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In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the
largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input.
In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation tech-
nique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum
controlled invariant sets of the steering and braking control systems at various velocities and road conditions. Illustration
examples show that, depending on the environments, different vehicle dynamic regions can be reached and stabilized by
these controllers. The results can be applied to the theoretical basis of their interventions into the vehicle control system.
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1. Introduction and motivation

In road vehicles, several active components are
applied simultaneously to handle various performance
requirements. Since, in their simultaneous operation,
interference or conflicts may occur in the entire vehicle
system, the coordination of the operations must be
guaranteed. Integrated control is able to improve safety
by modifying the operations of local controllers. If
performance degradation has occurred in the operation of
an actuator/sensor, the degraded element is substituted for
by another one which provides similar dynamic effects.
This coordination must be based on a theoretical method.

Recently, several important survey papers have been
presented on the topic of integrated vehicle control (see,
e.g., Yu et al., 2008; Cairano et al., 2013). Here are a few
examples. A vehicle control with four-wheel-distributed
steering and four-wheel-distributed traction/braking
systems was proposed by Ono et al. (2006). A strategy
with throttle control and automatic transmission was
proposed by Kim et al. (2007). A yaw stability control
system in which an active torque distribution and
differential braking systems are used was put forward
by Zhang et al. (2009). The integration of differential
braking and front steering was proposed by Cairano
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et al. (2013). An integrated control that involves both
four-wheel steering and yaw moment control was
designed by Jianyong et al. (2007). Active steering and
suspension controllers were also integrated to improve
yaw and roll stability (Mastinu et al., 1994). A global
chassis control involving an active/semi-active suspension
and brake was proposed by Poussot-Vassal et al. (2008).
A reconfigurable and fault-tolerant control system based
on model predictive control (MPC) for the stop-and-go
function was applied by Yetendje et al. (2012). Reliability
estimation in degraded functional conditions relating to
actuator faults was introduced by Khelassi et al. (2011).
In integrated control systems the characteristics of the
drivers’ behavior were also taken into consideration in the
control (Lu and Filev, 2009).

Based on physical considerations, an analytical
method for the analysis of stability regions was provided
by Pacejka (2004). Comprehensive studies on both system
and structural stability were done by Sadri and Wu (2013).
The control design focused only on steering control. The
design of lateral stability control based on set-theoretical
methods was proposed by Palmieri et al. (2011). In the
control design an approximate piecewise-affine nonlinear
dynamical model of the vehicle was applied (Palmieri
et al., 2012; Carvalho et al., 2013). Control methods in
which there were large operating regions accessible by the
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driver and smooth interventions at the stability boundaries
were proposed by Kritayakirana and Gerdes (2012b), as
well as Beal and Gerdes (2013).

Although vehicle control actuation selection has
been usually performed using practical considerations,
(see, e.g., Németh and Gáspár, 2011), in this paper, a
theoretical basis for the coordination of control actuations
is proposed. The stability regions of the maximum control
inputs are also calculated. The aim of the analysis is to
identify similarities and differences between the different
control actuations. In an earlier paper, a reachable
set-based analysis was presented to illustrate the benefits
of the integration of the steering and brake controllers
(see Németh and Gáspár, 2013). Although the reachable
set analysis of linear vehicle models can be a relatively
fast and easily applicable technique for determination of
the actuator intervention limit, it has some drawbacks
concerning the linear approach. In the paper, a nonlinear
polynomial sum-of-squares (SOS) programming method
is applied to calculate the shape of the controlled invariant
sets of vehicle control actuations. A possible application
of the analysis in the control strategy to guarantee vehicle
stability is also proposed.

The SOS programming method is developed for
general nonlinear systems. It can be widely used for
systems whose nonlinearities are polynomial or can be
approximated with polynomial functions. Since the tire
force is described by a nonlinear function, the SOS
method can be applied to various road vehicles. In the
proposed method, the polynomial approximation of the
tire characteristics provides an opportunity for handling
the lateral vehicle dynamics.

Remark 1. In the paper, the definition of the global
asymptotic stability is used. The system ẋ = f(x) is
asymptotically stable at x = 0 if it is stable at x = 0 and,
additionally, there exists h > 0 such that, if ||x0|| < h,
then limt→∞ ||φt(x0)|| = 0. Furthermore, if ∀x0 ∈
R

n, limt→∞ ||φt(x0)|| = 0, then the system is globally
asymptotically stable (Jarvis-Wloszek, 2003).

The stability problem of road vehicles in the focus
of the paper is that the oversteer of the vehicle during
cornering is eliminated by reducing the side slip values
of both the front and rear axles. The problem posed by
the oversteer is that the vehicle may become dynamically
unstable with a tendency to spin out due to a small
lateral disturbance (e.g., wind forces). If the side slip
values converge to zero, the vehicle can be steered either
neutrally or with understeer during cornering. Note that
stability can be guaranteed in an understeered vehicle.

In the paper, a polynomial state space representation
of the model is used with two state variables, i.e., the
side-slip angles of the front and rear axles α1 and α2. The
dynamic stability of the system can be guaranteed if these
state variables converge to zero. The computation method

of controlled invariant sets proposed in the paper provides
a domain of state variables in which the understeer can be
guaranteed.

The contribution of the paper is the following.
A three-step iterative method is developed for the
computation of the maximum controlled invariant sets.
The nonlinear tire characteristics are approximated by a
polynomial form in a wide operation range; consequently,
the stability analysis is valid in practical applications.
Using the proposed method, the operations of the steering
and brake actuations are analyzed and compared.

The paper is organized as follows. In Section 2,
the nonlinear polynomial vehicle model and stability
regions are formulated. The fundamentals of the SOS
programming method used are detailed in Section 3.
In Section 4, the computation method of maximum
controlled invariant sets of polynomial lateral dynamical
vehicle model is presented. The practical computation
of the SOS problem is illustrated in an example. The
computation results of the invariant sets at different
velocities and adhesion coefficients are presented through
simulation examples in Section 5. The control application
of the set analysis is found in Section 6. Section 7 contains
some concluding remarks.

2. Nonlinear modeling of lateral vehicle
dynamics

The starting point is a nonlinear lateral vehicle model,
on which the analysis of the actuation efficiency is based
(see Fig. 1). The two control actuations of the system
are the differential braking torque Mbr and the front
wheel steering angle δ. First, the formulation of the
lateral dynamical model is detailed, which incorporates
the nonlinearities of the tire characteristics. Second, the
stability regions of the vehicle are illustrated based on a
simulation example.
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Fig. 1. Scheme of the lateral vehicle model.



Nonlinear analysis of vehicle control actuations based on controlled invariant sets 33

The torque Mbr results from the different braking
forces on the wheels. Although the control-oriented
vehicle formulation is a single-track bicycle model,
the control torque Mbr can be actuated. In the
implementation, the control input Mbr is transformed
into wheel forces, which are distributed between the four
wheels. The force distribution must guarantee that the
braking forces on the wheels generate Mbr.

2.1. Formulation of the vehicle model. Modeling tire
forces is a crucial point of vehicle dynamics. Several
tire models in which the nonlinearity of longitudinal
and lateral tire forces is formed accurately have already
been published (see, e.g., Pacejka, 2004; Kiencke and
Nielsen, 2000; de Wit et al., 1995). In the paper, a
polynomial tire modeling approach is presented, by which
the nonlinearities of the tire characteristics are considered
in a given operation range. The nonlinear characteristics
of the lateral tire force in the function of tire side-slip α
are illustrated in Fig. 2. The polynomial approximation is
formulated as

F(α) =

n∑

k=1

ckα
k = c1α+ c2α

2 + · · ·+ cnα
n. (1)

In the example presented in Fig. 2, the exponent n is
chosen to be 10. Using this approximation, the tire model
is valid between α = −12◦ and α = +12◦. Note
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Fig. 2. Modeling of the lateral tire force.

that the tire characteristics are obtained from the vehicle
simulation software CarSim.

The lateral dynamics of the vehicle are formulated
by the following equations. The first one represents the
dynamics of the yaw moment, while the second forms the
dynamics of the lateral force:

Jψ̈ = F1(α1)l1 −F2(α2)l2 +Mbr, (2a)

mv
(
ψ̇ + β̇

)
= F1(α1) + F2(α2), (2b)

where m is the mass of the vehicle, J is yaw-inertia, l1
and l2 are geometric parameters, β is the side-slip angle
of the chassis, ψ̇ is the yaw-rate. F1(α1) and F2(α2)
represent lateral tire forces, which depend on tire side-slip
angles α1 and α2. The relationships between the tire
side-slip angles for the front and rear axles, the steering
angle of the vehicle and the side-slip angle of the chassis
are tan(δ − α1) = (l1ψ̇ + v sinβ)/(v cosβ), tan(α2) =
(l2ψ̇−v sinβ)/(v cosβ). In stable driving conditions tire
side-slip angle αi is normally no greater than 12◦ and the
equations can be simplified by substituting sinβ ≈ β
and cosβ ≈ 1. Moreover, the relative error of these
simplifications is less than 1% (see also Kritayakirana
and Gerdes, 2012a). Thus, we get the following side-slip
angles of the front and rear axles:

α1 = δ − β − ψ̇l1
v
, (3a)

α2 = −β +
ψ̇l2
v
. (3b)

In the following, (3) is used to transform (2) into a
polynomial state-space representation ẋ = f(x) + gu,
where x is the state vector, u is the control input signal,
f and g are vectors.

Remark 2. In several control applications, the lateral
forces are approximated with linear functions, such as
Fi(αi) = ciαi, i = {1, 2}, where ci is cornering
stiffness. The advantage of this formulation is the simple
description, although the linear tire model can be used in
a narrow tire side-slip range (±3◦) (see Fig. 2).

The yaw rate and the side slip of the vehicle can be
expressed from (3) in the following forms:

ψ̇ = v
α2 − α1 + δ

l1 + l2
, (4a)

β = −α1l2 + α2l1 − l2δ

l1 + l2
. (4b)

Equation (2) contains the time derivatives of ψ̇ and β,
which must be differentiated to obtain ψ̈ and β̇. At a
constant velocity v, the derivatives are

ψ̈ = v
α̇2 − α̇1 + δ̇

l1 + l2
, (5a)

β̇ = − α̇1l2 + α̇2l1 − l2δ̇

l1 + l2
. (5b)

Now the vehicle model (2) is reformulated using (4)
and (5):
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α̇2 − α̇1 =

[
l1 + l2
Jv

(F1(α1)l1 −F2(α2)l2)

]

− δ̇ +
l1 + l2
Jv

Mbr, (6a)

α̇1l2 + α̇2l1 =v(α2 − α1)− l1 + l2
mv

[F1(α1) + F2(α2)]

+ vδ + l2δ̇. (6b)

The rearrangement of the vehicle model shows that
the new states of the model are tire slip angles α1 and
α2. In this way, the nonlinearity of the lateral tire forces
F1, F2 can be considered. However, (6) includes the time
derivative of the front-wheel steering angle. Since δ is a
control input, δ̇ is modeled as

δ̇ ∼= max

(
|δ̇|
|δ|

)
· δ = ν · δ, (7)

where parameter ν represents the relationship between
the maximum steering value and the variation speed of
δ. Since max δ is a given fixed limit in the actuation
analysis, a high ν value represents a fast-changing steering
signal, while a slow-changing steering signal is modeled
with low ν.

Remark 3. Németh and Gáspár (2011) proposed
a second-order steering model, by which δ and δ̇ are
regarded as system states. In this case, the control input of
the system is the steering torque generated by an electric
motor or by the driver. Although the application of the
proposed steering model leads to a more sophisticated
lateral vehicle model, it increases the complexity of the
polynomial one. Thus the simplified modeling approach
(7) is applied in the following analysis.

The polynomial state-space representation of the
system is formulated using (6) and the substitution of (7)
is as follows:

ẋ =

[
α̇1

α̇2

]
=

[
f1(α1, α2)
f2(α1, α2)

]
+

[
g1
g2

]
Mbr +

[
h1
h2

]
δ, (8)

where

f1 =
l1
Jv

[F2(α2)l2 −F1(α1)l1]

+
v

l1 + l2
(α2 − α1)− 1

mv
[F1(α1) + F2(α2)] ,

f2 =
l2
Jv

[F1(α1)l1 −F2(α2)l2]

+
v

l1 + l2
(α2 − α1)− 1

mv
[F1(α1) + F2(α2)] ,

h1 =
v

l1 + l2
+ ν, h2 =

v

l1 + l2
,

g1 =− l1
Jv
, g2 =

l2
Jv
.

The proposed vehicle model (8) contains a differential
braking torque and front wheel steering. In the
forthcoming study, the system is analyzed using the
control actuations separately. In the steering analysis,
Mbr ≡ 0. In the examination of braking, δ ≡ 0, which
has an effect on the definition of the front tire side-slip α1

(see (3)).

2.2. Illustration of stability regions based on the
vehicle model. In this section, the stability regions of
the vehicle model are illustrated based on simulation
examples. The vehicle parameters are found in Section 5.
Figure 3 shows an illustration of the effect of polynomial
tire force approximation on lateral vehicle modeling. In
the corresponding figures, simulation results of the system

ẋ = f(x) with x(0) =
[
α1(0) α2(0)

]T
are shown. The

initial slips are chosen in the interval αi(0) = [−25◦, 25◦]
using the step 2.5◦. Figure 3(a) illustrates the result of
the simulations with the original tire force characteristics,
while Fig. 3(b) presents the result when polynomial
approximation is used. Consequently, 2 ·21 ·21 simulation
scenarios are used in the simulation. The velocity in
the vehicle model is constant, v = 40 m/s, during the
simulations. Figure 3 shows the phase portrait of the
autonomous system ẋ = f(x), which is (8) with δ ≡ 0,
Mbr ≡ 0. The black lines illustrate the state trajectories
which do not converge to zero. Simultaneously, the
light-gray lines are the state trajectories which converge
to zero. This means that the light-gray lines depict the
initial states, where the system is stable.

It can be seen that the stable regions are close to
each other in the two models in the validity region of
the polynomial model (−12◦,+12◦). Outside the stable
region, the two models are different: in the original
model the system is unstable (see Fig. 3(a)), while in
the polynomial model the system has two locally stable
states (see Fig. 3(b)). Since the two locally stable points
are outside the model validity region, they are indifferent
in terms of the model applicability. The directions of
the lines in the portrait are almost the same as in the
validity region. Based on the analysis, it can be stated
that the polynomial approximation results in almost the
same stable and unstable regions when αi ≤ 12◦. Since
the stable regions are limited and rather small in the model
validity region, it is necessary to find further states which
can be stabilized by an appropriate peak-bounded control
input signal u.

From the comparison of the two figures it can be seen
that the polynomial approximation results in almost the
same stable and unstable regions when αi ≤ 12◦. In this
region, polynomial fitting is sufficient and can be used
for further analysis. Note that, although one example is
shown in the paper, these simulations are performed at
several velocities and μ scenarios.
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Fig. 3. Comparison of vehicle models: original model (a), poly-
nomial model (b).

3. Fundamentals of the SOS programming
technique

In this section, fundamental concepts concerning the
SOS programming method are summarized. The
method is suitable for analyzing and controling nonlinear
polynomial systems.

Several papers deal with SOS programming, which
has been elaborated on in the recent decade for
control purposes. It is an efficient tool for finding
feasible solutions to polynomial inequalities. In
SOS programming, this problem is transformed into
a semi-definite optimization task. Important theorems
in SOS programming, such as the application of
Positivstellensatz, were proposed by Parrilo (2003). In
this way, the convex optimization methods can be used
to find appropriate polynomials for the SOS problem.
The approximation of nonnegative polynomials by a
sequence of SOS was presented by Lasserre (2007). The
SOS polynomials incorporate the original nonnegative
polynomials in an explicit form.

Prajna et al. (2004) showed sufficient conditions
for the solutions to nonlinear control problems,
which were formulated in terms of state dependent

linear matrix inequalities (LMIs). In the paper, the
semidefinite programming relaxations based on the SOS
decomposition were then used to efficiently solve such
inequalities. The application of the SOS decomposition
technique to non-polynomial system analysis was
summarized by Papachristodoulou and Prajna (2005).
Jarvis-Wloszek et al. (2003) introduced the application
of SOS programming to several control problems, e.g.,
reachable set computation and control design algorithms.
A local stability analysis of polynomial systems and an
iterative computation method for their region of attraction
were presented by Tan and Packard (2008). In the work
of Scherer and Hol (2006), the SOS method was applied
to two non-convex problems, for example, polynomial
semi-definite programming and the fixed-order H2

synthesis problem.
Summers et al. (2003) presented performance

analysis of polynomial systems by which sufficient
conditions were provided for bounds on reachable sets and
L2 gain of nonlinear systems subject to norm-bounded
disturbance inputs. Robust performance in polynomial
control systems was analyzed by Topcu and Packard
(2009). That paper considered the effects of neglected
dynamics and parametric uncertainties. Numerical
computation problems of convex programming based on
the SOS method in practical applications were analyzed
by Löfberg (2009). As a new result, the maximum
controlled invariant sets of polynomial control systems
were calculated by Korda et al. (2013).

The following definitions and theorems are essential
to understand SOS programming (Jarvis-Wloszek et al.,
2003). LetR denote the set of real numbers andZn

+ denote
the set of nonnegative integers. The basic elements of the
method are polynomials and SOS as defined below.

Definition 1. A polynomial f in n variables is a finite
linear combination of the functions mα(x) := xα =
xα1
1 xα2

2 · · ·xαn
n for α ∈ Z

n
+, degmα =

∑n
i=1 αi:

f :=
∑

α

cαmα =
∑

α

cαx
α (9)

with cα ∈ R. Define Rn to be the set of all polynomials
in n variables. The degree of f is defined as f :=
maxα degmα.

Definition 2. The set of SOS polynomials in n variables
is defined as

Σn :=
{
p ∈ Rn | p =

t∑

i=1

f2
i , fi ∈ Rn, i = 1, . . . , t

}

(10)
for some t <∞.

A central theorem of SOS programming is
Positivstellensatz. By the application of this theorem, the
set emptiness constraints of an optimization task can be
transformed into SOS feasibility problems.
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Theorem 1. (Positivstellensatz) Given polynomials
{f1, . . . , fr}, {g1, . . . , gt} and {h1, . . . , hu} in Rn, the
following are equivalent:

1. The set
⎧
⎨

⎩ x ∈ R
n

f1(x) ≥ 0, . . . , fr(x) ≥ 0
g1(x) 
= 0, . . . , gt(x) 
= 0
h1(x) = 0, . . . , hu(x) = 0

⎫
⎬

⎭ (11)

is empty.

2. There exists polynomials f ∈ P(f1, . . . , fr) (P is a
multiplicative convex cone), g ∈ M(g1, . . . , gt) (M
is a multiplicative monoid), h ∈ I(h1, . . . , hu) (I is
ideal) such that

f + g2 + h = 0. (12)

There is an important connection between SOS
programming and LMI problems, which was proved by
Parrilo (2003).

Theorem 2. (LMI feasibility problem) Given a finite set

{pi}mi=0 ∈ Rn,

the existence of {ai}mi=0 ∈ Rn such that

p0 +

m∑

i=1

aipi ∈ Σn (13)

is an LMI feasibility problem.

The previous two theorems can be used to prove
a generalization of the S-procedure, which is highly
significant in the forthcoming computations.

Theorem 3. (Generalized S-procedure) Given symmetric
matrices {pi}mi=0 ∈ Rn, if there exist nonnegative scalars
{si}mi=1 ∈ Σn such that

p0 −
m∑

i=1

sipi � q (14)

with q ∈ Σn, then

m⋂

i=1

{x ∈ R
n pi(x) ≥ 0} ⊆ {x ∈ R

n p0(x) ≥ 0} .
(15)

The related set emptiness question asks if

W := {x ∈ R
n p1(x) ≥ 0, . . . , pm(x) ≥ 0,

− p0(x) ≥ 0, p0(x) 
= 0} (16)

is empty.

4. Computation method of controlled
invariant sets

A vehicle model with a polynomial tire model is
formulated in Section 2, and the fundamentals of SOS
programming for the polynomial model analysis are
proposed in Section 3. In this section, the controlled
invariant sets of the system are computed based on the
preliminaries introduced.

The purpose of the nonlinear control actuation
analysis is the determination of intervention limits of
control actuation. In Section 2.1, it is shown that
the vehicle has a limited stability region. With an
appropriate intervention, some of the unstable regions
can be stabilized. In the next section, an answer to
the following question is sought: What is the largest
state-space region in which the stability of the system can
be guaranteed by a given peak-bounded control input?
This question leads to the computation of controlled
invariant sets (Korda et al., 2013).

4.1. Theoretical background. The state-space rep-
resentation of the system is given in the following form
(see (8)):

ẋ = f(x) + gu, (17)

where f(x) is a vector which incorporates smooth
polynomial functions and f(0) = 0. In the next analysis,
one control input is considered, so that u = Mbr or
u = δ. The global asymptotical stability of the system
at the origin is guaranteed by the existence of the control
Lyapunov function of the system defined as follows
(Sontag, 1989)

Definition 3. A smooth, proper and positive-definite
function V : R

n → R is a control Lyapunov function
for the system if

inf
u∈R

{
∂V

∂x
f(x) +

∂V

∂x
g · u

}
< 0 (18)

for each x 
= 0.

According to Definition 3, at the candidate V , two
main cases must be distinguished:

1: If ∂V
∂x f(x) < 0, then the system is stable and u ≡ 0.

This stability scenario is contained by the next two
stability criteria.

2: If ∂V
∂x f(x) > 0, then the system is unstable.

However, the system can be stabilized:

2(a): ∂V
∂x g < 0 and ∂V

∂x f(x) +
∂V
∂x g · umax < 0. In

this case, the upper peak-bound of control input
u stabilizes the system.
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2(b): ∂V
∂x g > 0 and ∂V

∂x f(x)− ∂V
∂x g·umax < 0. In this

case, the lower peak-bound of control input u
stabilizes the system. Note that umin = −umax

is assumed.

The controlled invariant set of the system (17) is
defined as the level-set of the control Lyapunov function
at V (x) = 1. Thus, the fulfilment of the previous stability
criterion must be guaranteed at V (x) ≤ 1.

Moreover, the Positivstellensatz and generalized
S-procedure theorems (see Section 3) require nonstrict
inequality (≥) conditions to formulate SOS conditions.
Thus, the condition ∂V

∂x g < 0 in 2(a) is rewritten as
∂V
∂x g ≤ −ε, where ε ∈ R

+ is as small as possible.
Similarly, in 2(b) ∂V

∂x g ≥ ε is written. Additionally, the
conditions ∂V

∂x f(x) ± ∂V
∂x g · umax < 0 in 2(a) and 2(b)

are also reformulated to two conditions: ∂V
∂x f(x)± ∂V

∂x g ·
umax ≤ 0 and ∂V

∂x f(x)± ∂V
∂x g · umax 
= 0.

Above, the stability criterion of the polynomial
system has been formed. Based on these constraints, it
is necessary to find a control Lyapunov function V which
meets the following set emptiness conditions:
{
−∂V
∂x

g − ε ≥ 0, 1− V (x) ≥ 0, L1(x) 
= 0,

}

{
∂V

∂x
f(x) +

∂V

∂x
g umax ≥ 0,

}

{
∂V

∂x
f(x) +

∂V

∂x
g umax 
= 0

}
= ∅, (19a)

{
∂V

∂x
g − ε ≥ 0, 1− V (x) ≥ 0, L2(x) 
= 0,

}

{
∂V

∂x
f(x)− ∂V

∂x
g umax ≥ 0,

}

{
∂V

∂x
f(x)− ∂V

∂x
g umax 
= 0

}
= ∅. (19b)

Note that the relations in the third inequality are
inverted to guarantee the emptiness of the sets. The role
of L1,2(x) 
= 0 is to guarantee the condition x 
= 0
in Definition 3. L1,2(x) is chosen as a positive definite
polynomial (Jarvis-Wloszek et al., 2003). Since it is
necessary to find the maximum controlled invariant set,
another set emptiness condition is also defined to improve
the efficiency of the method (Jarvis-Wloszek et al., 2003):

{p(x) ≤ β, V (x) ≥ 1, V (x) 
= 1} = ∅, (20)

where p ∈ Σn is a fixed and positive definite function. β
defines a Pβ := {x ∈ R

n p(x) ≤ β} level set, which is
incorporated in the actual controlled invariant set. Thus,
the maximization of β enlarges Pβ together with the
controlled invariant set.

The set emptiness conditions are reformulated to
SOS conditions based on the S-procedure (see Section 3).

Thus, the next optimization problem is formed to find the
maximum controlled invariant set:

maxβ (21)

over SOS polynomials s1, s2, s3, s4, s5 ∈ Σn and
polynomials V, p1, p2 ∈ Rn, V (0) = 0 such that

−
(
∂V

∂x
f(x) +

∂V

∂x
g umax

)
− s1

(
−∂V
∂x

g − ε

)

− s2 (1− V )− p1L1 ∈ Σn, (22a)

−
(
∂V

∂x
f(x)− ∂V

∂x
g umax

)
− s3

(
∂V

∂x
g − ε

)

− s4 (1− V )− p2L2 ∈ Σn, (22b)

− (s5(β − p) + (V − 1)) ∈ Σn. (22c)

Remark 4. The derivation of (22) resembles the one
by Jarvis-Woszlek et al. (2013), but it is more complex
because the cone is generated by three terms and there
are two polynomials constrained to zero. Some terms
of SOS conditions are omitted in the application of the
Positivstellensatz. Although these conditions introduce
conservatism, the size of the complexity of the numerical
problem is reduced.

4.2. Practical computation of the maximum con-
trolled invariant set. The optimization method of the
maximum controlled invariant set has been proposed in
the previous parts of the section. Although (22) provides
an appropriate solution to the optimization problem, it
results in numerical difficulties. Note that the degree of
f(x) is determined by the degree of the lateral tire model
(see (1)).

A polynomial in θ variables of degree 2N can be
transformed into an LMI with

(
θ+N
N

)×(θ+N
N

)
dimensions

(see Parrilo, 2003). In the presented example (Fig. 2),
the degree of the tire model is 2N = 10, and the
system has two variables: α1 and α2, thus θ = 2. The

size of the LMI is
(
2+5
5

)2
= 42 · 42 = 1764, which

denotes LMI dimensions. Due to the vast size of the LMI
feasibility task, numerical problems may occur. Therefore
the resulting control Lyapunov function V of optimization
(22) must be checked.

In the following, an alternative computation method
is proposed to find the maximum controlled invariant set,
which, according to our experience, may lead to an easier
calculation. The practical method contains a three-step
iterative method.

Step 1. The region of attraction of the uncontrolled
system ẋ = f(x) is determined as an initial set. In
this step, the maximum level set of V0 = 1 is found,
which is incorporated in the stable region. The SOS based
computation of the region of attraction is presented by
Jarvis-Wloszek (2003).
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Step 2. An η parameter is chosen and Vη = V0 · η
is checked as a local control Lyapunov function. The
level-set Vη = 1 represents a controlled invariant set
Sη, in which the system can be stabilized using a finite
control input u. Depending on parameter η, the size of
the level-set can be enlarged or reduced. The SOS based
computation of the local control Lyapunov function is
proposed by Tan and Packard (2008). This step is in
relation with (22) if V is fixed and u is not constrained.

Step 3. In the final step, the acceptability and the enlarging
possibility of controlled invariant set Sη must be checked.
The peak-bounds of the actuation are umin = −umax and
umax. Sunst =

∂V0

∂x f(x) > 0 is the unstable region of the
system. Smin = ∂V0

∂x f(x)− ∂V0

∂x g ·umax > 0 is the region
which cannot be stabilized by umin. Similarly, Smax =
∂V0

∂x f(x) +
∂V0

∂x g · umax > 0 is the region which cannot
be stabilized by umax. If Sη is an appropriate controlled
invariant set and Vη is an appropriate control Lyapunov
function, then

Sη ∩ Sunst ∩ Smin ∩ Smax = ∅. (23)

The emptiness of the intersection condition defined above
can be checked visually by plotting Sη, Sunst, Smin and
Smax. Additionally, if Sη is appropriate, then η can be
reduced in the previous step to maximize the controlled
invariant set.

Remark 5. The shape of the maximum controlled
invariant set is fundamentally determined by the chosen
V0. If the result of the iterative method Vη is not
acceptable, the function V0 of Step 1 should be modified.

The iterative determination of the maximum
controlled invariant set is illustrated in the example
presented in Section 2.2. The maximum set of the region
of attraction is shown in Fig. 4. In this phase portrait,
the light-gray regions are the open-loop stable regions,

the black regions are locally stable x∞ 
= [
0 0

]T
, and

the black set is the region of attraction. This bounding is
a conservative approximation, which can be used as an
initial set.

In Fig. 5, the sets Sη, Sunst, Smin and Smax of the
controlled system are illustrated. The enlargement ofSη is
limited in the positive α2 regions by Smin, in the negative
α2 regions by Smax.

5. Maximum controlled invariant sets of
vehicle control actuation

In this section the computation results of the maximum
controlled invariant sets are presented. The vehicle
parameters are m = 1833 kg, J = 2765 kgm2, l1 =
1.402 m, l2 = 1.646 m. The actuation limits are
calculated in two tire-road adhesion coefficients μ = 1
(dry asphalt road) and μ = 0.4 (wet asphalt road). The tire
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Fig. 5. Stability regions of the controlled system.

model parameters (1) are listed in Table 1. Two control
actuation limits are compared, such as differential braking
Mbr and steering δ. Since the steering model depends on
δ̇, three scenarios are included in this section: braking,
steering with ν = 30 and steering with ν = 1. The value
ν = 30 is related to a fast actuation, e.g., active steering
actuation, while ν = 1 represents low actuation, e.g.,
driver actuation. The actuation limits are |δmax| = 12◦

and |Mbr,max| = 15000 Nm (μ = 1).
The actuation limits at μ = 1 are illustrated in

Fig. 6(a). The limits are calculated at four different
velocities between v = 10 m/s and v = 40 m/s. The
results show that the actuation limits differ significantly
in the three scenarios. In all cases, the sizes of the
maximum controlled invariant sets are reduced, which is
induced by the increase in unstable regions Sunst. This
means that the stability of the vehicle can be guaranteed
in a smaller region at higher velocity and peak-bounded
control input. The increase in the velocity reduces the
regions where stability is guaranteed. Note that the
reduction of the sets could only be balanced with the
increase of the actuation limits umax. However, it has
limits on the control actuations. The enhancement of
|Mbr,max| modifies the longitudinal dynamics with the
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Table 1. Data of tire models.

ci
µ = 1

front rear

c1 1.9974 · 103 1.5594 · 103
c2 1.6601 · 10−3 −1.1455 · 10−2

c3 −5.0667 · 101 −3.9619 · 101
c4 2.6228 · 10−3 4.4019 · 10−3

c5 6.5909 · 10−1 5.1212 · 10−1

c6 6.5934 · 10−6 3.5811 · 10−5

c7 −3.8106 · 10−3 −2.9443 · 10−3

c8 −3.6916 · 10−7 −9.0387 · 10−7

c9 7.8771 · 10−6 6.0612 · 10−6

c10 1.3622 · 10−9 3.1025 · 10−9

ci
µ = 0.4

front rear

c1 8.9427 · 102 8.8444 · 102
c2 −3.0717 · 10−3 −3.7746 · 10−3

c3 −2.9995 · 101 −3.4215 · 101
c4 1.6903 · 10−3 2.6341 · 10−3

c5 5.4779 · 10−1 5.4459 · 10−1

c6 3.3324 · 10−5 3.1365 · 10−3

c7 −4.5595 · 10−3 −3.4066 · 10−3

c8 −1.0084 · 10−6 −3.9862 · 10−5

c9 1.3562 · 10−5 7.0489 · 10−6

c10 4.8295 · 10−9 1.2344 · 10−7

increase in the longitudinal slips, and it is disadvantageous
for the lateral force characteristics. Moreover, the increase
in |δmax| influences α1 significantly, and the tire force
characteristics have a decrease in high lateral slips. It can
also be established that, at a low velocity, control actuation
selection is irrelevant for the aspect of the maximum
controlled invariant sets.

The computation results show that the maximum
controlled invariant sets of steering significantly depend
on ν. The small variability in δ results in large sets, while
a large variability in δ is connected to the increase in
unstable regions. According to the results, at high velocity
it is particularly important to actuate smoothly, without
sudden transitions. Differential braking has a fixed region
in the α1 − α2 state-space depending on the velocity.
Therefore, braking actuation is of importance when fast
intervention is necessary. Since the maximum controlled
invariant sets of steering can perceptibly be reduced at
fast actuation, braking can be an appropriate solution to
actuate in a short time and guarantee stability in a large
region. In this case, the second scenario is not satisfactory,
since it requires longer actuation time.

In Fig. 6(b), computation of the maximum controlled
invariant sets for the tire-road adhesion coefficient μ =
0.4 is illustrated. In the case of differential braking,
the intervention limit is reduced to |Mbr,max| = 6000
Nm, because the maximum longitudinal braking force is
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Fig. 6. Analysis of actuation limits: adhesion coefficient µ = 1
(a), adhesion coefficient µ = 0.4 (b).

reduced at low μ. The reduction of adhesion coefficient
μ induced the increase in regions Sunst, so all of the
maximum controlled invariant sets are reduced. The
velocity dependence of the regions is the same as
proposed in the previous case: at higher velocity, a smaller
region can be stabilized by the actuation. Parameter ν
has the same influence on the maximum regions as in the
μ = 1 scenario: an increase in the actuation speed reduces
stable regions. Differential braking can be the appropriate
solution to short time intervention.

6. Control strategy based on the maximum
controlled invariant sets

In the section, a control strategy based on the maximum
controlled invariant sets is presented. The intervention
of the actuators assists the driver in performing vehicle
maneuvers. The aim of the control is to guarantee the
stability of the vehicle based on the SOS analysis.

The basic idea of the control strategy is the following.
The stability of the polynomial system is analyzed using
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the control Lyapunov function. With this function and
bounded control input, the stable and unstable regions
of the system are computed (see, e.g., Fig. 5). There
are some regions which are originally not stable, but an
appropriate control input can stabilize them. The regions
can be determined and, by the monitoring of α1, α2, the
sufficient control input is applied.

α1

α2

CONTROL

lateral slip
information

Invariant Set
information

Mbr, δ

Fig. 7. Scheme of the control strategy.

The goal of the simulation scenario is to show an
application possibility of the results of the analysis. As
an illustration, the computed maximum control inputs are
applied to the lateral dynamics of the vehicle. Thus, a
bang-bang control rule is applied either to the steering
or braking control. The invariant sets of the method are
computed off-line and built in the vehicle control system.
In the control application, it is necessary to compute
several sets, which belong to different velocities and
adhesion coefficients. The proposed algorithm requires
the measurement of the velocity and the estimation of α1,
α2 and μ. The estimation of the adhesion coefficient μ
in the paper is based on the time-varying Kalman filter
method (see Gustafsson, 1997). An algorithm to estimate
α1 and α2 is proposed by Grip et al. (2008). In the control
algorithm, the decision about the intervention is based
on the current lateral slips using the calculated maximum
controlled invariant set at given v and μ.

The illustration of the strategy is shown in Fig. 7.
The estimation of lateral slip angles and the maximum
controlled invariant sets are necessary for the control
signals. The control values are in the set u =
{−umax; 0; umax}. Since the determination of the
maximum controlled invariant sets requires a great deal
of computational effort, an offline computation of the sets
is recommended. It is necessary to determine the unstable
regions and the appropriate control input for stabilization.

6.1. Illustration example. In the following, the
control application of a maximum controlled invariant
sets through a simulation scenario in the CarSim

simulation environment is proposed. CarSim provided
a vehicle dynamic simulator, together with the vehicle
parameters. The performing of the simulation is based
on Matlab/Simulink, in which the CarSim model is
embedded, together with the designed control algorithm.
The measured signals for the controller are provided
by CarSim. The control algorithm computes the actual
intervention Mbr from the signals, and it is transformed
to braking pressures, as found in the work of Németh and
Gáspár (2011). The braking pressures on the inputs of the
CarSim model are actuated.

In the scenario, the driver must avoid an obstacle
on the road (μ = 1). Thus, the path of the vehicle
is suddenly modified, which creates a critical situation.
In this scenario, differential braking is applied to assist
the driver in performing the maneuver. Two vehicles
are compared in the simulation: the first vehicle uses
the proposed control strategy, while the second vehicle is
uncontrolled.

Fig. 8. Paths of the vehicles.

The paths of the vehicles are illustrated in Fig. 8. Due
to the obstacle on the road, the driver changes lanes. In the
maneuver, the steering angle (Fig. 9(a)) and the velocity
of the vehicle (Fig. 9(b)) are modified. Simultaneous
braking and sudden steering may be dangerous, because
the lateral slip values of the tire change significantly. The
α1, α2 state trajectories of the vehicles and the maximum
controlled invariant sets at different velocities are shown
in Fig. 9(d). The lateral slip values of the controlled
vehicle converge back to zero during the differential
braking actuation Mbr (Fig. 9(c)), while the states of the
uncontrolled vehicle increase and move to the unstable
region. Thus, the control strategy presented above is able
to stabilize the vehicle. In the simulation, the motions
of the vehicles (Fig. 8) illustrate the consequences of the
different state trajectories: the uncontrolled vehicle (gray)
rolls off the road, while the controlled vehicle (black) is
stabilized and road holding is guaranteed.

The simulation results show that the maximum
controlled invariant sets can be used to stabilize the
vehicle. The intervention based on the analysis is able
to prevent the vehicle from leaving the road.

7. Conclusions

In the paper, the stabilization regions of the steering
and braking systems are examined in order to analyze
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Fig. 9. Simulation scenario: steering angle (a), velocity of vehi-
cle (b), control input (c), state trajectories (d).

their abilities to intervene in the entire vehicle system.
A nonlinear polynomial SOS programming method is
applied to calculate the shape of the controlled invariant
sets of control actuations. The aim of the analysis is to
provide a theoretical basis for the coordination of vehicle

control interventions. The method is illustrated through
the influence of the steering and brake control systems at
various velocities and road conditions.

The presented computation scenarios show that the
velocity and the adhesion coefficient have a significant
influence on the maximum invariant sets. Thus, different
vehicle dynamic regions can be reached and stabilized by
differential braking and steering.

Acknowledgment

The research was supported by the National Research,
Development and Innovation Fund through the project
SEPPAC: Safety and Economic Platform for Partially Au-
tomated Commercial Vehicles (VKSZ 14-1-2015-0125).
This paper was partially supported by the János Bolyai
Research Scholarship of the Hungarian Academy of
Sciences.

References

Beal, C.E. and Gerdes, J.C. (2013). Model predictive control for
vehicle stabilization at the limits of handling, IEEE Trans-
actions on Control Systems Technology 21(4): 1258–1269.

Cairano, S., Tseng, H.E., Bernardini, D. and Bemporad, A.
(2013). Vehicle yaw stability control by coordinated active
front steering and differential braking in the tire sideslip
angles domain, IEEE Transactions on Control Systems
Technology 21(4): 1236–1248.

Carvalho, A., Palmieri, G., Tseng, H., Glielmo, L. and Borrelli,
F. (2013). Robust vehicle stability control with an
uncertain driver model, European Control Conference,
Zurich, Switzerland, pp. 440–445.

de Wit, C.C., Olsson, H., Astrom, K.J. and Lischinsky, P. (1995).
A new model for control of systems with friction, IEEE
Transactions on Automatic Control 40(3): 419–425.

Grip, H., Imsland, L., Johansen, T., Fossen, T., Kalkkuhl, J. and
Suissa, A. (2008). Nonlinear vehicle side-slip estimation
with friction adaptation, Automatica 44(11): 611–622.

Gustafsson, F. (1997). Slip-based tire-road friction estimation,
Automatica 33(6): 1087–1099.

Jarvis-Wloszek, Z. (2003). Lyapunov Based Analysis and
Controller Synthesis for Polynomial Systems using Sum-
of-Squares Optimization, Ph.D. Thesis, University of
California, Berkeley, CA.

Jarvis-Wloszek, Z., Feeley, R., Tan, W., Sun, K. and Packard,
A. (2003). Some controls applications of sum of squares
programming, 42nd IEEE Conference on Decision and
Control, Maui, HI, USA, Vol. 5, pp. 4676–4681.

Jianyong, W., Houjun, T., Shaoyuan, L. and Wan, F.
(2007). Improvement of vehicle handling and stability by
integrated control of four wheel steering and direct yaw
moment, 26th Chinese Control Conference, Zhangjiajie,
China, pp. 730–735.



42 B. Németh et al.

Khelassi, A., Theilliol, D. and Weber, P. (2011).
Reconfigurability analysis for reliable fault-tolerant
control design, International Journal of Applied Math-
ematics and Computer Science 21(3): 431–439, DOI:
10.2478/v10006-011-0032-z.

Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems
for Engine, Driveline and Vehicle, Springer, New York,
NY.

Kim, D., Peng, H., Bai, S. and Maguire, J. (2007). Control
of integrated powertrain with electronic throttle and
automatic transmission, IEEE Transactions on Control
Systems Technology 15(3): 474–482.

Korda, M., Henrion, D. and Jones, C.N. (2013). Convex
computation of the maximum controlled invariant set for
discrete-time polynomial control systems, Conference on
Decision and Control, Firenze, Italy, pp. 7107–7112.

Kritayakirana, K. and Gerdes, J. (2012a). Using the
centre of percussion to design a steering controller
for an autonomous race car, Vehicle System Dynamics
50(Supp1): 33–51.

Kritayakirana, K. and Gerdes, J.C. (2012b). Autonomous
vehicle control at the limits of handling, International
Journal of Vehicle Autonomous Systems 10(4): 271–296.

Lasserre, J.B. (2007). Sum of squares approximation of
nonnegative polynomials, SIAM Journal on Optimization
49(4): 651–669.
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Z. and Bokor, J. (2008). A new semi-active suspension
control strategy through LPV technique, Control Engi-
neering Practice 16(12): 1519–1534.

Prajna, S., Papachristodoulou, A. and Wu., F. (2004). Nonlinear
control synthesis by sum of squares optimization: A
Lyapunov-based approach, 5th IEEE Asian Control Con-
ference, Melbourne, Australia, Vol. 1, pp. 157–165.

Sadri, S. and Wu, C. (2013). Stability analysis of a
nonlinear vehicle model in plane motion using the
concept of Lyapunov exponents, Vehicle System Dynamics
51(6): 906–924.

Scherer, C.W. and Hol, C.W.J. (2006). Matrix sum-of-squares
relaxations for robust semi-definite programs, Mathemati-
cal Programming 107(1): 189–211.

Sontag, E.D. (1989). A “universal” construction of Artstein’s
theorem on nonlinear stabilization, Systems & Control Let-
ters 13(2): 117–123.

Summers, E., Chakraborty, A., Tan, W., Topcu, U., Seiler,
P., Balas, G. and Packard, A. (2003). Quantitative local
l2-gain and reachability analysis for nonlinear systems,
International Journal of Robust and Nonlinear Control
23(10): 1115–1135.

Tan, W. and Packard, A. (2008). Stability region analysis using
polynomial and composite polynomial Lyapunov functions
and sum-of-squares programming, IEEE Transactions on
Automatic Control 53(2): 565–571.

Topcu, U. and Packard, A. (2009). Local robust performance
analysis for nonlinear dynamical systems, American Con-
trol Conference, St. Louis, MO, USA, pp. 784–789.

Yetendje, A., Seron, M.M. and De Doná, J.D. (2012). Robust
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