iterated Prisoner’s Dilemma (IPD) is a two-player game
involving a series of interactions, each of which is a
Prisoner’s Dilemma (PD) game. In PD, a player can
make one of two choices: cooperate or defect. The
PD payoff matrix, shown in Table 1, must satisfy two
conditions: (i) T > R > P > S and (ii) 2R >
S + T . The first inequality ensures that defection is the
most profitable action, and that the payoffs resulting from
mutual cooperation are greater than those arising from
mutual defection. The second inequality is IPD-specific
and ensures that a series of mutual cooperations pays
off more than a series of alternating defections and
cooperations (Poundstone, 1992). IPD is a sequence of
PD interactions where each player remembers its and its
opponent’s move from one or more previous interactions.

4.2. n-Choice Prisoner’s Dilemma. In this study,
we consider IPD extended to multiple choices (or lev-
els of cooperation) (Darwen and Yao, 2001; Chong and
Yao, 2005). In an n-choice Prisoner’s Dilemma game, the
choices are encoded as values from the set C = {2i/n−
1|i ∈ {0, . . . , n − 1}}, where the extreme values −1 and
1 mean full defection and full cooperation, respectively.
The payoff values must satisfy the following conditions:
(i) p(cA, cB) > p(c′A, cB), (ii) p(cA, cB) < p(cA, c

′
B),

and (iii) p(c′A, c
′
B) > 1

2 (p(cA, c
′
B) + p(c′A, cB) for any

choices cA, cB, c
′
A, c

′
B ∈ C such that cA < c′A and

cB < c′B (Frean, 1996). We will use the following payoff
function that meets the above constraints:

p(cA, cB) =

{
2.5− 0.5cA + 2cB for player A,

2.5− 0.5cB + 2cA for player B.

4.3. Strategy representation. Different strategy
representations for coevolutionary learning of IPD such
as finite state machines (Fogel, 1991) and neural networks
(Darwen and Yao, 2000) have been studied in the past.
Here, we adopt the arguably simplest one, the direct
look-up table (Axelrod, 1984), and make the players
remember the moves from the previous iteration only
(memory-one IPD). In that case, the n-choice IPD strategy
is an n × n matrix M , where mij for i, j = 1, 2, . . . , n
specifies the choice to be made given the player’s own
previous move i and the opponent’s previous move j.

The performance profile: A multi-criteria performance evaluation method for test-based problems 221

The other element of the strategy is the initial move m00,
which does not depend on the opponent’s strategy.

4.4. Experimental setup. In the experiments, we
focus on IPD with n = 9 choices (levels of cooperation),
which we found to be much more demanding than
3-choice IPD used in earlier coevolutionary investigations
by Chong et al. (2012). Thus, each strategy is a look-up
table containing 9 × 9 + 1 = 82 choices and the size of
search space is 982 ≈ 1.77× 1078.

Although IPD is primarily used to study cooperation
(Axelrod, 1984), we consider it here, following recent
works by Chong et al. (2009; 2012), a competitive
domain.

Each IPD game consists of 150 PD episodes. To
assess the result of an interaction of two IPD strategies we
compute their cumulative payoff over the episodes. The
highest cumulative score indicates the winner, which is
assigned the interaction payoff 1, while the loser gets 0.
In the case of draw, the interaction results in 0.5 points for
both strategies.

As discussed in Section 3, all algorithms considered
here maintain a population of 50 candidate solutions
which interact with the same number of tests. As a
result, in each generation, 50 × 50 = 2,500 IPD games
are played. Since each evolutionary run consists of 200
generations, it requires the total effort of 500,000 games.

All methods start with an initial population filled
with candidate solutions (strategies) randomly drawn
from the space of direct look-up tables. The only
search operator used by the algorithms is a simple
mutation which iterates over all elements of the look-up
table and with probability pmut = 0.2 replaces the
original choice with one of the remaining n − 1 choices,
selected at random. Chong and Yao (2005) found the
adopted mutation operator to provide sufficient variation
of strategy behaviors for an IPD game with multiple
choices.

Some of our coevolutionary algorithms and
performance assessment methods employ random play-
ers. Every random player is obtained independently
by filling the look-up table with random choices. In
the following, by a ‘random player/opponent’ we mean
a player obtained in this way. Note that this definition
of a random player differs from the one that assumes
selecting each action by uniformly drawing it from a set
of all available actions in a given position. It is, however,
coherent with the expected utility measure defined on the
set of all tests (see Section 2.3). A random player is a
test drawn at random from the set T . Having said that,
the performances of the random players obtained in both
ways are similar.

We performed 120 runs for each method presented
in Section 3. In the following, the best-of-generation
candidate solution is the individual with the highest

Table 2. Expected utilities and 95% confidence intervals of
best-of-run individuals obtained by five algorithms for
Iterated Prisoner’s Dilemma.

Algorithm Expected utility

1-COEV-RS 0.9832 ± 0.0035
EVOL-RS 0.9676 ± 0.0042
2-COEV-RS 0.9561 ± 0.0085
1-COEV 0.9263 ± 0.0126
2-COEV 0.9091 ± 0.0131

fitness in the population of candidate solutions (where
fitness is subjective and specific for a given method; see
Section 3). By the best-of-run solution we mean the
best-of-generation player of the last generation. In the
following, we analyze those players using expected utility
(Section 4.5) and performance profiles (Section 4.6).

4.5. Results for the expected utility. To estimate the
expected utility of an individual, we let it play 50,000
games against random players. With 1 point for winning
the game, 0 for losing, and 0.5 for a draw, the expected
utility of a player is in the range of [0, 1]. In this section,
the term ‘performance’ refers to this measure.

Table 2 presents the average performance of the
best-of-run individuals for each algorithm accompanied
by 95% confidence intervals.

To compare the algorithms, we performed statistical
analysis with a significance level α = 0.01 using
a nonparametric Kruskal–Wallis rank sum test, which
revealed a statistically significant (χ2 = 116.7, p-value <
2.2 × 10−16) difference between the results obtained
by particular algorithms. A post-hoc analysis using the
pairwise Wilcoxon rank sum test with the Holm correction
indicated the following differences:

1-COEV-RS > EVOL-RS

= 2-COEV-RS > 1-COEV = 2-COEV,

where ‘>’ denotes significant difference and ‘=’ means
no statistical difference.

Let us first discuss the results of ‘pure’ methods
that use homogeneous sets of opponents, i.e., EVOL-RS,
1-COEV, and 2-COEV. The observed relationship between
these methods confirms the previous findings by Chong
et al. (2012) that evolutionary learning guided by fitness
estimates based on random sampling (EVOL-RS) achieves
a higher expected utility when compared to the simple
coevolutionary learning approach (1-COEV). We also
observe that coevolution of two autonomous populations
of candidate solutions and tests (2-COEV) is not beneficial
in terms of the expected utility.

The methods that use a mixture of competitive fitness
and random sampling (1-COEV-RS, 2-COEV-RS) turn out
to be able to evolve strategies with the highest expected

222 W. Jaśkowski et al.

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce

EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

Fig. 4. Performance profiles for Iterated Prisoner’s Dilemma,
for the opponent’s performance ranging from 0 to 1.
Each point (x, y) in a plot indicates the average perfor-
mance y when playing against the opponents of perfor-
mance x. This and all subsequent graphs feature 95%
confidence intervals, though for many bins they are very
narrow.

utility. There is no statistical difference between 2-COEV-
RS and EVOL-RS, but 1-COEV-RS is clearly the best
algorithm for this problem, resulting in the highest median
and the lowest variance.

Though the results demonstrate the positive effect
of hybridizing different fitness functions, the measure
of the expected utility does not reveal any details about
the strengths or weaknesses of the evolved individuals.
For instance, EVOL-RS and 2-COEV-RS produce players
of roughly the same expected performance, but do they
differ in the capability of winning with the opponents of
particular strengths? In the following we demonstrate
how this question can be conveniently answered using
performance profiles.

4.6. Analysis with performance profiles. In order
to scrutinize the best-of-run individuals produced by
each algorithm, we apply performance profiles (cf.
Section 2.3). We used evolutionary sampling (cf.
Section 2.4) with (25 + 25)-ES (n samplesfit = 200)
to generate 100 tests samples, each corresponding to a
bin of width 0.01. Each bin’s sample was filled up with
N = 5 000 tests, where the difficulty of every test was
evaluated on the basis of games with n samplesdiff =
10 000 random players.

Figure 4 shows the performance profiles averaged
over the best-of-run individuals produced by 120 runs
of every algorithm. A point at coordinates (x, y)
indicates the average performance y when playing against
the opponents of performance x. For instance, the

performance of 2-COEV is about 0.9 for the opponents
with performance of 0.5 (by which we mean the
opponents with performance in the range of [0.5, 0.51),
since bin width is 0.01). Recall that IPD is a symmetric
problem, thus a player’s difficulty (when it acts as a test) is
equal to its quality (when it acts as a candidate solution).

The decreasing trend in each profile confirms the
supposition that the stronger opponents are harder to
defeat than the weaker ones. The only exception of the
decreasing trend is the bin [0.98, 0.99), which is ‘easier’
than the bin [0.97, 0.98) for all algorithms. Despite some
effort, we are unable to explain this artifact.

Some methods clearly dominate others. The profile
of 1-COEV-RS dominates all other profiles, which explains
its best result in terms of the expected utility (cf. Table 2).
Also, 1-COEV dominates 2-COEV. The statistical
analysis conducted in Section 4.5 did not reveal them as
significantly different because difficult tests are few and
far between in the random sample used to estimate the
expected utility. On the contrary, the rightmost bins of
performance profiles host many such tests. We take this
as evidence that 1-COEV should be preferred to 2-COEV

for this problem, although they perform the same on aver-
age.

Other profiles are mutually non-dominated—their
plots cross each other. In this respect, the most interesting
is the EVOL-RS profile. Although Table 2 suggests no
significant differences between 2-COEV-RS and EVOL-
RS, their profiles reveal that 2-COEV-RS copes with the
strong opponents much better, while EVOL-RS is more
effective against the weaker ones. Such a profile shape
reflects the method’s trade-off in the ability to cope
with opponents of various strength. The single-criteria
performance measures like, for instance, expected utility,
are not able to pinpoint such differences and therefore are
much less descriptive.

Moreover, the analysis with performance profiles
shows that for the strongest opponents (performance >
0.9) EVOL-RS is worse not only than 1-COEV, but even
than 2-COEV, which ranks last on expected utility. For
the opponents of the last bin (difficulty 0.97), the expected
interaction outcome of EVOL-RS is worse by 0.17–0.26
than for the other algorithms.

5. Experimental analysis of 1-ply Othello

In this section, we apply the five algorithms considered to
the game of Othello and compare the resulting strategies
using the single-objective expected utility, performance
profiles and a round robin tournament.

5.1. 1-ply Othello.

5.1.1. Problem definition. The game of Othello is
a deterministic, perfect information, zero-sum board game

The performance profile: A multi-criteria performance evaluation method for test-based problems 223

Table 3. Expected utilities and 95% confidence intervals of
best-of-run individuals obtained by five algorithms for
Othello.

Algorithm Expected utility

2-COEV-RS 0.866 ± 0.0024
EVOL-RS 0.8624 ± 0.0023
1-COEV-RS 0.8371 ± 0.0036
1-COEV 0.7997 ± 0.0052
2-COEV 0.7963 ± 0.0064

played by two players on an 8 × 8 board. There are 64
identical pieces which are white on one side and black
on the other, with the colors representing the players.
The game starts with the four central squares of the
board occupied with two black and two white pieces.
Players make moves alternately by placing their pieces
on the board until it is completely filled or until neither
of them is able to make a legal move. The location
to place a piece on has to fulfill two conditions: (i) be
adjacent to the opponent’s piece, and (ii) form a vertical,
horizontal, or diagonal line with another player’s piece,
with a continuous sequence of the opponent’s pieces in
between. After placing a piece, all such opponent pieces
are flipped. A legal move requires flipping at least one
of the opponent’s pieces. The objective of the game is to
have the majority of pieces on the board at the end of the
game. If both players have the same number of pieces on
the board, the game ends in a draw.

5.1.2. Strategy representation. We represent Othello
strategies using position-weighted piece counter (WPC).
The WPC is a linear weighted board evaluation function
which implements the state evaluator concept; i.e., it is
explicitly used to evaluate how desirable is a given board
state. It assigns a weight wi to a board location i and uses
scalar product to calculate the utility f of a board state b:

f (b) =

8×8∑

i=1

wibi,

where bi is 0 in the case of an empty location, +1 if
a black piece is present or −1 in the case of a white piece.
The players interpret f(b) conversely: the black player
prefers the moves leading to the states with a higher value,
whereas the lower values are favored by the white player.

We employ the WPC as a state evaluator in a 1-ply
setup: given the current state of the board, the player
generates all legal moves and applies f to the resulting
states. The state gauged as the most desirable determines
the move to be made. Ties are resolved at random.

5.2. Experimental setup. To maintain a learning
environment similar to that used for IPD, we retain most
of the evolutionary parameters such as the number of

generations, population sizes and the total effort per
generation (cf. Section 4). In order to learn strategies
that are able to play both sides, we assume that a single
interaction is a double game, where each of interacting
individuals plays one game as a black player and one
game as a white player. With a population size of 50,
this leads to 2 500 interactions (double games) and 5 000
single games per generation. In each single game, half
a point is divided between the players: the winner gets 0.5
point and the loser 0 points, or they get 0.25 points each
in case of a draw. Thus, the result of an interaction is in
the [0, 1] range, as it was for IPD.

The population is initialized with random players
whose weights are uniformly drawn from the range
[−0.2, 0.2]. The only search operator used by all
algorithms is a mutation that perturbs all the weights wi

with additive noise:

w
′
i = wi + 0.1 · U [−1, 1],

where U [−1, 1] is a real number drawn uniformly from
[−1, 1]. Weights resulting from mutation are clamped
to the interval [−10, 10]. Consequently, the space of
strategies is a [−10, 10]64 hypercube. As in the case of
IPD, we performed 120 runs for each algorithm.

5.3. Results for the expected utility. We start the
performance analysis of the best-of-run solutions by using
the scalar measure of the expected utility, which we
estimate via 25 000 double games (50 000 games in total)
against the random WPC players. Table 3 reports the
results of this experiment.

We performed the same statistical analysis as for IPD
in Section 4.5 and obtained the following partial ordering
of algorithms:

2-COEV-RS = EVOL-RS

> 1-COEV-RS > 1-COEV = 2-COEV,

where ‘>’ denotes significant difference and ‘=’ means
no statistical difference at a significance level α = 0.01.

What this result has in common with the IPD ranking
is the superiority of the methods involving random
sampling. However, the relationship between them is not
the same. In particular, 2-COEV-RS is now better than 1-
COEV-RS, which is, in turn, worse than EVOL-RS.

5.4. Analysis with performance profiles. To generate
the samples of tests for bins (each defined as an [x, x +
0.01) range of performance), we used evolutionary
sampling engaging a (25 + 25) evolutionary strategy
with maxgen = 10 000. The fitness and difficulty of
each individual were approximated with double games
against n samplesfit = 200 and n samplesdiff = 1000
random players, respectively. In contrast to IPD, despite

224 W. Jaśkowski et al.

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce

EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

0.8 0.9
Opponent performance

0.2

0.3

0.4

0.5

0.6

0.7

Pl
ay

er
pe

rf
or

m
an

ce

EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

(a) (b)

Fig. 5. Performance profiles for Othello in the 0.0–1.0 range of opponent performance—each point (x, y) in a plot indicates the
average performance y when playing against the opponents of performance x: performance profiles in the 0.0–1.0 range of
opponent performance (grayed region is zoomed on the right) (a), performance profiles zoomed to the 0.8–0.96 range of
opponent performance (b).

computing on 60 cores of modern CPUs for a few days,
we were not able to fill up all the buckets to the assumed
capacity of N = 1000 opponents. The first three
and the last three bins (performance ranges of [0, 0.03)
and [0.97, 1]) remained empty, and the bins [0.03, 0.04)
and [0.96, 0.97) were filled only partially. In total, 100
samples of tests contain 91727 opponents of performances
ranging in [0.03, 0.97].

Figure 5 shows the average performance profiles
for the best-of-run Othello players evolved by particular
algorithms. In contrast to IPD, it is hard to observe any
dominance between the profiles, except for 1-COEV-RS,
which dominates both 1-COEV and 2-COEV.

Noteworthy, in the large part of the opponent
difficulty range (performance of 0.0–0.6), the order
of profiles is consistent with the ranking obtained
with the single-criteria measure of the expected utility.
However, the order changes dramatically for the strongest
opponents. Strikingly, EVOL-RS and 2-COEV-RS, the
two best algorithms according to the statistical analysis
based on the expected utility, become the two worst ones
when confronted against the strongest opponents (see
Fig. 5(b)). In contrast, 1-COEV and 2-COEV, the two
worst algorithms in terms of the expected utility, are
significantly better than both EVOL-RS and 2-COEV-RS

on the rightmost bins, showing performance similar to 1-
COEV-RS.

Clearly, the performance profiles reveal the strong
points of 1-COEV, 2-COEV and 1-COEV-RS, which
could not be noticed using the expected utility.
However, attaining higher performance against the

stronger opponents is not sufficient to compensate the
inferior position when it comes to mediocre opponents,
because the latter ones occur much more frequently in an
unbiased sample used to estimate the expected utility.

5.5. Round-robin tournament. The round-robin
tournament is a popular method that determines a valued
ranking of methods by playing matches between teams
of players they produced (Jaśkowski et al., 2008;
Samothrakis et al., 2012). The important conceptual
difference with respect to other performance indicators
considered above is the direct confrontation between the
solutions produced by particular algorithms (rather than
referring to an external sample of opponents). In this way,
the round-robin tournament provides a different means for
performance assessment that can be used as an alternative
to the expected utility.

In our tournament, every team consists of 120
best-of-run players produced by a certain algorithm. Thus,
a single match involves 120 × 120 = 14, 400 double
games. By a ‘match score’ and the ‘tournament score’
we mean, respectively, a team’s average score obtained in
a single match or in the whole round-robin tournament.

Table 4 presents the results of the tournament for
the Othello players produced by particular algorithms.
By bootstrapping the outcomes of double games, we
calculated also 95% confidence intervals of the scores.
We present them for the total score in square brackets.
For particular matches between methods the confidence
intervals were repeatedly very close to [x − 0.006; x +
0.006], so they were omitted.

The performance profile: A multi-criteria performance evaluation method for test-based problems 225

Evolutionary learning with random sampling loses
to all other algorithms in head-to-head matches and its
aggregated overall score is significantly lower (confidence
intervals do not overlap) than 1-COEV-RS, 2-COEV-RS,
and 1-COEV and 2-COEV. Adding the random sampling
component improves both one- and two-population
coevolution (1-COEV-RS vs. 1-COEV and 2-COEV-RS

vs. 2-COEV). Also, the one-population variants are
consistently better than two-population ones (2-COEV vs.
1-COEV and 2-COEV-RS vs. 1-COEV-RS). 1-COEV-RS

wins against all the other algorithms and is clearly the best
in terms of the round-robin score.

The ranking according to the expected utility
presented in Table 3 is different than the one resulting
from the round-robin tournament. In general, one cannot
expect them to match up due to the absolute nature of the
former and the relative nature of the latter. However, how
can we explain the differences and reconcile these results?
This question can be addressed by further examination of
performance profiles.

5.6. Performance profiles explain the round-robin
tournament and the expected utility. Performance
profiles allow us to explain the discrepancy between
the rankings based on the expected utility and the
round-robin tournament. Let us first notice that, contrary
to the expected utility assessments which involved random
opponents, in the round-robin tournament each individual
in a team plays only with the players from the opponent
teams, and those players (co)evolved to be strong.
According to Table 3, the performance of team members
is in the range of 0.79 to 0.87, i.e., well above 0.5, the
expected performance of a random player.

Let us analyze the profiles in Fig. 5(b) in this range.
The two best algorithms, with performance between 0.79
to 0.87, are 1-COEV-RS (unquestionably) and 2-COEV-
RS (better than the remaining algorithms on most bins).
The other three algorithms are significantly worse but
certain differences between them are still observable. In
particular, 1-COEV and 2-COEV start to surpass EVOL-RS

when test difficulty reaches ∼ 0.87. 1-COEV is subtly
but consistently better than 2-COEV in this test difficulty
interval. This order is consistent with the ranking obtained
in the round robin tournament.

Now let us use the performance profiles to explain
the order of algorithms induced by the expected utility
measure presented in Section 5.3. In that case, games are
played against random players, whose performance is 0.5
on average (a random player is equally likely to win and
lose a game against another a random player). Moreover,
the random player’s performance is most often very
close to 0.5 (the standard deviation of a random player’s
performance is 0.28, because well- and bad-performing
random players are few and far in between). Thus, it is
not surprising that in Fig. 5, for opponents of difficulty

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce

1-COEV-RS

SWH

IPREF1
TDL

CTDL

Fig. 6. Performance profiles of the five players—the hand-
crafted SWH and four obtained by the following learn-
ing methods: coevolution with random sampling (1-
COEV-RS), coevolutionary temporal difference learning
(CTDL), temporal difference learning (TDL) or prefer-
ence learning (IPREF1). Whiskers mark the 95% con-
fidence intervals.

0.5, the order of algorithms is consistent with the ranking
obtained for the expected utility in Section 5.3.

5.7. Performance profiles of selected published
players. Up to this point, our analysis has concerned
the players produced by (co)evolutionary algorithms.
Despite the differences we pointed out, all of the
profiles have a similar course, with high performance for
weak opponents that monotonically decreases with the
opponents getting stronger. An interesting question is:
Does a performance profile of every Othello player look
like that?

To answer this question we analyzed the profiles of
four players obtained by different methods:

1. Standard WPC Heuristic (SWH) player, hand-crafted
by Yoshioka et al. (1998), and often used as an
opponent in Othello research (Lucas and Runarsson,
2006; Szubert et al., 2009; Manning, 2010). Its
expected utility performance is 0.787± 0.002.

2. TDL player (87.26 ± 0.32), obtained by Jaśkowski
et al. (2014) using temporal difference learning.

3. CTDL player (0.906 ± 0.001), trained by Szubert
et al. (2011) using a hybridization of coevolution and
temporal difference learning (Szubert et al., 2009;
2011; Krawiec et al., 2011).

226 W. Jaśkowski et al.

Table 4. Round-robin tournament scores for the five coevolutionary algorithms in Othello. The total scores are followed by 95%
confidence intervals.

Match scores
Tourn. score [%]

Algorithm 1-COEV-RS 2-COEV-RS 1-COEV 2-COEV EVOL-RS

1-COEV-RS – .522 .521 .526 .556 .531 [.528, .534]
2-COEV-RS .478 – .509 .518 .536 .510 [.508, .513]
1-COEV .479 .491 – .507 .513 .497 [.494, .500]
2-COEV .474 .482 .493 – .5 .487 [.484, .490]
EVOL-RS .444 .464 .487 .5 – .474 [.471, .477]

4. IPREF1 player (0.869 ± 0.001), obtained by
Runarsson and Lucas (2014), the only player in this
list that represents its strategy using (a simple variant
of) n-tuple networks instead of WPC.

Figure 6 presents how the profiles of the above
players compare with the average profile of 1-COEV-RS

(performance 0.837 ± 0.004). Note that the confidence
intervals for SWH and IPREF1 are higher because these
profiles are based on a single player, while the profiles
of 1-COEV-RS, CTDL and TDL are averaged over,
respectively, 120 and 30 runs.

Interestingly, no profile strictly dominates all others.
CTDL has the highest performance, but, except SWH, the
other players are more effective in the left-hand side of
the spectrum. Also, the plots show that the flattest profiles
characterize the players obtained by the methods that
employ temporal difference learning (TDL or CTDL).

The profile of the handcrafted SWH player is
significantly different from those obtained by learning
algorithms. While the performance of the latter generally
decreases with the opponents getting stronger, the SWH

player does not strictly subscribe to that trend. Its
profile crosses the 1-COEV-RS and IPREF1 curves at about
0.7 and 0.9, respectively, and surpasses them afterwards
significantly, even though its overall performance is lower.
More surprisingly, the SWH profile seems then to reverse
its trend, and copes better with the strongest opponents
(performance of 0.9–0.96) than with the slightly weaker
ones (performance of 0.8–0.9). Strategies with such
characteristics could have been considered as candidate
solutions during the runs of the other methods that also
use WPC as the underlying representation. However, their
poor overall performance destined them to be dropped in
favor of strategies that perform better against the mediocre
and weak players.

6. Bias of evolutionary sampling

In our previous work involving performance profiles
(Jaśkowski et al., 2013; Szubert et al., 2013b), we used
the unbiased random sampling method (see Section 2.4)
to generate bin samples. Here, we rely on evolutionary
sampling, which trades bias for better occupancy of

extreme bins. It is then desirable to quantitatively assess
the extent of that bias.

To this aim, we compare the performance profiles
obtained using random sampling with the ones generated
by means of evolutionary sampling. Random sampling is
much worse at generating the strongest and the weakest
players than evolutionary sampling. As a result, it fills
up only the bins in the interval [0.17, 0.83] for IPD, and
[0.17, 0.78] for Othello. For these intervals, in Fig. 7, we
plot the differences between the corresponding profiles,
which show the bias of evolutionary sampling.

Let us notice first that the bias is predominantly
positive for IPD, while for Othello it can be either
positive or negative. The bias characteristics is thus
problem-dependent.

Secondly, the figure shows that the bias of
evolutionary sampling is generally low. The maximum
absolute differences between profiles are around 0.04 for
IPD and (only) 0.015 for Othello. The bias is generally
growing with increasing the opponent’s performance, and
can be expected to be higher for the bins right of 0.8.
Nevertheless, the bias is similar for all methods (except
for 1-COEV for IPD), thus its influence on the ranking
of algorithms is limited. We can, therefore, assume that
the bias of evolutionary sampling does not preclude the
resulting samples of tests from being reliable performance
indicators.

7. Conclusions

In this study, we presented and formalized the technique
of performance profiles and demonstrated its usefulness
for comparing solutions for test-based problems, and,
implicitly, learning algorithms. Performance profiles
proved to be capable of revealing the differences in
characteristics between the algorithms that have a similar
expected utility and explaining the discrepancy between
the outcomes of the round-robin tournament and the
expected utility. Because they abstract from the internals
of learning algorithms, nothing precludes them to be
applied to other than best-of-run solutions, and we
anticipate that they can be useful for, e.g., explaining
the dynamics of a search process and characterizing
the behavior (Szubert et al., 2015) of other (i.e.,

The performance profile: A multi-criteria performance evaluation method for test-based problems 227

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Opponent performance

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ofi

le
s

di
ff

er
en

ce
(b

ia
s)

EVOL-RS
2-COEV-RS
1-COEV-RS
1-COEV
2-COEV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Opponent performance

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

Pr
ofi

le
s

di
ff

er
en

ce
(b

ia
s)

EVOL-RS
2-COEV-RS
1-COEV-RS
1-COEV
2-COEV

(a) (b)

Fig. 7. Differences between profiles obtained using random sampling and evolutionary sampling: IPD (a), Othello (b).

non-evolutionary) algorithms (Jaśkowski et al., 2014). In
prospect, we envision them as a valuable tool providing
researchers with a feedback on algorithm’s characteristics,
thus helping them design new approaches.

Although here we applied the performance profiles
to two symmetric test-based problems, we defined them
in a general way, and thus they are applicable to the
asymmetric case as well (when T �= S). The only formal
requirement is that the sum of payoffs obtained in a single
interaction by a solution and a test needs to be constant.

For a relatively simple problem such as IPD,
simply drawing samples at random may be sufficient to
populate a sufficiently wide range of bins and reveal the
differences between the algorithms in question. For harder
problems like Othello, a more sophisticated evolutionary
sampling of tests may be necessary to populate the
extreme bins and obtain an assessment on the very strong
opponents, which may be important in practice. Such
instrumentation of profiles proved helpful in this study.
However, the more powerful strategy representations, like
n-tuples (Lucas, 2007; Jaśkowski, 2014), may provide
players with performance near 1.0 against all random
opponents. In such cases, the specific samples used
in this paper may turn out to be insufficient to reveal
any differences, and even more sophisticated sampling
methods (or more computational effort) may be required.
In any case, we would recommend assessing bias by
confronting (where possible) the bin sample with the
random one as we did in this study.

When it comes to contributions to research in
coevolutionary algorithms, this study presented evidence
that coevolution can offer an advantage over evolution
with random sampling for learning game strategies. This
advantage was observable for both IPD and Othello
in the right side of the performance profiles and in
head-to-head comparison for Othello. We conclude thus
that an algorithm that autonomously and dynamically

redefines its own fitness function (1- and 2-COEV) can
produce strategies which are better in such confrontation
than those produced by an algorithm that relies on an
(approximately) stationary fitness function (EVOL-RS).
However, pure coevolution is not sufficient to attain
that, and additional means like involvement of random
opponents are necessary.

Acknowledgment

This work has been supported by the Polish National
Science Centre grant no. DEC-2013/09/D/ST6/03932.
M. Szubert acknowledges the support through the grant
no. DEC-2012/05/N/ST6/03152 and K. Krawiec through
the grant no. 2014/15/B/ST6/05205.

References
Ashlock, D. and Lee, C. (2013). Agent-case embeddings for the

analysis of evolved systems, IEEE Transactions on Evolu-
tionary Computation 17(2): 227–240.

Axelrod, R. (1984). The Evolution of Cooperation, Basic Books,
New York, NY.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution
strategies—a comprehensive introduction, Natural Com-
puting 1(1): 3–52.

Bucci, A., Pollack, J.B. and de Jong, E. (2004). Automated
extraction of problem structure, in K. Deb et al. (Eds.),
Genetic and Evolutionary Computation—GECCO-2004,
Part I, Lecture Notes in Computer Science, Vol. 3102,
Springer-Verlag, Berlin/Heidelberg, pp. 501–512.

Chong, S.Y., Tiño, P., Ku, D.C. and Xin, Y. (2012).
Improving generalization performance in co-evolutionary
learning, IEEE Transactions on Evolutionary Computation
16(1): 70–85.

Chong, S.Y., Tiño, P. and Yao, X. (2008). Measuring
generalization performance in coevolutionary learning,

228 W. Jaśkowski et al.

IEEE Transactions on Evolutionary Computation
12(4): 479–505.

Chong, S.Y., Tiño, P. and Yao, X. (2009). Relationship between
generalization and diversity in coevolutionary learning,
IEEE Transactions on Computational Intelligence and AI
in Games 1(3): 214–232.

Chong, S.Y. and Yao, X. (2005). Behavioral diversity, choices
and noise in the iterated prisoner’s dilemma, IEEE Trans-
actions on Evolutionary Computation 9(6): 540–551.

Darwen, P.J. and Yao, X. (2001). Why more choices cause less
cooperation in iterated prisoner’s dilemma, Proceedings of
the 2001 Congress on Evolutionary Computation, Seoul,
South Korea, Vol. 2, pp. 987–994.

Darwen, P. and Yao, X. (2000). Does extra genetic diversity
maintain escalation in a co-evolutionary arms race, In-
ternational Journal of Knowledge-Based Intelligent Engi-
neering Systems 4(3): 191–200.

de Jong, E.D. (2004). The incremental Pareto-coevolution
archive, in K. Deb et al. (Ed.), Proceedings of the Ge-
netic and Evolutionary Computation Conference, Lecture
Notes in Computer Science, Vol. 3102, Springer-Verlag,
Berlin/Heidelberg, pp. 525–536.

Ficici, S.G. (2004). Solution Concepts in Coevolutionary Algo-
rithms, Ph.D. thesis, Brandeis University, Waltham, MA.

Fogel, D.B. (1991). The evolution of intelligent decision making
in gaming, Cybernetics and Systems 22(2): 223–236.

Fogel, D.B. (2001). Blondie24: Playing at the Edge of AI,
Morgan Kaufmann Publishers, San Francisco, CA.

Frean, M. (1996). The evolution of degrees of cooperation, Jour-
nal of Theoretical Biology 182(4): 549–59.

Hart, S. and Mas-Colell, A. (2000). A simple adaptive
procedure leading to correlated equilibrium, Econometrica
68(5): 1127–1150.

Hillis, W.D. (1990). Co-evolving parasites improve simulated
evolution as an optimization procedure, Physica D
42(1–3): 228–234.

Jaśkowski, W. (2011). Algorithms for Test-Based Problems,
Ph.D. thesis, Poznań University of Technology, Poznań.

Jaśkowski, W. (2014). Systematic n-tuple networks for Othello
position evaluation, ICGA Journal 37(2): 85–96.

Jaśkowski, W. and Krawiec, K. (2011). How many dimensions
in cooptimization?, in N. Krasnogor (Ed.), Proceedings of
the 13th Annual Conference on Genetic and Evolutionary
Computation, ACM, New York, NY, pp. 829–830.

Jaśkowski, W., Krawiec, K. and Wieloch, B. (2008). Evolving
strategy for a probabilistic game of imperfect information
using genetic programming, Genetic Programming and
Evolvable Machines 9(4): 281–294.

Jaśkowski, W., Liskowski, P., Szubert, M. and Krawiec, K.
(2013). Improving coevolution by random sampling, in
C. Blum (Ed.), GECCO’13: Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Computa-
tion, ACM, Amsterdam, pp. 1141–1148.

Jaśkowski, W., Szubert, M. and Liskowski, P. (2014).
Multi-criteria comparison of coevolution and temporal
difference learning on Othello, in A.I. Esparcia-Alcazar
and A.M. Mora (Eds.), EvoApplications 2014, Lecture
Notes in Computer Science, Vol. 8602, Springer,
Berlin/Heidelberg, pp. 301–312.

Juillé, H. and Pollack, J.B. (1998). Coevolving the ideal trainer:
Application to the discovery of cellular automata rules,
Proceedings of the 3rd Annual Conference on Genetic Pro-
gramming, Madison, WI, USA, pp. 519–527.

Knowles, J.D., Watson, R.A. and Corne, D. (2001).
Reducing local optima in single-objective problems by
multi-objectivization, EMO’01: Proceedings of the 1st In-
ternational Conference on Evolutionary Multi-Criterion
Optimization, Zurich, Switzerland, pp. 269–283.

Krawiec, K., Jaśkowski, W. and Szubert, M. (2011). Evolving
small-board go players using coevolutionary temporal
difference learning with archive, International Jour-
nal of Applied Mathematics and Computer Science
21(4): 717–731, DOI: 10.2478/v10006-011-0057-3.

Lucas, S.M. (2007). Learning to play Othello with n-tuple
systems, Australian Journal of Intelligent Information Pro-
cessing Systems 9(4): 1–20.

Lucas, S.M. and Runarsson, T.P. (2006). Temporal difference
learning versus co-evolution for acquiring Othello position
evaluation, IEEE Symposium on Computational Intelli-
gence and Games, Reno, NV, USA, pp. 52–59.

Luke, S. and Wiegand, R.P. (2002). When coevolutionary
algorithms exhibit evolutionary dynamics, in A.M. Barry
(Ed.), GECCO 2002: Proceedings of the Bird of a Feather
Workshops, Genetic and Evolutionary Computation Con-
ference, AAAI, New York, NY, pp. 236–241.

Manning, E.P. (2010). Using resource-limited Nash memory
to improve an Othello evaluation function, IEEE Trans-
actions on Computational Intelligence and AI in Games
2(1): 40–53.

Nolfi, S. and Floreano, D. (1998). Coevolving predator and prey
robots: Do “Arms races” arise in artificial evolution?, Arti-
ficial Life 4(4): 311–335.

Pollack, J.B. and Blair, A.D. (1998). Co-evolution in the
successful learning of backgammon strategy, Machine
Learning 32(3): 225–240.

Popovici, E., Bucci, A., Wiegand, R.P. and de Jong, E.D.
(2011). Coevolutionary principles, in G. Rozenberg et al.
(Eds.), Handbook of Natural Computing, Springer-Verlag,
Berlin/Heidelberg, pp. 987–1033.

Popovici, E. and De Jong, K. (2009). Monotonicity versus
performance in co-optimization, FOGA’09: Proceedings
of the 10th ACM SIGEVO Workshop on Foundations of Ge-
netic Algorithms, Orlando, FL, USA, pp. 151–170.

Poundstone, W. (1992). Prisoner’s Dilemma: John von Neuman,
Game Theory, and the Puzzle of the Bomb, Doubleday, NY.

Reynolds, C. (1994). Competition, coevolution and the game
of tag, in R.A. Brooks and P. Maes (Eds.), Artificial Life
IV: Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems, MIT Press,
Cambridge, MA, pp. 59–69.

The performance profile: A multi-criteria performance evaluation method for test-based problems 229

Runarsson, T. and Lucas, S. (2014). Preference learning for
move prediction and evaluation function approximation in
Othello, IEEE Transactions on Computational Intelligence
and AI in Games 6(3): 300–313.

Samothrakis, S., Lucas, S., Runarsson, T. and Robles, D. (2012).
Coevolving game-playing agents: Measuring performance
and intransitivities, IEEE Transactions on Evolutionary
Computation 17(2): 1–15.

Szubert, M., Jaśkowski, W. and Krawiec, K. (2009).
Coevolutionary temporal difference learning for Othello,
IEEE Symposium on Computational Intelligence and
Games, Milan, Italy, pp. 104–111.

Szubert, M., Jaśkowski, W. and Krawiec, K. (2011). Learning
board evaluation function for Othello by hybridizing
coevolution with temporal difference learning, Control and
Cybernetics 40(3): 805–831.

Szubert, M., Jaśkowski, W. and Krawiec, K. (2013a).
On scalability, generalization, and hybridization of
coevolutionary learning: A case study for Othello, IEEE
Transactions on Computational Intelligence and AI in
Games 5(3): 214–226.

Szubert, M., Liskowski, P., Jaśkowski, W. and Krawiec,
K. (2013b). Shaping fitness function for evolutionary
learning of game strategies, in C. Blum (Ed.), GECCO’13:
Proceedings of the 15th Annual Conference on Ge-
netic and Evolutionary Computation, ACM, Amsterdam,
pp. 1149–1156.

Szubert, M., Jaśkowski, W., Liskowski, P. and Krawiec, K.
(2015). The role of behavioral diversity and difficulty
of opponents in coevolving game-playing agents, in M.A.
Mora and G. Squilero (Eds.), EvoApplications 2015,
Lecture Notes in Computer Science, Vol. 9028, Springer,
pp. 394–405.

Watson, R.A. and Pollack, J.B. (2001). Coevolutionary
dynamics in a minimal substrate, Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO-2001), San Francisco, CA, USA, pp. 702–709.

Yoshioka, T., Ishii, S. and Ito, M. (1998). Strategy acquisition
for the game ”Othello” based on reinforcement learning, in
S. Usui and T. Omori (Eds.), Proceedings of the Fifth In-
ternational Conference on Neural Information Processing,
ICONIP98, IOA Press, Kitakyushu, pp. 841–844.

Wojciech Jaśkowski received B.Eng., M.Sc.
and Ph.D. degrees in computing science from
the Institute of Computing Science of the Poznań
University of Technology, Poland, in 2004, 2006
and 2011, respectively. Currently he is an as-
sistant professor at the Laboratory of Intelligent
Decision Support Systems there. He is an author
of more than 30 publications on computational
intelligence. His research interests concern evo-
lutionary computations, reinforcement learning,

competitive co-evolution, test-based problems, genetic programming, vi-
sual learning, and learning strategies for games.

Paweł Liskowski received the B.Eng. and M.Sc.
degrees in computing science from the Poznań
University of Technology, Poland, in 2011 and
2012. Currently he is a research assistant and a
Ph.D. student at the Laboratory of Intelligent De-
cision Support Systems, Institute of Computing
Science, Poznań University of Technology. Pri-
mary areas of his research interest include vari-
ous subfields of artificial intelligence. In particu-
lar, his work includes co-evolution for test-based

problems, genetic programming and machine learning.

Marcin Szubert received his B.Eng., M.Sc.
and Ph.D. degrees in computing science from
the Poznań University of Technology, Poland, in
2008, 2009 and 2014, respectively. Currently he
is an assistant professor at the Laboratory of In-
telligent Decision Support Systems, Institute of
Computing Science, Poznań University of Tech-
nology. His research interests primarily cover the
area of artificial intelligence with a focus on evo-
lutionary computation and machine learning with

applications to game playing. Particularly, he works on hybridizing re-
inforcement learning methods and coevolutionary algorithms for devel-
oping artificial neural networks.

Krzysztof Krawiec received his Ph.D. and habil-
itation degrees in 2000 and 2004 from the Poznań
University of Technology, Poland, where he is
currently an associate professor. His work in-
cludes program synthesis, in particular seman-
tics and program behavior in genetic program-
ming; coevolutionary algorithms and test-based
problems; evolutionary computation for machine
learning, primarily for learning game strategies
and for synthesis of pattern recognition systems;

and applications in medicine, biology, and climate science. Dr. Krawiec
is the author of over 100 publications on the above and related topics and
an associate editor of the Genetic Programming and Evolvable Machines
journal.

Received: 13 February 2015
Revised: 20 May 2015
Re-revised: 7 July 2015

	Introduction
	Performance profiles
	Test-based problems
	Test difficulty
	Performance profile
	Test sampling methods
	Random sampling
	Evolutionary sampling

	Coevolutionary algorithms
	Evolutionary learning with random sampling (EVOL-RS)
	One-population coevolution (1-COEV)
	One-population coevolution with random sampling
(1-COEV-RS)
	Two-population coevolution (2-COEV)
	Two-population coevolution with random sampling
(2-COEV-RS)

	Experimental analysis of Iterated Prisoner's Dilemma
	Classical Prisoner's Dilemma
	n-Choice Prisoner’s Dilemma
	Strategy representation
	Experimental setup
	Results for the expected utility
	Analysis with performance profiles

	Experimental analysis of 1-ply Othello
	1-ply Othello
	Problem definition
	Strategy representation

	Experimental setup
	Results for the expected utility
	Analysis with performance profiles
	Round-robin tournament
	Performance profiles explain the round-robin tournament and the expected utility
	Performance profiles of selected published players

	Bias of evolutionary sampling
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

