
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 1, 245–258
DOI: 10.1515/amcs-2016-0017

MODELLING DNA AND RNA SECONDARY STRUCTURES USING MATRIX
INSERTION–DELETION SYSTEMS

LAKSHMANAN KUPPUSAMY a, ANAND MAHENDRAN b,∗

aSchool of Computing Science and Engineering
VIT University, Vellore 632014, India

e-mail: klakshma@vit.ac.in

bDepartment of Computer Science, College of Computer Science and Information Systems
Jazan University, Jazan 45142, Kingdom of Saudi Arabia

e-mail: anandmahendran82@gmail.com

Insertion and deletion are operations that occur commonly in DNA processing and RNA editing. Since biological macro-
molecules can be viewed as symbols, gene sequences can be represented as strings and structures can be interpreted as
languages. This suggests that the bio-molecular structures that occur at different levels can be theoretically studied by for-
mal languages. In the literature, there is no unique grammar formalism that captures various bio-molecular structures. To
overcome this deficiency, in this paper, we introduce a simple grammar model called the matrix insertion–deletion system,
and using it we model several bio-molecular structures that occur at the intramolecular, intermolecular and RNA secondary
levels.

Keywords: bio-molecular structures, insertion–deletion systems, intermolecular, intramolecular, secondary structures.

1. Introduction

Natural computing is a field of research that investigates
various computing models and computational
(algorithms) techniques that are inspired by nature.
It is an interdisciplinary area that nudges natural science
with computing science, and attempts to understand the
world around us in terms of information processing. In
the last few decades, natural computing which includes
biologically inspired computing, has been pursued with
a great deal of interest. This comprises evolutionary
computing (Eiben and Smith, 2003), membrane com-
puting (Calude and Paŭn, 2001), genetic algorithms
(Goldberg, 1989), DNA computing (Păun et al., 1998),
ant colony optimization (Dorigo and Stutzle, 2004) and
many other computing models that are inspired from
biology and nature. The developments which have taken
place in DNA computing inspired the definition and study
of new theoretical models in formal language theory,
such as sticker systems, splicing systems, Watson–Crick
automata, insertion–deletion systems and P systems

∗Corresponding author

(Calude and Paŭn, 2001; Păun et al., 1998; Păun, 2002).

Insertion–deletion systems are introduced to
theoretically analyze the insertion and deletion operations
that take place in gene sequences. These operations
frequently occur in DNA processing and RNA editing.
The insertion operation was first studied by Galiukschov
(1982). A study of properties of the insertion operation
was carried out by Haussler (1982; 1983). Informally, the
insertion and deletion operations of an insertion–deletion
system are defined as follows: If a string β is inserted
between two parts w1 and w2 of a string w1w2 to get
w1βw2, we call the operation insertion, whereas if a
substring α is deleted from a string w1αw2 to get w1w2,
we call the operation deletion. Consider a production of
the form A → cAB in a rewriting system. In a derivation
step, if there is a presence of non-terminal A, then it
will be replaced by cAB. But in the insertion–deletion
system the derivations are obtained either by inserting or
by deleting a string. As the system is not exactly based
on the rewriting mechanism, it has attracted particular
attention in the field of formal language theory.

The biological sequences that occur in DNA, RNA

klakshma@vit.ac.in
anandmahendran82@gmail.com

246 L. Kuppusamy and A. Mahendran

and protein molecules can be considered words formed
over well-defined chemical alphabets. The DNA molecule
consists of sequences that are built of nucleotides, which
are in four forms: a(adenine), t(thymine), g(guanine),
c(cytosine). The RNA molecule consists of sequences
that are built of nucleotides, which are in four forms; a,
u(uracil), g, c. The complementary pair for RNA (DNA)
is given as ā = u(t), ū(t̄) = a, ḡ = c and c̄ = g. Based
on the complementary pairs in chemical objects and other
biological constraints, sequences form patterns and these
patterns are considered structures. These structures play
a vital role in governing the functionality and behavior of
bio-molecules (Brendel and Busse, 1984; Searls, 1993).

Gene sequence prediction is considered one of the
important and fundamental problems in computational
biology. Such a sequence prediction problem is
dealt with by developing suitable string (pattern)
matching algorithms. The above mentioned problem is
somewhat akin to analyzing the structural descriptions
in computational linguistics. The following example
shares a common point between formal languages and
molecular strings. Consider the context-free language
L = {wwR | w ∈ {a, b}∗}, where wR is the reversal
of w. For example, if w is aabb, then wR will be
bbaa. Consider the gene sequence cggcaacggc. This
gene sequence resembles the palindrome (context-free)
language {wwR | w ∈ {a, u, g, c}∗}. Also, there
exist some relations between bio-molecular sequences and
non-context-free natural language constructions such as
triple agreements: {anbncn | n ≥ 1}, crossed depen-
dencies: {anbmcndm | n,m ≥ 1} and copy language:
{ww | w ∈ {a, b}∗} (Searls, 1992; 1993; 2002). They are
discussed in the next paragraph.

We now discuss briefly the bio-molecular structures
that are frequently noticed in bio-molecules such as
protein, DNA and RNA. Figure 1 shows two popular
structures, stem and loop and hairpin, which can
be modelled by context-free grammars (Searls, 1988).
Figure 2 shows two structures, pseudoknot and atten-
uator, which are beyond the power of context-free
grammars (Searls, 1992). In Figs. 1 and 2, the strings
are obtained by reading the symbols as per directed
dotted lines. The string cuucaucagaaaaugac represents
the stem and loop language (Fig. 1(a)) and the string
atcgcgat represents the hairpin language (Fig. 1(b)). The
string gcucgcga (Fig. 2(a)) represents the pseudoknot
structure and the string gucgacgucgac (refer Fig. 2(b))
represents attenuator structure. Figure 2 shows the
coherence between the natural language constructs and
the gene sequences. Figure 2(a) represents the pseudoknot
structure, which has the crossed dependency pattern, and
Figure 2(b) represents the attenuator structure, which
has the copy language pattern. The formal language
notations for such structures and for a few other structures
are discussed in detail in the coming sections. For

more details on genome structures, their corresponding
languages and gene structure prediction using linguistic
methods, we refer to the works of Brendel and Busse
(1984), Chiang et al. (2006), Dong and Searls (1994),
Durbin et al. (1998), as well as Searls (1988; 1992; 2002).

 5’ c a a u g a c 3’
u a

u a

a a

u c

c g

S

S

S

S

S

a t

t a

c g

 g c

 #

(a) (b)

Fig. 1. Bio-molecular structures: stem and loop (where the ◦ de-
notes the complementary pair) (a), hairpin (where S is a
non-terminal for the context-free grammar and # denotes
the empty string) (b).

 g c

 c g

 c g

 u a

g c u c g c g a

g c

u a

c g

u a

g u c g a c g u c g a c
 u u u u
_R _R

c g

 g c

(a) (b)

Fig. 2. Pseudoknot (a), attenuator (b).

 S S S S S S S S S S S S S S

(a) (b)

Fig. 3. Intermolecular structures: double stranded molecule
(where S is a non-terminal for the context-free gram-
mar) (a), nick language (where S is a non-terminal for
the context-free grammar) (b).

The structures that are formed in RNA are mostly
intermolecular. Figure 3 represents some of the
intermolecular structures (Searls, 1995): (a) double strand
language and (b) nick language, where the cut takes place
at arbitrary positions, which is represented by a •. The
double strand language can be given as {w • wR | w ∈
{a, u, g, c}∗}. In a double stranded molecule, if the cut

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 247

is done at many places, then the molecule is said to be
nicked.

The study of linguistic behavior of biological
sequences using formal grammars was initiated in the
work of Brendel and Busse (1984) as well as Head
(1987). Soon after, it was carried out by Searls (1988;
1992; 1993). In this regard, in the last two decades,
there have been many attempts made to establish the
linguistic behavior of biological sequences by defining
new grammar formalisms like cut grammars, ligation
grammars (Searls, 1988; 1992; 1993) crossed-interaction
grammar (Rivas and Eddy, 2000), simple linear tree ad-
joining grammars and extended simple linear tree adjoin-
ing grammars (Uemura et al., 1999). These are capable
of generating some of the biological structures mentioned
above.

Like DNA and protein, RNA is also considered one
of the important and essential macromolecules that occur
in all forms of life. RNA structures are mainly classified
as primary, secondary and tertiary structures. The
primary structures of a nucleic acid molecule represent
the exact sequence of nucleotides that forms the complete
molecule. The secondary structures are a two dimensional
representation formed by folding back onto itself the base
pairing of complementary nucleotides (Watson–Crick
pairs). The tertiary structures are 3D structures formed
by a single molecule. 3D structures formed by more
than one molecule are called quaternary structures. Study
of such structures tends to be more complex as it is
very difficult to predict the interactions between the
molecules. In an RNA secondary structure, the basic

(a) (b)

Fig. 4. RNA secondary structure: internal loop (a), bulge
loop (b).

structural motifs can be classified as stem and loop (H-
loop) (Fig. 1(a)), internal loop (I-loop) (Fig. 4(a)), bulge
loop (B-loop) (Fig. 4(b)) and multi branch loop (M-
loop) (Fig. 5(a)). Pseudoknots are also considered to
be a structural motif and are formed later in the folding
process. Extended pseudoknots (Fig. 5(b)) and kiss-
ing hairpin (Fig. 6) are considered to be a common
folding motif belonging to the class of pseudoknots.

(a) (b)

Fig. 5. RNA secondary structures: multi branch loop (a), ex-
tended pseudoknot (b).

To model and predict such structures, many attempts
have been made by defining new grammar formalisms
like stochastic context-free grammars (Sakakibara et al.,
1996), pair hidden Markov models (Sakakibara, 2003)
and stochastic multiple context-free grammars (Yuki and
Kasami, 2006). In particular, more research work is
carried out on RNA pseudoknotted secondary structure
prediction. In the work of Theis et al. (2010), prediction
of RNA secondary structure is carried out including
kissing hairpins. Cai et al. (2003) propose a grammatical
approach for stochastic modelling of RNA pesudoknotted
structures. In the work of Brown and Wilson (1995),
RNA pseudoknot interactions are modelled using the
intersection of stochastic context-free grammars. For
more details on RNA secondary structures, we refer to
the works of Lyngso et al. (1999), Lyngso and Pedersen
(2000) or Rivas and Eddy (2000). Figure 7 shows

Fig. 6. RNA secondary structure: kissing hairpin.

the simple H-type and recursive pseudoknot structure.
Figure 8 presents the three-knot structure. Elements
u1, u2, u3, u4, u5, ū1

R, ū2
R, ū3

R, ū4
R, ū5

R, v, v1, v2, v3,
v4, AĀ, BB̄ used in Figs. 4(a), 4(b), 5(a), 5(b), 6,
7(a), 7(b) and 8 are explained in Section 5. Table 1
shows various bio-molecular structures that are commonly
noticed in DNA, protein, RNA secondary structures and
their corresponding formal grammars which generate the
structure.

However, there is no unique grammar model
that encapsulates all the above-discussed bio-molecular
structures. For example, the double copy language
cannot be modelled by a simple linear tree adjoining

248 L. Kuppusamy and A. Mahendran

u1

 v1 u2

 u1

 − R

v2
 − R

u 2
 u1

 u2

 u3

u2
 − R

 u4

 u1
 − R

 u4
 − R u5

u5
 − R

 u3
 − R

(a) (b)

Fig. 7. RNA secondary structures: simple H-type (a), recursive
pseudoknot (b).

 u1

v

 u2

u2
 − Ru3

 _ R

u3
 u1
 _R

Fig. 8. RNA secondary structure: three-knot structure.

grammar (Uemura et al., 1999). To overcome this failure,
we introduced (Kuppusamy et al., 2011a) a simple and
powerful grammar model called matrix insertion–deletion
systems that captures all the popular and important
bio-molecular structures noticed often in bio-molecules.
We also modelled the various bio-molecular structures
that occur at the intramolecular level such as pseudo
knot, hairpin, stem and loop, attenuator (Kuppusamy et
al., 2011a). We have modelled the various bio-molecular
structures that occur at intermolecular level such as double
strand language, nick language, holliday structure, repli-
cation fork (Kuppusamy et al., 2011b).

In this paper, we substantially extend our work
by introducing many RNA bio-molecular structures (see
Section 5) and give a formal language representation
for each such structure. Further, we model such
structures using the matrix insertion–deletion system.
Thus, this paper is an extended journal version of past
conference papers (Lakshmanan et al., 2011a; 2011b).
Incidentally, in the work of Petre and Verlan (2012),
the same matrix insertion–deletion system was discussed
and analyzed the computational completeness result for
the system. However, the motivation was not from a
biological inspiration; it was rather an extension of matrix
grammars. In the work of Petre and Verlan (2012),
matrix insertion–deletion systems were introduced with
the following measures: (i) the maximum number of rules

Table 1. Bio-molecular structure and the corresponding formal
grammar.

Bio-molecular structure
Figure number(s) Formal grammar

Hairpin
Fig. 1(b) Context free grammar

Stem and loop
Fig. 1(a) Context free grammar

Attenuator
Fig. 2(b) Tree adjoining grammar

Pseudoknot
Fig. 2(a) Tree adjoining grammar

Cloverleaf
Fig. 9 Context free grammar
Nick

Fig. 3(b) Cut grammar
Double strand

Fig. 3(a) Ligation grammar
Holliday
Fig. 10 Ligation grammar

RNA structures Stochastic CFG
Figs. 4(a), 4(b), 5(a), 5(b) Multiple stochastic CFG

6, 7(a), 7(b), 8 Pair HMM
Stochastic multiple CFG

in a matrix is denoted by k, (ii) the maximal length of the
left and right context used in the insertion rules is denoted
with m and m′, respectively, (iii) the maximal length of
the left and right context used in deletion rules is denoted
with q and q′, respectively, (iv) the maximal length of the
inserted string is denoted with n, (v) the maximal length
of the deleted string is denoted with p.

Based on these measures, the family of
languages generated by matrix insertion–deletion
systems is denoted by MatkINSm,m′

n DELq,q′
p .

With these measures, in the work of Petre and
Verlan (2012), the computational completeness
result (i.e., showing equivalence to recursively
enumerable languages) for the matrix insertion–deletion
system was proved for the combinations
Mat3INS1,0

1 DEL0,0
2 , Mat3INS1,0

1 DEL1,0
1 , Mat3

INS1,0
1 DEL0,1

1 and Mat3INS0,0
2 DEL1,0

1 . In the
same paper, with binary matrices (matrices having
two rules) the computational completeness result was
proved for the combinations Mat2INS0,0

2 DEL1,0
1 and

Mat2INS1,0
1 DEL0,0

2 . Note that, in these results when
no context is considered in deletion rules, the maximal
length of the deleted string is 2. Also, insertion and
deletion rules are together used in a matrix. In this paper,
we have modelled the bio-molecular structures using the
matrix insertion–deletion systems where the length of the
deletion string is 1 only. Also, insertion and deletion rules
are not used together in a matrix.

This paper is organized as follows. In Section 2,

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 249

we deal with the preliminaries. In Section 3, we
briefly introduce matrix insertion–deletion systems. In
Section 4, we show that these systems can encompass
several essential bio-molecular structures that occur at
intramolecular and intermolecular levels in DNA and
RNA. In Section 5, we give the language representation
for RNA secondary structures and we model them using
our grammar model. In Section 6, we conclude the paper
with further research direction.

2. Preliminaries

We start with recalling some basic notation used in formal
language theory. A finite non-empty set V or Σ is called
an alphabet. ΣDNA is a finite non-empty set over the
symbols {a, t, g, c}. ΣRNA is a finite non-empty set over
the symbols {a, u, g, c}. We denote by V ∗ or Σ∗ the free
monoid generated by V orΣ, by λ its identity or the empty
string, and by V + or Σ+ the set V ∗ − {λ} or Σ∗ − {λ}.
The elements of V ∗ or Σ∗ are called words or strings. A
language L is defined as L ⊆ Σ∗. Let w be a string,
and |w|a denote the number of a in w. For more details
on formal language theory, we refer to Rozenberg and
Salomaa (1997).

Next, we recall the basic definition of
insertion–deletion systems. Given an insertion–deletion
system γ = (V, T,A,R), where V is an alphabet (set
of non-terminal and terminal symbols), T ⊆ V (set of
terminal symbols), A is a finite language over V , R
is a set of finite triples of the form (u, α/β, v), where
(u, v) ∈ V ∗ × V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +).
The pair (u, v) is called contexts, which will be used
in deletion/insertion rules. The insertion rule is of the
form (u, λ/β, v), which means that β is inserted between
u and v. The deletion rule is of the form (u, α/λ, v),
which means that α is deleted between u and v. In
other words, (u, λ/β, v) corresponds to the rewriting rule
uv → uβv, and (u, α/λ, v) corresponds to the rewriting
rule uαv → uv.

Consequently, for x, y ∈ V ∗ we can write x =⇒∗ y,
if y can be obtained from x by using either an insertion
rule or a deletion rule which is given as follows (the down
arrow ↓ indicates the position where the string is inserted,
the down arrow ⇓ indicates the position where the string
is deleted and the underlined string indicates the string
inserted):

(i) x = x1u
↓vx2, y = x1uβvx2, for some x1, x2 ∈ V ∗

and (u, λ/β, v) ∈ R.

(ii) x = x1uαvx2, y = x1u
⇓vx2, for some x1, x2 ∈ V ∗

and (u, α/λ, v) ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A},

where =⇒∗ is the reflexive and transitive closure of the
relation =⇒.

Next, we discuss matrix grammar. A matrix
grammar is an ordered quadruple G = (N, T, S,M)
where N is a set of non-terminals, T is a set of terminals,
S ∈ N is the start symbol and M is a finite set of
nonempty sequences whose elements are ordered pairs
(P,Q). The pairs are referred to as productions and
written in the form P → Q. The sequences are referred
to as matrices and written as m = [P1 → Q1, . . . , Pr →
Qr], r ≥ 1. For a matrix grammar G, the relation =⇒ on
the set V ∗ is defined as follows. For any P,Q ∈ V ∗,
P =⇒ Q holds if and only if there exist an integer
r ≥ 1 and words β1, . . . , βr+1, P1, . . . , Pr, Q1, . . . , Qr,
R1, . . . , Rr, R1, . . . , Rr over V such that (i) αi = P
and αr+1 = Q, (ii) m is one of the matrices of G,
(iii) αi = RiPiR

i and αi+1 = RiQiR
i. If the above

conditions are satisfied, it is also said that P =⇒ Q holds
with specifications (m,R1). The reflexive and transitive
closure of =⇒ is denoted by =⇒∗. The above matrix
grammar is without appearance checking. The language
generated by the matrix grammar is defined by L(G) =
{w ∈ T ∗ | S =⇒∗ w}. A matrix grammar with ap-
pearance checking is defined as G = (N, T, S,M, F),
where F is a set of occurrences of rules in the matrices
of M . While deriving, a rule may be exempted to apply
if the rule is in F . The language generated by the
matrix grammar with appearance checking is defined as
Lac(G,F) = {w ∈ T ∗ | S =⇒∗ w}. For more details on
matrix grammars, we refer to the work of Rozenberg and
Salomaa (1997).

Next, we discuss cut grammars (Searls, 1995)
designed specifically for modelling intermolecular
structures. A cut grammar G = (N, T, S, P) where N is
a finite set of non-terminals, T is a finite set of terminals,
S is a start symbol and P is a finite set of productions
in (N ∪ T)∗N(N ∪ T)∗ × (N ∪ T ∪ {•})∗ where •
is a new symbol called cut symbol not in N or T. The
language generated by the cut grammar is defined as
L(G) = {w ∈ (T ∪ •)∗ | S =⇒∗ w}.

Given any string w = w1 • w2 • . . . • wn where
wi ∈ T ∗ for 1 ≤ i ≤ n, the cut function is given as
ŵ = {w1, w2, . . . , wn} and the uncut function is given as
w̃ = w1w2 . . . wn. For a given cut grammar G and start
symbol S, the cut language is defined as ̂L(G) = {ŵ ∈
2T

∗ | S =⇒∗ w} and the uncut language is defined as
˜L(G) = {w̃ ∈ T ∗ | S =⇒∗ w}. With cut grammars, the
structures double strand language, nick language, holl-
iday structure are represented. For more details on cut
grammars, we refer to the work of Searls (1995).

3. Matrix insertion–deletion systems

In this section, we explain the grammar model matrix
insertion–deletion systems. A matrix insertion–deletion

250 L. Kuppusamy and A. Mahendran

system is a construct Υ = (V, T,A,R), where V is
an alphabet, T ⊆ V , A is a finite language over
V , R is a set of finite triples in the matrix format
[(u1, α1/β1, v1), . . . , (un, αn/βn, vn)], where (uk, vk) ∈
V ∗×V ∗, and (αk, βk) ∈ (V +×{λ})∪({λ}×V +), with
(uk, αk/βk, vk) ∈ RIi ∪ RDj ∪ RIi/Dj

, for 1 ≤ i ≤ m,
1 ≤ j ≤ m, 1 ≤ k ≤ n, where m is the number of rules
in the matrix format in R. Here RIi denotes the matrix
which consists of only insertion rules, RDj denotes the
matrix which consists of only deletion rules and RIi/Dj

denotes the matrix which consists of both insertion and
deletion rules.

Consequently, for x, y ∈ V ∗ we can write x =⇒
x′ =⇒ x′′ =⇒ . . . =⇒ y, if y can be obtained from
x by using a matrix consisting of insertion rules (RIi),
or deletion rules (RDj) or insertion and deletion rules
(RIi/Dj

). In a derivation step the rules in a matrix are
applied sequentially one after the other in order, and
no rule is in appearance checking (note that the rules
in a matrix are not applied in parallel). The language
generated by Υ is defined by

L(Υ) = {w ∈ T ∗ | x =⇒∗
Rχ

w, for some

x ∈ A, χ ∈ {Ii, Dj , Ii/Dj}},

where Rχ denotes the matrix rules from an insertion
matrix or a deletion matrix or a combination of both the
rules. =⇒∗ is the reflexive and transitive closure of the
relation =⇒. Note that the string w is collected after
applying all the rules in a matrix and also w ∈ T ∗.

4. Modelling bio-molecular structures

In this section, we show that matrix insertion–deletion
systems can capture the commonly noticed biological
structures that are discussed earlier in the paper. In most
of the following derivations, in each derivation step, we
directly write the resultant string obtained by applying
all the rules in a matrix. In all the lemmas, we adopt
the method of proof by construction in modelling the
bio-molecular structures using matrix insertion–deletion
systems. In the derivation step, the rule at the suffix of
=⇒ denotes the corresponding matrix rule applied. From
the formal language theory perspective, since structures
can be viewed as languages, in many places we refer to be
structure as language.

4.1. Representation of intramolecular structures.
In this section, we model some of the bio-molecular
structures that occur at the intramolecular level.

Lemma 1. The pseudoknot structure language (see
Fig. 2(a)) Lps = {uvūRv̄R | u, v ∈ Σ∗

DNA} can be gen-
erated by a matrix insertion–deletion system.

Proof. The language Lps can be generated
by the matrix insertion–deletion system Υps =
({b, b̄, †1, †2, †3, †4}, {b,
b̄}, {λ, †1 †2 †3†4}, R), where b ∈ {a, t, g, c}, b̄ is
complement of b and R is given as follows:

RI1 = [(λ, λ/b, †1), (λ, λ/b̄, †3)],
RI2 = [(λ, λ/b, †2), (λ, λ/b̄, †4)],
RD1 = [(λ, †1/λ, λ), (λ, †3/λ, λ)],
RD2 = [(λ, †2/λ, λ), (λ, †4/λ, λ)].

The Υps generates only the language Lps. The
idea behind the construction of the system is given as
follows. †1, †2, †3, †4 are used as markers. Whenever
a b is adjoined to the left of †1, its corresponding
complementary b̄ should be adjoined to the left of †3 using
the rule RI1 . So, †1 and †3 are used to control the uūR part
of the language. Similarly, whenever a b is adjoined to the
left of †2, its corresponding complementary b̄ should be
adjoined to the left of †4 using the rule RI2 . So, †2 and
†4 are used to control the vv̄R part of the language. When
the rule RD1 is used first, then system Υps generates only
vv̄R part of the language. When the rule RD2 is used
first, then the system Υps generates only the uūR part
of the language. We present a sample derivation for a
better understanding (the rule at the suffix of the derivation
symbol=⇒ denotes whether an insertion rule or a deletion
rule is applied),

↓ †1 †↓2 †3 †4 =⇒RI1
a †↓1 †2t †↓3 †4 =⇒RI2

a †1 g↓ †2 t †3 c↓†4 =⇒RI2
a †1 ga †2 t †3 ct †4

=⇒RD1
a⇓ga †2 t⇓ct†4 =⇒RD2

aga⇓tct⇓.

�
From Fig. 2(b), the attenuator language can be given

as Lan = {uūRuūR | u ∈ Σ∗
DNA}.

Lemma 2. The attenuator language Lan (see Fig. 2(b))
can be generated by a matrix insertion–deletion system.

Proof. The language Lan can be generated by the matrix
insertion–deletion system

Υan = ({a, t, g, c, †1, †2}, {a, t, g, c}, {λ, †1†2}, R),

where R is given as follows:

RI1 = [(λ, λ/a, †1), (†1, λ/t, λ), (λ, λ/a, †2),
(†2, λ/t, λ)],

RI2 = [(λ, λ/t, †1), (†1, λ/a, λ), (λ, λ/t, †2),
(†2, λ/a, λ)],

RI3 = [(λ, λ/c, †1), (†1, λ/g, λ), (λ, λ/c, †2),
(†2, λ/g, λ)],

RI4 = [(λ, λ/g, †1), (†1, λ/c, λ), (λ, λ/g, †2),
(†2, λ/c, λ)],

RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)].

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 251

Here Υan generates only the language Lan. Marker
†1 is used to control the first part of the language
(uūR) and marker †2 is used to control the second
part of the language (uūR). Whenever a b and its
corresponding complementary b̄ are adjoined by using
the †1, simultaneously by using the †2, the same b and
its complementary b̄ are adjoined. As the rule RI1 uses
both the markers †1 and †2, synchronization is easily
maintained. A similar procedure holds for the remaining
rules RI2 , RI3 and RI4 , e.g.,

↓ †↓1 ↓†↓2 =⇒RI1
a↓ †↓1 t a↓ †↓2 t =⇒RI2

at↓ †↓1 atat↓ †↓2 at =⇒RI3
atc↓ †↓1 gatatc↓ †↓2 gat

=⇒RI4
atcg †1 cgatatcg †2 cgat =⇒RD1

atcg⇓cgatatcg⇓cgat.

�

Lemma 3. The hairpin language (see Fig. 1(b)) Lhp =
{ww̄R | w ∈ Σ∗

DNA} can be generated by a matrix
insertion–deletion system.

Proof. The hairpin language Lhp can be generated by the
matrix insertion–deletion system

Υhp = ({b, b̄, †}, {bb̄}, {λ, †}, R),

where b ∈ {a, t, g, c}, b̄ is complement of b and R is given
as follows:

RI1 = [(λ, λ/b, †), (†, λ/b̄, λ),
RD1 = [(λ, †/λ, λ)].

We present a sample derivation which itself suffices
to see that L(Υhp) = Lhp,

↓†↓ =⇒RI1
t↓ †↓ a =⇒RI1

tg↓ †↓ ca =⇒RI1

tgc↓ †↓ gca =⇒RI1
tgcg↓ †↓ cgca =⇒RD1

tgcg⇓cgca.

�

Lemma 4. The stem and loop language (see Fig. 1(a))
Lsl = {uvūR | u, v ∈ Σ∗

DNA} can be generated by a
matrix insertion–deletion system.

Proof. The stem and loop language Lsl can be
generated by the matrix insertion–deletion system Υsl =
({b, b̄, †1, †2, †3}, {b, b̄}, {λ, †1 †3 †2}, R), where b ∈
{a, t, g, c}, b̄ is the complement of b and R is given as
follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †3)],
RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)],
RD2 = [(λ, †3/λ, λ)].

A sample derivation is given follows:

↓ †1 †3 †↓2
=⇒RI1

c †↓1 †3 †2 g =⇒RI2

c †1 t↓ †3 †2g =⇒RI2
c †1 tc †3 †2g

=⇒RD1
c⇓tc †⇓3 g =⇒RD2

ctc⇓g.

�

Fig. 9. Cloverleaf representation (where A = v1v̄
R
1 , B =

v2v̄
R
2 , C = v3v̄

R
3).

Lemma 5. The cloverleaf language (see Fig. 9,
for n = 3) (Searls, 1988; 1992)

Lcl = {uv1v̄R1 v2v̄R2 . . . vnv̄
R
n ū

R | u, v1, v2, . . . ,
vn ∈ Σ∗

DNA, n ≥ 0}

can be generated by a matrix insertion–deletion system.

Proof. The cloverleaf language Lcl (for n = 3) can be
generated by the matrix insertion–deletion system Υcl =
({b, b̄, †1, †2, †3, †4, †5}, {b, b̄}, {λ, †1†2, †3†4†5, †1†3†4†5
†2}, R), where b ∈ {a, t, g, c}, b̄ is a complement of b and
R is given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †3), (†3, λ/b̄, λ)],
RI3 = [(λ, λ/b, †4), (†4, λ/b̄, λ)],
RI4 = [(λ, λ/b, †5), (†5, λ/b̄, λ)],
RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)],
RD2 = [(λ, †3/λ, λ)],
RD3 = [(λ, †4/λ, λ)],
RD4 = [(λ, †5/λ, λ)].

252 L. Kuppusamy and A. Mahendran

A sample derivation is given as follows:

↓ †1 †3 †4 †5†↓2 =⇒RI1
c↓ †1 †3 †4 †5 †↓2 g

=⇒RI1
cg †↓1 †↓3 †4 †5 †2 cgt

=⇒RI2
acg †1 t †3 a↓ †↓4 †5 †2 cg

=⇒RI3
cg †1 t †3 a c †4 g↓ †↓5 †2cg

=⇒RI4
cg †1 t †3 ac †4 ga †5 t †2 cg

=⇒RD1
cg⇓t †3 ac †4 ga †5 t⇓cg

=⇒RD2
cgt⇓ac †4 ga †5 tcg

=⇒RD3
cgtac⇓ga †5 tcg

=⇒RD4
cgtacga⇓tcg.

�
Using five markers, †1, †2, †3, †4, †5 the system Υcl

generates the cloverleaf language Lcl for n = 3. By
introducing more markers, the system Υcl can generate
a cloverleaf language for an arbitrary value of n.

4.2. Representation of intermolecular structures.
In this section, we model some of the bio-molecular
structures that occur at intermolecular level.

Lemma 6. The double strand language

Lds = {u • ūR | u ∈ Σ∗
DNA}

can be modelled by a matrix insertion–deletion system.

Proof. The double strand language (see Fig. 3(a))
Lds can be be modelled by a matrix insertion–deletion
system Υds = ({b, b̄, •}, {b, b̄, •}, {•}, R) where b ∈
{a, t, g, c}, b̄ is complement of b and R is given as RI1 =
[(λ, λ/b, •), (•, λ/b̄, λ)]. We present a sample derivation
which itself is sufficient to see that L(Υds) = Lds,

↓•↓ =⇒RI1
a↓ •↓ t =⇒RI1

ag↓ •↓ ct =⇒RI1

aga↓ •↓ tct =⇒RI1
agac↓ •↓ gtct.

�
From Fig. 3(b) the nick language can be informally

described as Lnl = {w1 • w2 | w̃2 = w̄1
R}, where w1 ∈

Σ∗ andw2 ∈ (Σ∪{•})∗ (i.e., w2 is a string which contains
a number of •).

Lemma 7. The nick language Lnl can be generated by
matrix insertion–deletion system.

Proof. The nick language (see Fig. 3(b)) Lnl can
be generated by the cut grammar Gnl = S → bSb̄ |
S• | • for each b ∈ ΣDNA. The grammar Gnl

can be modelled by the matrix insertion–deletion system

Υnl = ({b, b̄, †, •}, {b, b̄, •}, {b † b̄, †•, •}, R) where b ∈
{a, t, g, c}, b̄ is a complement of b and R is given as

RI1 = [(λ, λ/b, †), (†, λ/b̄, λ)],
RI2 = [(†, λ/•, λ)],
RD1 = [(λ, †/λ, λ)].

A sample derivation is given as follows:

a↓ †↓ t =⇒RI1
at↓ †↓ at =⇒RI1

atg †↓ cat =⇒RI2

atg↓ †↓ •cat =⇒RI1
atga †↓ t • cat =⇒RI2

atga † •t • cat =⇒RD1
atga⇓ • t • cat.

�

Fig. 10. Holliday structure.

Lemma 8. The holliday structure (see Fig. 10)

Lhs = {u1 • ū1
Ru2 • ū2

Ru3 • ū3
Ru4 • ū4

R | u1, u2,

u3, u4 ∈ Σ∗
DNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lhs can be generated by matrix
insertion–deletion system

Υhs = ({b, b̄, †1, †2, †3, †4, †5, •}, {b, b̄, •},
{†1 • †2 • †3 • †4 • †5, • • ••}, R)

where b ∈ {a, t, g, c}, b̄ is a complement of b and R is

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 253

given as

RI1 = [(†1, λ/b, λ), (λ, λ/b̄, †2)],
RI2 = [(†2, λ/b, λ), (λ, λ/b̄, †3)],
RI3 = [(†3, λ/b, λ), (λ, λ/b̄, †4)],
RI4 = [(†4, λ/b, λ), (λ, λ/b̄, †5)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)],
RD5 = [(λ, †5/λ, λ)].

A sample derivation is given as follows:

†↓1 •↓ †2 • †3 • †4 • †5
=⇒RI1

†↓1a •↓ t †2 • †3 • †4 • †5
=⇒RI1

†1ca • tg †↓2 •↓ †3 • †4 • †5
=⇒RI2

†1ca • tg †↓2 a •↓ t †3 • †4 • †5
=⇒RI2

†1ca • tg †2 ca • tg †↓3 •↓ †4 • †5
=⇒RI3

†1ca • tg †2 ca • tg †↓3 g •↓ c †4 • †5
=⇒RI3

†1ca • tg †2 ca • tg †3 ag • ct †↓4 •↓ †5
=⇒RI4

†1ca • tg †2 ca • tg †3 ag • ct †↓4 a • t↓ †5
=⇒RI4

†1ca • tg †2 ca • tg †3 ag • ct †4 ca • tg †5
=⇒RD1

⇓ca • tg †2 ca • tg †3 ag • ct †4 ca • tg †5
=⇒RD2

ca • tg⇓ca • tg †3 ag • ct †4 ca • tg †5
=⇒RD3

ca • tgca • tg⇓ag • ct †4 ca • tg †5
=⇒RD4

ca • tgca • tgag • ct⇓ca • tg †5
=⇒RD5

ca • tgca • tgag • ctca • tg⇓.
�

5. RNA secondary structures

In this section, first we show the interpretation of various
RNA secondary structures in terms of formal language
representations (as shown in Table 2), and we model such
structures using matrix insertion–deletion systems. If the
strings are collected as per the dotted directed lines, the
RNA secondary structures represented in Figs. 4(a), 4(b),
5(a), 5(b), 6, 7(a), 7(b) and 8 can be given in terms of
languages as shown in Table 2.

Thus, given a DNA/RNA sequence, we can (try
to) first identify the corresponding the formal language
and then one can think of what matrix insertion–deletion
system can generate the language.

Lemma 9. The internal loop structure (see Fig. 4(a))

Lil={u1v1u2v3ū2
Rv2ū1

R | u1, u2, v1, v2, v3 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Table 2. Formal language representation: #1 represents the AĀ
and #2 represents the BB̄ in Fig. 8.

Fig. no. Bio-molecular structure
Formal language representation

4(a) Internal loop
Lil = {u1v1u2v3ū2

Rv2ū1
R}

4(b) Bulge loop
Lbl = {u1v1u2v2ū2

Rū1
R}

5(a) Multi branch loop
Lmbl = {u1v1v̄1

Ru2ū2
Rv2ū1

R}
5(b) Extended pseudoknot

Lepk = {u1v1ū1
Ru2v̄1

Rū2
R}

6 Kissing hairpin
Lkhp = {u1v1#1v2u2ū2

Rv3#2v4ū1
R}

7(a) Simple H-type
Lsht = {u1v1u2ū1

Rv2ū2
R}

7(b) Recursive pseudoknot
Lrps = {u1u2u3ū2

Ru4ū1
Rū4

Ru5ū5
Rū3

R}
8 Three-knot structure

Ltks = {u1vu2u3ū1
Rū2

Rū3
R}

Proof. The language Lil can be generated by the matrix
insertion–deletion system

Υil = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †3 †4†2}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †3), (†4, λ/b̄, λ)],
RI3 = [(†1, λ/b, λ)],
RI4 = [(†3, λ/b, λ)],
RI5 = [(λ, λ/b, †2)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 †3 †4 †↓2 =⇒RI1
a↓ †1 †3 †4 †↓2u

=⇒RI1
au †↓1 †3 †↓4 †2au

=⇒RI2
au †1 u↓ †3 †↓4a †2 au

=⇒RI2
au †↓1 ua †3 †4ua †2 au

=⇒RI3
au †↓1 gua †3 †4ua †2 au

=⇒RI3
au †1 cgua †↓3 †4ua †2 au

254 L. Kuppusamy and A. Mahendran

=⇒RI4
au †1 cgua †↓3 c †4 ua †2 au

=⇒RI4
au †1 cgua †3 gc †4 ua †2 au

=⇒RD1
au⇓cgua †3 gc †4 ua †2 au

=⇒RD2
aucgua †3 gc †4 ua⇓au

=⇒RD3
aucgua⇓gc †4 uaau

=⇒RD4
aucguagc⇓uaau.

The idea is that †1, †2, †3 and †4 are used as markers.
†1 and †2 are used to control the u1ū1

R part of the
language. Whenever a b is adjoined to the left of †1, its
corresponding complementary b̄ is adjoined to the right of
†2 and the synchronization is maintained. Similarly, †3
and †4 are used to control the u2ū2

R part of the language,
†1,†2 and †3 are used to control the v1, v2 and v3 part of
the language, respectively. �

Lemma 10. The bulge loop structure (see Fig. 4(b))

Lbl = {u1v1u2v2ū2
Rū1

R | u1, u2, v1, v2 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lbl can be generated by the matrix
insertion–deletion system

Υbl = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †4 †3†2}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †4), (†3, λ/b̄, λ)],
RI3 = [(†1, λ/b, λ)],
RI4 = [(†4, λ/b, λ)],
RD1 = [(λ, †1/λ, λ),
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

As the derivation and the language are similar to
internal loop structure, we omit the sample derivation.

�

Lemma 11. The multi-branch loop structure (see
Fig. 5(a))

Lmbl = {u1v1v̄1
Ru2ū2

Rv2ū1
R | u1, u2, v1, v2 ∈ Σ∗

RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lmbl can be generated by the matrix
insertion–deletion system

Υmbl = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †3 †4†2}, R),

where b ∈ {a, u, g, c}, b̄ is complement of b andR is given
as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †4), (†4, λ/b̄, λ)],
RI3 = [(λ, λ/b, †3), (†3, λ/b̄, λ)],
RI4 = [(λ, λ/b, †2)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

As the derivation and the language are similar to
internal loop structure, we omit the sample derivation.

�

Lemma 12. The extended pseudoknot structure (see
Fig. 5(b))

Lepk = {u1v1ū1
Ru2v̄1

Rū2
R | u1, u2, v1 ∈ Σ∗

RNA}
can be generated by a matrix insertion–deletion system.

Proof. The language Lepk can be generated by the matrix
insertion–deletion system

Υepk = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †2 †3†4}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(†1, λ/b, λ), (†3, λ/b̄, λ)],
RI3 = [(λ, λ/b, †3), (†4, λ/b̄, λ)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

A sample derivation is given as follows:
↓ †1 †↓2 †3 †4 =⇒RI1

a↓ †1 †↓2u †3 †4
=⇒RI1

ag↓ †1 †↓2cu †3 †4
=⇒RI1

agc †↓1 †2gcu †↓3 †4
=⇒RI2

agc †↓1 a †2 gcu †↓3 u †4
=⇒RI2

agc †1 ga †2 gcu↓ †3 cu †↓4
=⇒RI3

agc †1 ga †2 gcua↓ †3 cu †↓4 u
=⇒RI3

agc †1 ga †2 gcuac †3 cu †4 gu
=⇒RD1

agc⇓ga †2 gcuac †3 cu †4 gu
=⇒RD2

agcga⇓gcuac †3 cu †4 gu
=⇒RD3

agcgagcuac⇓cu †4 gu
=⇒RD4

agcgagcuaccu⇓gu.

�

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 255

Lemma 13. The kissing hairpin structure (see Fig. 6)

Lkhp = {u1v1AĀv2u2ū2
Rv3BB̄v4ū1

R | u1, u2, v1,

v2, v3, v4 ∈ Σ∗
RNA and A,B ∈ ΣRNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lkhp can be generated by the matrix
insertion–deletion system

Υkhp=({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1AĀ
†3 †4BB̄†2}, R),

where A,B, b ∈ {a, u, g, c}, Ā, B̄, b̄ is the complement of
A, B, b and R is given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(†3, λ/b, λ), (λ, λ/b̄, †4)],
RI3 = [(†1, λ/b, λ)],
RI4 = [(λ, λ/b, †3)],
RI5 = [(λ, λ/b, †2)],
RI6 = [(†4, λ/b, λ)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 au †3 †4ua†↓2 =⇒RI1
c↓ †1 au †3 †4ua †↓2 g

=⇒RI1
cu †1 au †3 ↓↓ †4 ua †2 ag

=⇒RI2
cu †↓1 au †3 c g †4 ua †2 ag

=⇒RI3
cu †1 gau↓ †3 cg †4 ua †2 ag

=⇒RI4
cu †1 gauu †3 cg †4 ua↓ †2 ag

=⇒RI5
cu †1 gauu †3 cg †↓4 uac †2 ag

=⇒RI6
cu †1 gauu †3 cg †4 guac †2 ag

=⇒RD1
cu⇓gauu †3 cg †4 guac †2 ag

=⇒RD2
cugauu †3 cg †4 guac⇓ag

=⇒RD3
cugauu⇓cg †4 guacag

=⇒RD4
cugauucg⇓guacag.

The idea for generating the languageLkhp is given as
follows. As AĀ and BB̄ are already present in the axiom,
markers are not required to generate it. To generate the
remaining part of the language, †1, †2, †3 and †4 are used
as markers. †1 and †2 are used to control the u1ū1

R part
of the language. Whenever a b is adjoined to the left of †1,
its corresponding complementary b̄ is adjoined to the right
of †2 and the synchronization is maintained. Similarly, †3
and †4 are used to control the u2ū2

R part of the language,
†1,†3, †4 and †2 are used to control the v1, v2, v3 and v4
part of the language, respectively. �

Lemma 14. The simple H-type structure (see Fig. 7(a))

Lsht = {u1v1u2ū1
Rv2ū2

R | u1, u2, v1, v2 ∈ Σ∗
RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Lsht can be generated by the matrix
insertion–deletion system

Υsht = ({b, b̄, †1, †2, †3}, {b, b̄}, {†1 †2 †3}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)],
RI2 = [(λ, λ/b, †2), (†3, λ/b̄, λ)],
RI3 = [(†1, λ/b, λ)],
RI4 = [(λ, λ/b, †3)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)].

As the derivation and the language are similar to
extended pseudoknot structure, we omit the sample
derivation. �

Lemma 15. The recursive pseudoknot structure (see
Fig. 7(b))

Lrps = {u1u2u3ū2
Ru4ū1

Rū4
Ru5ū5

Rū3
R | u1, u2,

u3, u4, u5 ∈ Σ∗
RNA}

can be modelled using a matrix insertion–deletion system.

Proof. The language Lrps can be generated by the matrix
insertion–deletion system

Υrps = ({b, b̄, †1, †2, †3, †4 †5}, {b, b̄}, {†1†2†3†4 †5}, R),

where b ∈ {a, u, g, c}, b̄ is a complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (†3, λ/b̄, λ)],
RI2 = [(†1, λ/b, λ), (†2, λ/b̄, λ)],
RI3 = [(λ, λ/b, †2), (†5, λ/b̄, λ)],
RI4 = [(λ, λ/b, †3), (λ, λ/b̄, †4)],
RI5 = [(†4, λ/b, λ), (λ, λ/b̄, †5)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)],
RD5 = [(λ, †5/λ, λ)].

256 L. Kuppusamy and A. Mahendran

A sample derivation is given as follows:

↓ †1 †2 †↓3 †4†5 =⇒RI1
a↓ †1 †2 †↓3 u †4 †5

=⇒RI1
au †↓1 †↓2 †3 au †4 †5

=⇒RI2
au †↓1 g †↓2 c †3 au †4 †5

=⇒RI2
au †1 ug↓ †2 ac †3 au †4 †↓5

=⇒RI3
au †1 ugu↓ †2 ac †3 au †4 †↓5a

=⇒RI3
au †1 uguc †2 ac↓ †3 au↓ †4 †5ga

=⇒RI4
au †1 uguc †2 aca↓ †3 auu↓ †4 †5ga

=⇒RI4
au †1 uguc †2 acau †3 auua †4 ↓↓ †5 ga

=⇒RI5
au †1 uguc †2 acau †3 auua †4 ↓gc↓ †5 ga

=⇒RI5
au †1 uguc †2 acau †3 auua †4 ugca †5 ga

=⇒RD1
au⇓uguc †2 acau †3 auua †4 ugca †5 ga

=⇒RD2
auuguc⇓acau †3 auua †4 ugca †5 ga

=⇒RD3
auugucacau⇓auua †4 ugca †5 ga

=⇒RD4
auugucacauauua⇓ugca †5 ga

=⇒RD5
auugucacauauuaugca⇓ga.

�

Lemma 16. The three-knot structure (see Fig. 8)

Ltks = {u1vu2u3ū1
Rū2

Rū3
R | u1, u2, u3, v ∈ Σ∗

RNA}

can be generated by a matrix insertion–deletion system.

Proof. The language Ltks can be generated by the matrix
insertion–deletion system

Υtks = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {†1 †2 †3†4}, R),

where b ∈ {a, u, g, c}, b̄ is the complement of b and R is
given as follows:

RI1 = [(λ, λ/b, †1), (λ, λ/b̄, †3)],
RI2 = [(λ, λ/b, †2), (†3, λ/b̄, λ)],
RI3 = [(†2, λ/b, λ), (λ, λ/b̄, †4)],
RI4 = [(†1, λ/b, λ)],
RD1 = [(λ, †1/λ, λ)],
RD2 = [(λ, †2/λ, λ)],
RD3 = [(λ, †3/λ, λ)],
RD4 = [(λ, †4/λ, λ)].

A sample derivation is given as follows:

↓ †1 †↓2 †3 †4 =⇒RI1
a↓ †1 †2u↓ †3 †4

=⇒RI1
au †↓1 †2ua↓ †↓3 †4

=⇒RI2
au †1 g↓ †2 ua↓ †↓3 c †4

=⇒RI2
au †1 gu †↓2 ua †3 ac↓ †4

=⇒RI3
au †1 gu †↓2 uua †3 aca↓ †4

=⇒RI3
au †↓1 gu †2 cuua †3 acag †4

=⇒RI4
au †↓1 ggu †2 cuua †3 acag †4

=⇒RI4
au †1 cggu †2 cuua †3 acag †4

=⇒RD1
au⇓cggu †2 cuua †3 acag †4

=⇒RD2
aucggu⇓cuua †3 acag †4

=⇒RD3
aucggucuua⇓acag †4

=⇒RD4
aucggucuuaacag⇓.

�

6. Conclusion

In this paper, we introduced the matrix insertion–deletion
system and, using it, we modelled several bio-molecular
structures that occur at the intramolecular, intermolecular
and RNA secondary structure level. These structures are
often discussed in the literature, thus they can be assumed
to be important bio-molecular structures.

We remark that, in this paper, to model all the
bio-molecular structures we used a matrix of insertion
rules and a matrix of deletion rules separately (i.e., the
system has no insertion rule and deletion rule together
in a matrix) thus forming a new subclass. In all the
systems we considered here, the insertion rule uses
context and the deletion rule uses no context. This
can be viewed as follows: the insertion operation
works in a context-sensitive manner whereas the deletion
operation works in a context-free manner. Thus, the
system uses both the nature of context-sensitiveness and
context-freeness, and it seems to be a promising model
for application to various domains such as molecular
biology and linguistics. With matrices consisting of both
insertion and deletion rules, more complicated structures
such as tertiary structures, quaternary structures, protein
secondary structures (Mamitsuka and Abe, 1994) can be
modelled, and this is left as a future research work.

From the computational linguistic point of view, one
natural question is where to place this newly introduced
formalism among the other formalisms that exist in
this domain. Though the parsing algorithm for tree
adjoining grammars (TAG) and linear indexed grammar
take O(n6) (Pardo et al., 1997), they have their own
deficiency. For example, TAG cannot generate Li =
{an1an2 . . . ani | n ≥ 1} for i ≥ 5 and the triple copy

Modelling DNA and RNA secondary structures using matrix insertion–deletion systems 257

language L3cp = {www | w ∈ {a, b}∗}. However,
multi-component TAG (MCTAG) can cover them. But
there are languages like Lnsl = {a2nbn | n ≥ 1}
that cannot be covered by MCTAG, although, on the
other hand, they are accepted by a Turing machine
in polynomial time (Boullier and Sagot, 2011). With
the introduced subclass variant, we can easily generate
Li, i ≥ 5 and L3cp languages; however, to generate Lnsl,
it seems required that both insertion and deletion rules be
used together in a matrix. We suppose that the introduced
grammar formalism can emulate TAG, but subsumed by
the range concatenation grammar (RCG). Analyzing the
relationship among these grammar formalisms with the
introduced formalism in detail is out of objective of this
paper, but can be carried out as a future work.

Acknowledgment

The first author would like to acknowledge the project
SR/S3/EECE/054/2010, Department of Science and
Technology, New Delhi, India. The second author is on
leave from the parent institute at VIT University, Vellore,
India. The authors would also like to thank the anonymous
referees for their useful suggestions and corrections.

References
Boullier, P. and Sagot, B. (2011). Multi-component tree insertion

grammars, in P. De Groote et al. (Eds.), Formal Grammar
2009, Lecture Notes in Artificial Intelligence, Vol. 5591,
Springer, Berlin/Heidelberg, pp. 31–46.

Brendel, V. and Busse, H.G. (1984). Genome structure described
by formal languages, Nucleic Acids Research 12(5):
2561–2568.

Brown, M. and Wilson, C. (1995). RNA pseudoknot modelling
using intersections of stochastic context free grammars
with applications to database search, Proceedings of the
Pacific Symposium on Biocomputing, Big Island, HI, USA,
pp. 109–125.

Cai, L., Russell, L. and Wu, Y. (2003). Stochastic modelling of
RNA pseudoknotted structures: A grammatical approach,
Bioinformatics 19(1): 66–73.

Calude, C.S. and Paŭn, Gh. (2001). Computing with Cells and
Atoms: An Introduction to Quantum, DNA and Membrane
Computing, Taylor and Francis, London.

Chiang, D., Joshi, A.K. and Searls, D.B. (2006). Grammatical
representations of macromolecular structure, Journal of
Computational Biology 13(5): 1077–1100.

Dong, S. and Searls, D.B. (1994). Gene structure prediction by
linguistic methods, Genomics 23(3): 540–551.

Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization,
MIT Press, Cambridge, MA.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998). Bi-
ological Sequence Analysis, Cambridge University Press,
Cambridge.

Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary
Computing, Springer, Berlin/Heidelberg.

Galiukschov, B.S. (1981). Semicontextual grammars, Matem-
aticheskaya Logika i Matematicheskaya Lingvistika:
38–50, (in Russian).

Goldberg, E.D. (1989). Genetic Algorithms in Search, Opti-
mization and Machine Learning, Addison-Wesley, Boston,
MA.

Haussler, D. (1982). Insertion and Iterated Insertion as Oper-
ations on Formal Languages, Ph.D. thesis, University of
Colorado, Boulder, CO.

Haussler, D. (1983). Insertion languages, Information Science
131(1): 77–89.

Head, T. (1987). Formal language theory and DNA: An
analysis of the generative capacity of specific recombinant
behaviors, Bulletin of Mathematical Biology 49(6):
737–750.

Kuppusamy, L., Mahendran, A. and Krishna, S.N. (2011a).
Matrix insertion–deletion systems for bio-molecular
structures, in R. Natarajan and A. Ojo (Eds.), ICDCIT-
2011, Lecture Notes in Computer Science, Vol. 6536,
Springer, Berlin/Heidelberg, pp. 301–311.

Kuppusamy, L., Mahendran, A. and Clergerie, E.V.
(2011b). Modelling intermolecular structures and
defining ambiguity in gene sequences using matrix
insertion–deletion systems in biology, computation and
linguistics, in G.B. Enguix et al. (Eds.), New Inter-
disciplinary Paradigms, IOS Press, Amsterdam, pp.
71–85.

Lyngso, R.B., Zuker, M. and Pedersen, C.N.S. (1999). Internal
loops in RNA secondary structure prediction, RECOMB99,
Proceedings of the 3rd International Conference on Com-
putational Molecular Biology, Lyon, France, pp. 260–267.

Lyngso, R.B. and Pedersen, C.N.S. (2000). Pseudoknots in
RNA secondary structure, RECOMB00, Proceedings of
the 4th Annual International Conference on Computational
Molecular Biology, Tokyo, Japan pp. 201–209.

Mamitsuka, H. and Abe, N. (1994). Prediction of beta-sheet
structures using stochastic tree grammars, Proceedings
of the 5th Workshop on Genome Informatics, Yokohama,
Japan, pp. 19–28.

Pardo, M.A.A., Clergerie, E.V. and Ferro, M.V. (1997).
Automata-based parsing in dynamic programming for
LIG, in A.S. Narinyani (Ed.), Proceedings of the DIA-
LOGUE’97 Computational Linguistics and Its Applica-
tions Workshop, Moscow, Russia, pp. 22–27.

Păun, Gh., Rozenberg, G. and Salomaa, A. (1998). DNA
Computing: New Computing Paradigms, Springer,
Berlin/Heidelberg.

Păun, Gh. (2002). Membrane Computing: An Introduction,
Springer, Berlin/Heidelberg.

Petre, I. and Verlan, S. (2012). Matrix insertion–deletion
systems, Theoretical Computer Science 456: 80–88.

Rivas, E. and Eddy, S.R. (2000). The language of RNA: A formal
grammar that includes pseudoknots, Bioinformatics 16(4):
334–340.

258 L. Kuppusamy and A. Mahendran

Rozenberg, G. and Salomaa, A. (1997). Handbook of Formal
Languages, Vol. 1, Springer, New York, NY.

Sakakibara, Y., Brown, R., Hughey, R., Mian, I.S., Sjolander,
K., Underwood, R.C. and Haussler, D. (1996). Stochastic
context-free grammars for tRNA modelling, Nucleic Acids
Research 22(23): 5112–5120.

Sakakibara, Y. (2003). Pair hidden Markov models on tree
structures, Bioinformatics 19(1): 232–240.

Searls, D.B. (1988). Representing genetic information with
formal grammars, Proceedings of the National Confer-
ence on Artificial Intelligence, Saint Paul, MN, USA, pp.
386–391.

Searls, D.B. (1992). The linguistics of DNA, American Scientist
80(6): 579–591.

Searls, D.B. (1993). The computational linguistics of biological
sequences, in L. Hunter (Ed.), Artificial Intelligence and
Molecular Biology, AAAI Press, Paolo Alto, CA, pp.
47–120.

Searls, D.B. (1995). Formal grammars for intermolecular
structures, 1st International IEEE Symposium on Intelli-
gence and Biological Systems, Washington, DC, USA, pp.
30–37.

Searls, D.B. (2002). The language of genes, Nature 420(6912):
211–217.

Theis, C., Janssen, S. and Giegerich, R. (2010). Prediction of
RNA secondary structure including kissing hairpin motifs,
Proceedings of WABI 2010, Liverpool, UK, pp. 52–64.

Uemura, Y, Hasegawa, A., Kobayashi, S. and Yokomori, T.
(1999). Tree adjoining grammars for RNA structure
prediction, Theoretical Computer Science 210(2):
277–303.

Yuki, S. and Kasami, T. (2006). RNA pseudoknotted structure
prediction using stochastic multiple context-free grammar,
IPSJ Transactions on Bioinformatics 47: 12–21.

Lakshmanan Kuppusamy received his Ph.D.
from IIT Madras, India (2004), in theoretical
computer science. His research interests in-
clude formal language theory and automata, bio-
inspired computing models and epistemic logic.
He has published more than 30 papers in interna-
tional journals and refereed international confer-
ences. He is currently working as a professor in
the School of Computing Science and Engineer-
ing at VIT University, Vellore, India.

Anand Mahendran received his Ph.D. (com-
puter science and engineering) from VIT Univer-
sity, India, in 2012, his M.E. (computer science
and engineering) from Anna University, India, in
2005, and his B.E. (computer science and engi-
neering) from VIT University, India, in 2003. His
research interests include formal language theory
and automata, and bio-inspired computing mod-
els. He has published more than 20 papers in
international journals and refereed international

conferences. He works as an assistant professor in the College of Com-
puter Science and Information Systems, Jazan University, Kingdom of
Saudi Arabia.

Received: 8 August 2014
Revised: 17 March 2015
Re-revised: 30 July 2015

	Introduction
	Preliminaries
	Matrix insertion–deletion systems
	Modelling bio-molecular structures
	Representation of intramolecular structures
	Representation of intermolecular structures

	RNA secondary structures
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

