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The problem of position and orientation estimation for an active vision sensor that moves with respect to the full six degrees
of freedom is considered. The proposed approach is based on point features extracted from RGB-D data. This work
focuses on efficient point feature extraction algorithms and on methods for the management of a set of features in a single
RGB-D data frame. While the fast, RGB-D-based visual odometry system described in this paper builds upon our previous
results as to the general architecture, the important novel elements introduced here are aimed at improving the precision
and robustness of the motion estimate computed from the matching point features of two RGB-D frames. Moreover,
we demonstrate that the visual odometry system can serve as the front-end for a pose-based simultaneous localization and
mapping solution. The proposed solutions are tested on publicly available data sets to ensure that the results are scientifically
verifiable. The experimental results demonstrate gains due to the improved feature extraction and management mechanisms,
whereas the performance of the whole navigation system compares favorably to results known from the literature.
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1. Introduction

Determining the pose of a robot or a sensor with respect
to the surrounding environment is a common problem in
mobile robotics. Certain classes of mobile robots, e.g.,
walking or flying robots, require self-localization with
six degrees of freedom—their pose is described by three
coordinates for the position and the pitch, roll and yaw
angles for orientation: xR = [xryrzrθrφrψr]

T . For
such robots the assumption commonly made in classic
self-localization algorithms that the robot moves on a
plane and the sensory readouts (from range sensors
in particular) are parallel to that plane does not hold
anymore, because these robots do not maintain their
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attitude (pitch and roll angles) stable enough to keep
a sensor perpendicular to the gravity vector all the
time. Moreover, the reliable dead reckoning assumption
does not hold for robots moving in 3-D. Although
this assumption was also removed in some earlier
2-D self-localization solutions (Skrzypczyński, 2009), in
walking and humanoid robots or micro aerial vehicles
(Engel et al., 2012) reliable odometry from proprioceptive
sensing is not available at all or is extremely poor,
making these robots dependent on self-localization with
exteroceptive sensors. Passive vision has many practical
limitations (Davison et al., 2007; Bączyk and Kasiński,
2010), whereas 3-D laser range finders with mechanical
scanning are bulky, heavy, and often slow. Thus, compact,
fast-frame-rate RGB-D cameras are the sensors of choice
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for 3-D indoor navigation (Stoyanov et al., 2011).
The emergence of inexpensive RGB-D sensors

such as Kinect or Xtion caused a rapid progress in
self-localization methods: simultaneous localization and
mapping (SLAM) (Bailey and Durrant-Whyte, 2006;
Durrant-Whyte and Bailey, 2006) and visual odometry
(VO) (Scaramuzza and Fraundorfer, 2011). VO
algorithms make it possible to determine the motion of
the robot based solely on a sequence of images, without
creating a map of the environment. A VO algorithm can
also serve as a basis for a SLAM task formulated as a
graph optimization problem (Kuemmerle et al., 2011).
The pose-graph is composed of the successive poses
of the moving sensor, whereas edges of the pose-graph
represent constraints between these poses (Durrant-Whyte
and Bailey, 2006). These constraints are yielded by visual
odometry and loop closures detected whenever the sensor
returns to an already known part of the scene.

This article builds upon the concept of a fast,
lightweight, feature-based RGB-D visual odometry
system presented by Nowicki and Skrzypczyński (2013a).
Here, this concept is further developed by investigating
new methods for the extraction and management
of features, and by demonstrating the use of our
improved VO processing pipeline both as a stand-alone
self-localization system (PUT VO hereinafter), and as a
front-end for a pose-based SLAM system (PUT SLAM).
This constitutes the main novelty with respect to the
paper of Kraft et al. (2014), which was a basis for this
substantially extended version. The key idea of our
approach is to extract salient point features from the RGB
images at selected RGB-D data frames (keyframes), track
them visually over a sequence of RGB images, and then
use the depth (D) images associated with the first and the
last frame in the sequence to recover the 3-D positions
of these keypoints at the beginning and at the end of the
tracking process. This alleviates the computational burden
as only selected depth images are processed. As the visual
features are tracked frame-to-frame, the correspondences
are considered to be known, which makes it possible to
simplify the feature matching when we want to compute
the inter-frame transformation to compute sensor motion
between the consecutive keyframes.

This approach stands in contrast to the majority of
known RGB-D visual odometry or SLAM systems, which
use some form of dense point matching or frame-to-frame
matching of sparse keypoints. In a parallel work (Belter
et al., 2015), we compare several architectures of a
feature-based VO and SLAM system using RGB-D data,
finding that the tracking-based VO pipeline is simple, fast
and precise if it is fed with good quality RGB-D data at
a high frame rate. Therefore, in this article we focus on
keypoint extraction methods that are fast and robust to the
artifacts specific to RGB-D data. As the technology of
RGB-D sensors develops quickly, we prefer to investigate

mathematically solid geometric criteria for reliable point
features in 3-D that may be applied to the combined RGB
and D data regardless of the physical nature of the depth
measurement process.

In principle, the method should be applicable to
both structured light sensors, like the popular Kinect
(Khoskelham and Elberink, 2012), and time-of-flight
(ToF) sensors (Hansard et al., 2012), like the new Kinect
2. The new feature detector allows narrowing the detected
set of features to the ones that are the best picks from
the point of view of further processing using higher level
algorithms in the VO pipeline. Moreover, we propose
to adopt some efficient statistical learning algorithms and
heuristics for the management of the extracted features.
The aim of these methods is to control the spatial
distribution of the features with respect to the image
frame, preventing degraded configurations that can easily
lead to singularities or numerical instability in the motion
estimation process (Umeyama, 1991). The usefulness
of the proposed methods is demonstrated using real-life
examples—the PUT VO and PUT SLAM systems applied
to publicly available data sets.

The remainder of this article is organized as follows.
In Section 2 we review the most directly related work
in RGB-D visual odometry and SLAM. Section 3 gives
an overview of the architecture of our self-localization
system in both configurations used for the experiments:
pure frame-to-frame visual odometry and pose-based
SLAM including graph optimization. Section 4 provides
a detailed description of the methods and algorithms for
feature extraction, management and tracking. Results
demonstrating the ability of the proposed system to
successfully process RGB-D data from data sets of various
properties are provided in Section 5. Section 6 concludes
the paper and formulates the directions of further research.

2. Related work

Contemporary approaches to the SLAM and VO problem
using RGB-D data can be divided into three distinctive
groups, depending on the way they make use of image
(RGB) and depth map (D) channels of the acquired data.
Many researchers adopted the 3-D point cloud matching
approach that was previously successfully applied in robot
navigation based on 3-D laser scans (Nüchter et al., 2007)
for use with RGB-D data. Most of the point-cloud-type
motion estimation methods rely on the iterative closest
points (ICPs) paradigm, which can be implemented in
several variants (Segal et al., 2009). However, due to
the high density of depth data represented as a point
cloud, using such data in direct motion estimation,
e.g., through matching that involves consecutive RGB-D
frames, requires significant computational power and is
therefore time consuming.

To alleviate this problem, parallel processing using
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graphic cards (general purpose graphics processing
unit—GPGPU) can be applied, but such an approach is
known to be power-consuming. This makes the solutions
based on point clouds prohibitive in many mobile robotics
applications, as they typically require the processing to be
done in real-time, with relatively low power consumption.

The KinectFusion system (Izadi et al., 2011)
employs the GPGPU to run an efficient version of the
ICP algorithm on the Kinect data stream in real-time.
While KinectFusion is limited to small workspaces, some
derived works, like the Kintinuous algorithm (Whelan
et al., 2012) removed this restriction. A problem with
ICP-based approaches is also that they rely solely on
the geometry of the environment. If the geometric
structure is insufficient (e.g., a long corridor with flat
walls) the ICP algorithm often yields a wrong estimate
of the sensor motion. To alleviate such problems,
caused by certain environment geometries, the recently
presented improved Kintinuous system (Whelan et al.,
2013) incorporates also a photometry-based procedure for
tracking the sensor, which is an implementation of the
algorithm of (Steinbrücker et al., 2011). However, this
system still requires massively parallel processing on a
GPGPU, which makes it unsuitable for small robots with
limited resources.

A completely different method for RGB-D data
processing is presented by Kerl et al. (2013). This
is a representative example of dense methods, relying
mostly on RGB images. These methods are based on the
photo-consistency assumption—the pixels representing
the same scene points remain similar over a sequence
of images of the scene taken by a moving sensor.
The assumption allows matching the characteristic image
points across multiple consecutively registered frames.
An advantage of such an approach is high accuracy
achieved with an acceptable computational workload. A
major disadvantage, however, is the lack of robustness
to disturbances of photometric consistency caused by the
presence of moving objects in the field of view of the
camera, sudden changes in illumination, etc. (Scaramuzza
and Fraundorfer, 2011).

An alternative to VO algorithms using dense D
or RGB data are the algorithms operating on a subset
of characteristic points in the image called keypoints
or features. The transformation between two poses
of the sensor at which the RGB-D frames were taken
is determined based on the above-mentioned keypoints
detected in either the RGB image or the depth data
part of the RGB-D frame. The concept of using
discrete point features for navigation is popular both
in VO systems (Bachrach et al., 2012), as well as in
systems based on the SLAM concept (Endres et al.,
2012). A majority of the proposed self-localization
solutions detect the distinctive keypoints in RGB images.
The depth data are used for the determination of the

spatial coordinates of the 3-D scene points represented
by the image keypoints. The information on the scene
structure is not directly used. The keypoint detection and
matching across multiple images acquired in the sequence
is performed using automated methods. These are based
on the analysis of the photometric characteristics of the
image patch constituting the keypoint neighborhood. An
up-to-date analysis of the usefulness of popular keypoint
detection and description algorithms in the context of
robot navigation is given by (Schmidt et al., 2013b).

The detectors for extracting keypoints from the depth
data—3-D point clouds acquired by an RGB-D sensor
facilitate the use of the knowledge of the geometric
structure of the scene. Examples of such feature detectors
include the PFH (persistent feature histogram) (Rusu
et al., 2008) and the newer detector/descriptor NARF
(normal aligned radial feature) (Steder et al., 2011).
However, a recently performed experimental evaluation
of a simple VO system using NARF keypoints has shown
that, although the accuracy of the system was acceptable,
the keypoint extraction procedure is too slow to meet the
requirements of real-time, on-board operation in robotics
applications (Nowicki and Skrzypczyński, 2013b).

To the best of the authors’ knowledge, the literature
of the subject does not mention any keypoint detector
taking into account both the photometric and geometric
aspects of RGB-D data. The development of such a
joint detector may be beneficial, as in real-life situations
the depth portion of data contains many areas in which
the depth values are unknown (“holes”) or they are
contaminated by artifacts, whereas the RGB portion of
data contains a valid scene representation. A few attempts
have been made to develop a keypoint descriptor operating
on both RGB and D data, but the proposed descriptor
works in pair with standard keypoint detectors, operating
exclusively on RGB or D images (Nascimento et al.,
2012). Properties of the range images that may be very
useful for robust detection of depth-related features are
investigated by Penne et al. (2013), who proposed a
method for detecting planarity when using ToF range
images is proposed. However, this method is tested
in experiments on planarity tests and the segmentation
of planar regions, but not used for feature detection.
As keypoint-based RGB-D data processing methods are
among the most computationally effective and accurate in
the context of navigation of mobile robots, new keypoint
detection algorithms capable of taking into account the
specific characteristics of RGB-D data are in demand.

3. Structure of the self-localization system

3.1. RGB-D visual odometry. In this work, we
consider a self-localization system using RGB-D data.
The system is divided into two parts: the front-end,
which is an implementation of our tracking-based VO
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Fig. 1. Block scheme of the PUT VO/SLAM system based on feature tracking.

concept, and the back-end, implementing pose-graph
optimization and loop closure detection. These two parts
run asynchronously, exchanging only the necessary data
structures. The design assumes that the system will be
capable of real-time operation on a standard low-end PC,
without resorting to the use of the GPGPU (Nowicki and
Skrzypczyński, 2013a). At the same time, an important
goal was to achieve as small an error of the sensor motion
estimation as possible.

With these assumptions and requirements in mind,
a decision was made at an early design stage to select
an approach based on RGB image keypoint detection.
The depth data were used to establish the spatial
coordinates of scene points corresponding to the detected
image keypoints. As keypoint detection, description
and matching is time-consuming (especially for large
sets of keypoints), the described system takes advantage
of photometric tracking of detected keypoints across
short RGB image sequences. This allows reducing the
computational overhead as only the depth images are
processed. Moreover, it is possible to establish the
geometric relation between the first and the last RGB-D
frame in the sequence without resorting to keypoint
matching, as the tracking process follows the position
of the keypoints from frame to frame. A detailed block
diagram of the visual odometry front-end is given in
Fig. 1, where the index k refers to a point in time
(keyframe index) and n is the number of RGB images on
which the photometric tracking of keypoints is performed.

The first stage of RGB-D data processing is the
detection of distinctive keypoints in the RGB image
using the FAST algorithm (Rosten and Drummond, 2006).
The detected keypoints are then verified and filtered
using depth image data by the original FAST-D detector,
described in Section 4.3. The filtered keypoints are then
tracked in a sequence of successive RGB images coming
from the RGB-D data stream acquired by the sensor. The
tracking is performed using the Lucas–Kanade algorithm
(Baker and Matthews, 2004). The tracking process lasts
until one of the criteria below is met (whichever occurs
first):

• a maximum, predefined number of frames for the
tracking process is reached,

• the number of successfully tracked features falls
below a predefined level (the level is still greater
than the minimum number of features necessary to
calculate the inter-frame transformation).

The image coordinates of the corresponding
keypoints and their depth in the first and the last frame
of the RGB-D sequence for which the tracking was
performed are used in further processing. Firstly, the 3-D
coordinates of the points corresponding to the keypoints
found in the first and the last frame are computed. As
the tracking is initiated only if the depth of the keypoint
was verified using the FAST-D detector, the number of
cases in which a keypoint is assigned an invalid depth is
significantly reduced, and the number of 3-D points is
high enough to allow the computation of transformation.
As the image correspondences between keypoints in the
first and the last frame in the sequence are known, so are
the correspondences between their 3-D counterparts.

With two sets of corresponding points in space (A
and B), one can calculate an unambiguous geometric
transformation B

AT = [BAR,
B
A t] between the coordinate

systems A and B associated with the first and the
last RGB-D frame, respectively. The transformation
is composed of two components—the rotation and the
translation between the two positions on the path of
the sensor. There are several approaches to estimating
the 3-D rigid transformation B

AT (Eggert et al., 1997).
In the current implementation of the PUT VO system,
the least squares estimation algorithm proposed by
Umeyama (1991) is used. The direct availability of 3-D
coordinates from the depth data allows the computation
of transformation from a minimum of three point
correspondences, whereas approaches relying only on the
image data require at least five corresponding point pairs
(Stewénius et al., 2006).

Keypoint correspondences used for transformation
estimation constitute the set Z . The set can contain
erroneous matches as a result of occlusions, inaccurate
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tracking, distortions and noise, illumination changes, etc.
This raises the need for the RANSAC robust estimation
algorithm to be integrated as a part of the processing
pipeline. In each RANSAC iteration, three random pairs
of points are drawn from Z . Based on this subset
(the so-called minimum sample), the transformation is
computed and its consistency with the remaining elements
of Z is evaluated. The measure of consistency is the
inlier ratio, that is, the ratio of the number of points
in Z consistent with the computed transformation to the
overall number of elements in Z . A pair of points is
considered consistent with the computed transformation
if the transformation B

AT for a point from A gives as a
result the coordinates of the corresponding point from B
with a certain accuracy.

RANSAC iterations are performed until a maximum
predefined iteration number is reached, or upon reaching
a specified threshold value of inlier ratio. The number
of the required RANSAC iterations is estimated using a
simple probabilistic model (Choi et al., 2009) to improve
speed. In most cases, robust estimation is completed in
a few RANSAC iterations, as the 3-D correspondences
set is derived mostly from correctly tracked points.
When the RANSAC-based model search is finished, the
transformation is re-estimated from all the inlier-pairs. If
the number of inliers is high, iterative model correction is
applied by rejecting the inliers that are the least probable
within the model estimated so far (Raguram et al., 2013).

3.2. Extending PUT VO to pose-based SLAM. Even
the most precise visual odometry system is unable to
detect and close any loop, and thus it cannot reduce the
unavoidable trajectory drift. In order to enable such a
correction, the proposed PUT VO system is paired with
a back-end for pose-graph optimization. The back-end is
based on the open-source g2o software package for least
squares optimization (Kuemmerle et al., 2011).

The pose-graph assembled from the consecutive pose
estimates produced by the VO front-end is optimized
by minimization of a non-linear error function that is
represented by the constraints (edges) of this graph. The
back-end computes a globally consistent trajectory of the
sensor, provided that all the constraints in the pose-graph
are correct. The global optimization occurs whenever a
loop closure is detected on RGB images by matching the
keypoints from frames belonging to poses that are located
far enough along the trajectory. If a significant similarity
between two distant frames is discovered by comparing
descriptors of their salient point features, a transformation
is computed between these frames, and it is added as a
constraint to the pose-graph.

Our system considers only local, “metric” loop
closures (Strasdat, 2012), which are detected comparing
features from the current keyframe to features from a
finite set of previous keyframes, which are located far

enough along the sensor’s trajectory (i.e., with respect to
the keyframe index), but are close enough in the sense of
the Euclidean distance computed in the global reference
frame. The implementation requires that a keyframe
considered for loop closure detection be located at least
15 keyframes from the current sensor pose, but no farther
than 5 m from this pose. This approach can handle small
to middle scale loops, while the detection of large scale
loop closures requires an efficient appearance-based place
recognition method, such as the well-known FAB-MAP
or one of its improved variants (Cummins and Newman,
2010). Integration of such a method in PUT SLAM is
considered future work.

Because the PUT VO pipeline is based on tracking,
there is no possibility to re-use the descriptors of
keypoints (they are not computed for each frame).
The keypoints with descriptors have to be computed
specifically for the loop closure, but for a fraction of
all RGB-D frames—only those that are considered loop
closure candidates (Belter et al., 2015). Taking into
account the results presented by Schmidt et al. (2013b),
we decided to implement the loop closure mechanism
that can be configured to use alternatively one of the two
detector/descriptor pairs: the classic yet efficient SURF
(Bay et al., 2008) and the more recent, very fast to
compute, ORB (Rublee et al., 2011).

4. Robust keypoint detection and tracking

4.1. Motivation and preliminaries. Contrary to
typical applications of photometric keypoint detectors in
image processing, applications that make use of RGB-D
data require the detection of keypoints that are not just
photometrically distinctive, but also supplemented with
a reliable depth measurement. From the knowledge
about the typical artifacts and measurement errors in
depth cameras, we make the assumption that robust
RGB-D keypoints are located on planar surfaces,
because optical ranging senors usually produce erroneous
depth measurements when the laser/IR beam or pattern
illuminates a sharp edge. Thus, the direct neighborhood of
a robust keypoint should be approximately planar. In order
to derive a planarity test for a keypoint’s neighborhood
that is computationally efficient but general enough to
be applied to the data from various RGB-D sensors, we
formulate some coplanarity and colinearity criteria on the
basis of an analysis of the image formation process in
range cameras.

We assume a pinhole model for the range camera.
For the analytic description of the observed scene (point
features), we choose the camera reference frame (Fig. 2).
As usual, the intrinsic camera parameters (neglecting lens
distortions) are given by the calibration matrix (Hartley
and Zisserman, 2004) K . As we assume rectangular
pixels (zero skewness), the pinhole model is defined by



68 M. Kraft et al.

four intrinsic parameters: focal length f in pixels, aspect
ratio τ , and pixel coordinates of the principal pointCu0v0 .
For each pixel puv on the sensor, the 3-D coordinates in
the camera reference frame can be computed by

⎛
⎝

xp
yp
zp

⎞
⎠ = f ·K−1

⎛
⎝

u
v
1

⎞
⎠ , (1)

and we can obtain the world coordinates (X,Y, Z) of the
scene point P by simple scaling

⎛
⎝

X
Y
Z

⎞
⎠ =

Z

f

⎛
⎝

xp
yp
zp

⎞
⎠ = Z ·K−1

⎛
⎝

u
v
1

⎞
⎠ . (2)

We conclude that if a range camera is calibrated, and
if it measures the z-depth (e.g., by means of structured
light, like the first-generation Kinect sensor), then we can
recover the 3-D position of observed feature points P .

Fig. 2. Image formation, the coordinate system, and calibration
parameters for a depth camera.

On the other hand, there also exist range sensors
that provide radial depths, rather than z-depths (e.g., ToF
cameras (Hansard et al., 2012)). These devices measure
the distance between the optical centre C and each point
Puv that is imaged in (u, v) (Fig. 2): D(u, v) = |C−Puv |.
In this case, the scale factor in (2) for transformation of the
image puv to the world point P is not directly available by
measurement, but can be computed by means of the inter-
nal radial distance d(u, v) = |C − puv|. These internal
distances do not depend on the observed scene and refer
to the intrinsic geometry of the (pinhole) camera:

d(u, v) =

√
(u− u0)2 +

(v − v0)2

τ2
+ f2. (3)

In the work of Penne et al. (2015) the calibration of a
ToF-camera is directly done by means of d, which is

considered a parameter-free, more flexible alternative for
the pinhole model (see also Mertens et al., 2013). From
the geometric similarity of perspective projection (still
assuming zero skewness), we see that

Puv =
D(u, v)

d(u, v)
(u− u0,

v − v0
τ

, f). (4)

We conclude that a spatial feature Puv is obtained
from the calibrated image coordinates (us, vs) by simple
scaling: Puv = ρ · (us, vs, 1)T , where ρ depends on the
nature of the range measurement:

ρZ = Z if the z-depth is given, (5)

ρD =
D(u, v)

d(u, v)
f if the radial depth is given. (6)

Notice that ρZ only involves the range measurement,
whereas ρD needs an additional computation involving
the calibration parameters.

4.2. General planarity detection method for depth
sensors. On the basis of the preliminaries given in the
previous section, we formulate here general planarity
criteria, which may be applied to both the classes of the
range sensors considered: providing either the z-depth or
the radial depth.

Let P1, P2, P2, P4 be four scene points available in
the image as p1, p2, p3, p4, given by pixel coordinates
pi = (ui, vi). The world coordinates for each of these
points Pi are given by

⎛
⎝

Xi

Yi
Zi

⎞
⎠ = ρ ·K−1

⎛
⎝

ui
vi
1

⎞
⎠ , (7)

where ρ depends on the kind of range sensor (z-depth or
radial depth). The coplanarity condition for the quadruple
P1, P2, P3, P4 is given by

∣∣∣∣∣∣∣∣

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

∣∣∣∣∣∣∣∣
= 0 (8)

or, after expanding with respect to the last row,
∣∣∣∣∣∣
x2 x3 x4
y2 y3 y4
z2 z3 z4

∣∣∣∣∣∣
−
∣∣∣∣∣∣
x1 x3 x4
y1 y3 y4
z1 z3 z4

∣∣∣∣∣∣

+

∣∣∣∣∣∣
x1 x2 x4
y1 y2 y4
z1 z2 z4

∣∣∣∣∣∣
−
∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
= 0.

Each term in this equation can be rewritten as
∣∣∣∣∣∣
xi xj xk
yi yj yk
zi zj zk

∣∣∣∣∣∣
= ρ3 · 1

det(K)
·
∣∣∣∣∣∣
ui uj uk
vi vj vk
1 1 1

∣∣∣∣∣∣
. (9)



Efficient RGB-D data processing for feature-based self-localization of mobile robots 69

Finally, the coplanarity constraint (8) can be translated in
the following equation:

[234]ρ2ρ3ρ4 − [134]ρ1ρ3ρ4 + [124]ρ1ρ2ρ4

− [123]ρ1ρ2ρ3 = 0, (10)

only involving the range depths ρi and the “signed double
triangle areas”,

[ijk] =

∣∣∣∣∣∣
ui uj uk
vi vj vk
1 1 1

∣∣∣∣∣∣
, (11)

directly measurable in the uncalibrated image
(independent of K). In the special case when p1,
p2 and p3 are collinear (on line L), the coplanarity
condition for the world points P1, P2, P3, P4 is equivalent
to requiring that P1, P2, P3 be collinear. The coplanarity
equation now simplifies to

[23]ρ2ρ3 − [13]ρ1ρ3 + [12]ρ1ρ2 = 0 (12)

because [123] = 0 and [ij4] = [ij]·|p4L|. Here [ij] stands
for the “signed distance” between pi and pj (1 ≤ i, j ≤
3), with the sign determined by the orientation of L that
makes p4 lie on the left-hand side of L.

4.3. Practical planarity detection: FAST-D. The
previous section provided mathematically sound and
general criteria for determining both coplanarity and
colinearity in depth images, regardless of the image
formation mechanism. However, applying such criteria
for practical verification of keypoints requires taking
into account the uncertainty of the measured depth
values (Khoskelham and Elberink, 2012), which is not
straightforward as the general method provides no explicit
uncertainty model or a tunable threshold that can account
for the depth errors. Therefore, taking into account the
general idea underlying the collinearity test presented
before, we describe a practical approach, which may
be tuned to be less strict and to accept features within
an acceptable error margin of planarity. Moreover,
this method, named FAST-D, is closely related in the
geometry considered to the image keypoint detector FAST
(Rosten and Drummond, 2006), which we use to find
corner-like features in RGB images. FAST-D has an
additional mechanism enabling verification of the depth
measurements associated with the detected keypoints.

FAST keypoints are detected in images that were
corrected to remove lens distortions and account for the
sensor calibration, and converted into grayscale. The x
and y image coordinates of keypoints are established with
subpixel precision to improve the system’s accuracy. As
the Kinect sensor (both versions) is calibrated beforehand,
it is possible to recover the corresponding depth values

ba C

Fig. 3. FAST-D keypoint filtering: schematic depiction of the
sampling points in the keypoint neighborhood (a) and
geometric relations (b).

for any integer RGB image coordinate. FAST-D performs
additional keypoint filtering based on the depth image.
The filtering starts with the rejection of the keypoints
for which there is no valid depth measurement. These
keypoints are located on the areas that correspond to the
“holes” in the depth image.

For each one of the remaining keypoints, a 7 × 7
neighborhood on the depth image is examined. The depth
value dp for the central pixel P and the depth values
d1 to d16 for the pixels 1 to 16, constituting a discrete
Bresenham circle (the same as used in the original FAST)
with a 3 pixel radius around P , are used for further
filtering (Fig. 3(a)). The depth of all the points is divided
by the depth of the central point:

λi =
di
dP

, i = 1, . . . , 16. (13)

This normalization makes the computations
independent of the actual distance of the feature of the
sensor. In order to cope with the exponential error of the
depth measurements (Khoskelham and Elberink, 2012),
only the parts of image with the corresponding depth
smaller than a clipping threshold (set to 5 m) are analysed.
Moreover, as the distance to the object increases, the
analysed pixels of the Bresenham circle correspond to the
more distant 3D points. Therefore, a larger local surface
is analysed and the influence of the depth measurement
errors decreases. As a result, the proposed detector
performed consistently over the selected depth range. The
result is a vector of 16 coefficients for the ring pixels – λ1
to λ16 cf. (13). The transformed depth of the central pixel
is equal to 1. Let us now consider the central point P and
sample opposite points A and B situated on the 16-pixel
ring (as depicted in Fig. 3(a)). The points and the sensor
form a spatial arrangement (as shown in Fig. 3(b)). The
points are projected on the image plane as image points
xP , xA and xB , with the measured depths of dP , dA, dB .
The focal point of the system is denoted by C.

Let us denote by A′, B′ and P ′ the transformed
points. The scaling is proportional, so the triangle pairs
CAP andCA′P ′ as well asCBP andCB′P ′ are similar.
The angle β between the vectors

−→
PA and

−−→
PB and between

the vectors
−−→
P ′A′ and

−−−→
P ′B′ is therefore the same. With the

depth of the central point equal to 1, we can use the laws
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a

d

c

b

Fig. 4. Detected point features on example Kinect 1 and Kinect
2 frames: Kinect 1, no filtration—OpenCV FAST (a),
Kinect 1, FAST-D filtration (b), Kinect 2, no filtration—
OpenCV FAST (c), Kinect 2, FAST-D filtration (d).

of projective geometry to compute the 3-D coordinates of
the points A′ and B′ denoted by XA′ and XB′ . To do
this, we multiply their homogeneous image coordinates
by their respective coefficients λA and λB (Hartley and
Zisserman, 2004):

XA′ = λAxA, XB′ = λBxB. (14)

The value of the angle β between the vectors
−−→
P ′A′

and
−−−→
P ′B′ can be determined through the computation of

the dot product of their versors, as the dot product of two
unit vectors depends only on the angle between the said
vectors. In our specific case, the following equation is
satisfied:

β = arccos

( −−→
P ′A′

|−−→P ′A′|
·
−−−→
P ′B′

|−−−→P ′B′|

)
. (15)

By using the value of β for thresholding and
performing the test for all eight opposite point pairs lying
on the Bresenham circle as shown in Fig. 3(a), one can
effectively filter out keypoints that are not situated on
stable, locally planar areas. If a feature successfully
passes seven out of the eight tests, it is kept and used in
the VO front-end pipeline. The experimental evaluation
revealed that performing such an additional test for a
single feature takes only about 0.015 ms.

Figure 4 demonstrates the results of filtering with
the FAST-D algorithm for example frames yielded
by the older Kinect 1 sensor (structured light range
measurements, left column of Fig. 4) and the recently
introduced Kinect 2 sensor, which uses a ToF camera
(right column of Fig. 4). In both cases the threshold
value of β of 145◦ was applied. Many of the keypoints
detected by the original FAST algorithm are located on
edges and corners of the physical objects (Fig. 4(a),
(c)). The FAST-D approach eliminates most of these

potentially unreliable RGB-D features (Fig. 4(b),(d)),
but some isolated keypoints, particularly on corners are
not discarded (example denoted by a rectangle in Fig.
4(b)) of the local planarity test due to the imprecise
representation of the scene depth in the D image from
the Kinect sensor. Since the range uncertainty depends
on the distance between the sensor and the observed
object (Khoskelham and Elberink, 2012), it may happen
for very close or distant objects that while the intensity
changes locally, giving rise to a corner-like feature, the
depth values provided by Kinect in the same region remain
almost constant.

4.4. Management of features. To make the
feature detection more robust, we use two techniques:
unsupervised clustering of the keypoints and detection of
features in subimages. The clustering of features solves
the problem that arises when many detected keypoints are
located on a small area in the image, as seen in Fig. 5(a).
This situation may lead to mismatches in feature tracking.
To obtain isolated point features representing highly
textured areas, we employ DBScan (Ester et al., 1996), an
unsupervised, density-based clustering algorithm working
without any prior knowledge about the number of clusters
(classes) in the image. Only two parameters need to
be set in the algorithm—the minimum number of points
to form a cluster and the maximum distance within the
class. The algorithm considers one keypoint and looks for
other points in its neighborhood, defined by the maximum
Euclidean distance (in pixels). Whenever there are no
neighbors and the conditions of cluster formation are
not met, the keypoint is described as a nonclustered
feature. Using an optimized implementation of DBScan,
O(n log n) computational complexity is achieved, where
n is the number of keypoints. Then, from each cluster
established by DBScan, only two FAST-D features with
the highest FAST score and enough distance between
them are retained, while other points are discarded
(Fig. 5(c)). It prevents the tracking algorithm from
mistaking visually similar features that are located in
the close neighborhood, and then reduces the number of
outliers in the transformation between the two sets of
points.

In order to compute a proper transformation between
the two RGB-D frames represented by two sets of
3-D points, these points have to be spatially distributed
in the field of view of the sensor. If most of the
keypoints are located in one particular area of the image,
e.g., at the bottom, the least-squares estimation of the
transformation between the two point patterns may be
ill-conditioned (Umeyama, 1991). Moreover, the system
can fail whenever the RGB-D sensor is moving very
fast, and the detected patterns of points shift from one
area of the image to another leaving no overlapping
features. Therefore, to ensure approximately equal
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a b

c d

Fig. 5. Results of point feature management (features shown
as small circles): all features detected in an RGB im-
age by the FAST-D algorithm (a), FAST-D features de-
tected in stripes imposed on the original image (b), fea-
tures detected in stripes and clustered by using the DB-
scan algorithm (c), and the alternative organization of vi-
sual features obtained using the equi-distributed traver-
sal quadtree algorithm (d).

distribution of the keypoints over the whole area of
the image, this image is divided into six horizontal
stripes of equal height. Then FAST-D detection
is performed in each of these stripes individually,
with the FAST detector threshold chosen adaptively
(using DynamicAdaptedFeatureDetector from OpenCV)
to ensure that a similar number of point features is
detected in each subimage.

The concept of horizontal stripes is motivated by the
fact that a mobile robot’s sensor often sees the ground
plane (floor) and some objects above it in one image, and
these parts of the frame have quite different characteristics
as to the number and location of possible point features
(Fig. 5(b)). However, this approach works also for images
acquired by a tilted sensor, when the ψr angle is non-zero
and the line of the horizon (or the floor) is not parallel
to the horizontal axis of the image (Kraft et al., 2014).
The number of stripes is a trade-off between our intention
to divide the whole image into as many horizontal parts
as possible, and the requirements of the detector, which
cannot find keypoints too close to the boarders of an image
(or a subimage). The stripes have to overlap slightly, in
order to avoid a situation that the keypoints cannot be
detected in some areas. Thus, having more than 6 stripes
(for a 640×480 resolution), we would have more areas in
which redundant features can be detected, and we would
waste too much computation time.

An alternative approach to the management of point
features for visual SLAM was presented by Strasdat
(2012). He organizes the point features in a quadtree,
and presents a traversal method, based on a combination
of breadth-first and depth-first search in this tree, which

ensures uniform feature distribution on the image. We
implemented this algorithm as an alternative feature
management method in the PUT VO/SLAM system (Fig.
5(d)), and in Section 5 we compare the performance of the
quadtree-based management with our original approach,
based on the stripes and DBScan.

4.5. Tracking of features on RGB images.
In contrast to feature matching typically used in
RGB-D-based motion estimation (Endres et al., 2012), the
tracking-based approach does not need to compute and
match the descriptors of features, and performs keypoint
detection only on a subset of images acquired from the
RGB-D sensor. Thus, tracking is computationally less
demanding than matching using classic descriptors, like
SIFT (Lowe, 2004) or SURF.

The idea of tracking is to detect features at the
keyframe, and then look for the position of this feature
in the new image by searching locally. In our system,
the tracking is performed using a pyramid implementation
(Bouguet, 2000) of the Lucas–Kanade algorithm (Baker
and Matthews, 2004), which tracks visually salient point
features using a model of affine image changes. When
the tracking starts on a new sequence of RGB frames, the
point features in the initial image are obtained from the
FAST-D keypoints and fed to the Lucas–Kanade tracker,
which tells where these features should be located in
the next image of the sequence. We use the FAST
features instead of the Shi–Tomasi algorithm (Shi and
Tomasi, 1994), which is more common in this application
due to the higher computational efficiency of FAST.

The PUT VO system tracks features over a number
of images of the RGB-D sequence between the two
keyframes that are processed with depth images. If
either the number of features that are well-tracked (do
not have a high dissimilarity value computed by the
Lucas–Kanade tracker) drops below a threshold or the
maximum allowed number of the RGB frames in tracking
is reached (max. k = 5), the tracker finishes its operation,
and a new keyframe is established to extract a new set
of features by using FAST-D. At a new keyframe we
compute new keypoints, but also re-use some old features
that were accepted as inliers when computing the last
motion transformation. They may constitute up to 50%
of the new set of keypoints. This strategy promotes
visually salient “matured” features that are good to track.
The 3-D transformation between the two keyframes at
the beginning and at the end of the tracking sequence is
computed using a robust estimation scheme. To avoid
a drift when the sensor/robot is not moving, we do not
update its pose and do not change the keyframe if the
estimated motion transformation is close to identity.
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Fig. 6. PUT RGB-D data set—experimental setup and collected
data: RGB-D data acquisition procedure (a), 3-D view
of the ground truth and estimated trajectories in one of
the experiments (b), 3-D rendering of a fragment of the
scene resulting from the acquired RGB-D frames and the
estimated trajectory (c).

5. Experiments and results

5.1. Experimental methodology. The trajectory
estimation quality assessment for the PUT VO and
PUT SLAM systems was performed using publicly
available RGB-D data sets, to ensure that our results
are scientifically verifiable. The data sets used in the
experiments are the TUM RGB-D benchmark described
by Sturm et al. (2012) and our own PUT RGB-D data
set (Schmidt et al., 2013a)1. These data sets were
collected using the Kinect sensor. In both data sets the
RGB-D frames are tagged with synchronized information
on the ground truth position of the sensor obtained from
an external motion capture system. The methods and
algorithms used to obtain the ground truth data for the
PUT RGB-D data set are described by Schmidt et al.
(2013a), and an example view from an overhead camera
of the motion capture system is shown in Fig. 6(a).

All experiments with the PUT VO and PUT SLAM
systems were performed on a laptop PC with a 2.5 GHz
processor and 8 GB of RAM. The VO front-end uses only
a single core of the processor, however, the optimization
back-end with loop closure detection is implemented in
a separate thread and runs in parallel to the VO pipeline.
In all tests, the maximum number of tracked features was
500. The maximum number of RGB images for feature
tracking in-between two keyframes was set to 5. Both
PUT VO and PUT SLAM run in real-time. While the

1The data set is available at http://www.vision.put.
poznan.pl/?p=70.

speed achieved by particular variants of these systems is
shown further on in this section (cf. Table 1), here we
highlight some details as to the processing times in the
tracking-based front-end: the per-frame feature detection
and management (DBScan and stripes) time averaged over
the tested RGB-D sequences was 10.8 ms, the averaged
tracking time between two consecutive keyframes was
measured as 13.7 ms, while the transformation estimation
(within the RANSAC framework) took less than 1 ms for
most of the tested sequences. Typically, only few
iterations of RANSAC were necessary to establish an
acceptable transformation model, which is attributed
to the correct feature associations maintained by the
Lucas–Kanade tracker.

We used the evaluation tools provided with the TUM
RGB-D benchmark (Sturm et al., 2012). The error metrics
used are the relative pose error (RPE), which shows the
local drift of the VO system, and the absolute trajectory
error (ATE), which illustrates the difference between the
estimated trajectory of the sensor and the ground truth
trajectory.

5.2. Evaluation of improved RGB-D data process-
ing. The impact of the improvements to RGB-D data
processing on the quality of the sensor pose estimates was
investigated in detail on the PUT VO system in order to
avoid a situation when the results are altered by trajectory
optimization in the pose-based SLAM back-end.

Figure 7 presents quantitative results of the tests of
the PUT VO system conducted for the PUT RGB-D data
set sequence trajectory_1. The sequence containing 500
RGB-D frames was used to investigate the effects of the
improved feature extraction method and the new feature
management techniques on the accuracy of the sensor’s
trajectory estimation. The 3-D view of the estimated
trajectory (Fig. 6(b)) demonstrates the absolute trajectory
errors, whereas Fig. 6(c) depicts a fragment of the scene
(laboratory room) reconstructed from 140 consecutive
RGB-D frames registered together using the estimated
trajectory.

The RPE tool was used to evaluate the accuracy
of local position and orientation estimation along the
estimated trajectory, because in a visual odometry system
the absolute position and orientation errors increase
steadily (Scaramuzza and Fraundorfer, 2011). The RPE
reveals the relative errors in translation and rotation
between the successive RGB-D frames. Figure 7(a) shows
the relative translation errors for the PUT VO system
using the FAST-D algorithm and feature management
mechanisms. To enable a direct comparison, results for
the basic version of our VO (Nowicki and Skrzypczyński,
2013a), which is hereinafter referred to as the “tracking
VO” approach, are depicted. The normalized histogram
of these errors is shown in Fig. 7(c). The effects of the
modifications made to the feature extraction procedures

http://www.vision.put.
poznan.pl/?p=70.
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Fig. 7. Influence of the point feature extraction and manage-
ment methods on the relative translation and rotation er-
ror of the PUT VO system: comparison of relative trans-
lation errors (a), comparison of relative orientation errors
(b), as well as normalized histograms of the translation
(c) and orientation (d) errors.

on the relative orientation errors are plotted in Fig. 7(b),
whereas Fig. 7(d) shows the normalized histogram of
these errors. Quantitative differences between the results
achieved applying the particular feature extraction and
management techniques are small, but it is clearly visible
that the introduction of new feature management methods
reduces the number of large errors in the estimated
translation and rotation, compared to the basic version of
the VO pipeline, which uses the simple FAST detector.

Knowing the impact of the new RGB-D data
processing methods on the operation of the PUT VO
system, we further investigate the influence of the
improvements made to the front-end on the whole
self-localization system. To this end, we compare the
quantitative results: RPE and ATE values obtained by
four configurations of the system under investigation,
which represent particular improvements: Tracking is the
simplest VO system without any improvements to the
RGB-D data processing, VO (FAST-D) uses only the
new FAST-D feature detector, VO (FAST-D+Quadtree)
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Fig. 8. Comparison of translation errors: the RPE and ATE for
selected configurations of the PUT VO/SLAM system
on four sequences from the TUM RGB-D benchmark.

represents an alternative version of our VO system
that uses the approach of Strasdat (2012) for feature
management, and, finally, PUT VO is the full RGB-D
visual odometry system with all improvements proposed
in this paper. This analysis is completed by comparing the
translation errors obtained by another four configurations
of the self-localization system, this time employing
the pose-graph optimization back-end, i.e., g2o. This
part of the comparison demonstrates how the new
front-end (PUT SLAM) improves results over the simple
Tracking VO approach with the loop closure mechanism
(Tracking+LC). Moreover, we test the loop closure
in two versions, which differ in the ORB or SURF
detector/descriptor pair being used. All these results
are plotted in Fig. 8, using four example RGB-D data
sequences from the TUM RGB-D benchmark. The
accompanying qualitative results are demonstrated in
Fig. 9, which shows the trajectories recovered from the
two more challenging sequences than those used in Fig. 8:
fr1_room (left column) and fr3_long_office_household

(right column) visualizing the ATEs. Unfortunately,
the evaluation tools we have adopted from Sturm et
al. (2012) do not support visualization of loop closure
constraints. The loop closure mechanism is investigated
more thoroughly by Belter et al. (2015), employing
custom visualizations. The trajectories in Fig. 9 are
estimated by the three most representative variants of our
self-localization system.
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tracking VO (a), (b), PUT VO with FAST-D and feature
management (c), (d), and PUT SLAM with ORB-based
loop closure (e), (f).

It is evident that the introduction of both the
new detector and the feature management procedures
decreases both the RPEs and ATEs. Surprisingly, the
alternative quadtree-based data management procedure
performs poorly, particularly for the larger scenes
(fr1_room and fr3_long_office_household). This is
probably caused by the tendency to force initialization
of keypoints in areas which are naturally featureless.
Such keypoints result in features that cannot be tracked
reliably by the Lucas–Kanade algorithm. Moreover, we
observed that the simple and fast ORB detector/descriptor
performs better than SURF. This is attributed to the
constant budget of time we allocate to the loop closure
detection procedure, in order to keep the whole system
real-time. As shown in the paper by Schmidt et al.
(2013b), feature matching using ORB results in a higher
matching ratio than when using SURF. Therefore, it is
possible to limit the number of the detected ORB features
to an arbitrary number of the most prominent ones. On
the other hand, the lower matching reliability of SURF
means that all features have to be used. When combined
with the significantly higher detection and description
time of the SURF algorithm, this means that adding a new
frame to the system is much more time-consuming for the
SURF-based variant, leaving less processing time for the
loop detection procedure. Besides matching the binary

ORB descriptors is much more efficient than matching the
floating-point SURF features. As a result, if the SURF
algorithm is used, fewer loop-closure candidates can be
evaluated and thus fewer constraints are incorporated into
the graph optimization. Considering that there was no
noticeable difference in the quality of the matches, ORB
proved to be the algorithm of choice.

We also performed a series of experiments that
demonstrate the ability of our tracking-based VO pipeline
to handle situations when the sensor moves with a
relatively high velocity. Obviously, for an RGB-D
sensor moving very fast, the main problem with our
feature-based approach would be reliable detection of the
keypoints, due to the unavoidable motion blur. In fact,
this problem, not the processing time, sets the physical
limit on the velocity of the sensor/robot. However, as
long as the amount of motion blur is acceptable to the
FAST detector, the tracking-based VO system operates
correctly, with the accuracy of trajectory estimation
degrading slowly for higher velocities, as the distances
between the consecutive images increase, assuming that
the RGB-D sensor works with a constant frame rate. This
is demonstrated by the results of a simple experiment: the
mobile robot with a Kinect sensor traveled three times
roughly the same seven metres long trajectory (consisting
of a straight part and an arc), while its ground truth
position was recorded by the overhead cameras.

The runs were performed with three different
velocities: 0.434 m/s, 0.862 m/s, and 1.175 m/s. For
these sequences, the following RPE values were obtained:
0.06 m, 0.11 m, and 0.13 m, respectively. The claim that
our front-end can handle rapid motion is also supported
by the results obtained for the TUM RGB-D benchmark
sequences—some of them, e.g., the fr1_desk, contain
sudden turns of the handheld sensor. The failure modes
of our approach identified during the experiment include
situations when there are not enough visual features (e.g.,
the sensor is approaching a white wall), or there are not
enough features with a valid depth (objects are too far
from the RGB-D sensor). These situations cannot be
handled within the current framework, which requires
both the RGB and depth data.

5.3. Comparison with RGB-D SLAM. In order
to demonstrate the advantages of our RGB-D data
processing methods, we compare the performance of
the PUT VO and PUT SLAM systems with the results
achieved the RGB-D SLAM system of Endres et al.
(2012), which is available as open source software
and widely considered in the literature as a reference
implementation. RGB-D SLAM is feature-based, and
may be used in a number of configurations that differ
mainly in the detector/descriptor pair being used. For
the comparison we use the variants applying SURF or
ORB. Although the code of RGB-D SLAM is available,
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Fig. 10. Comparison of the relative translation (a) and rotation
(b) errors along the estimated trajectory for the PUT
VO system and the open-source RGB-D SLAM system
on the TUM fr1_desk sequence.

we found it practically impossible to replace the front-end
of this system with our solution, keeping not only
the same back-end, but also the original loop closure
procedures. Therefore, our comparison concerns not only
the front-end, but the whole VO/SLAM solutions.

Figures 10(a) and (b) compare the relative translation
and rotation errors of PUT VO and RGB-D SLAM along
the estimated trajectory of the TUM RGB-D benchmark
fr1_desk sequence. One can notice large errors in the
relative orientation and translation appearing sporadically
in the RGB-D SLAM estimates (hatched areas), whereas
PUT VO (i.e., the front-end of PUT SLAM) retains
limited relative orientation errors throughout the entire
experiment, also significant translation errors occur less
frequently.

Figure 11(a) shows the ATE for PUT VO, whereas
Fig. 11(b) depicts the ATE of PUT SLAM (using ORB
features for loop closure). The trajectory recovered
by RGB-D SLAM (also a variant with ORB) and the
ATE are demonstrated in Fig. 11(c). From these results
we may conclude that for a relatively short sequence
the advantage of the RGB-D SLAM system over the
much faster PUT VO is not visible. PUT SLAM,
using the same g2o back-end as RGB-D SLAM, recovers
the trajectory with an even smaller ATE, demonstrating
that the improved RGB-D data processing is beneficial
also to the self-localization system using pose-graph
optimization. However, the fact that the gain in terms
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Fig. 11. Comparison of trajectories (with the ATEs visualized)
recovered from the TUM fr1_desk sequence by the
PUT VO system (a), the PUT SLAM system (b), and
the open-source RGB-D SLAM system (c).

of the absolute trajectory error due to the loop closures
and optimization differs significantly for the particular
environments suggests that not all loop closures are
correctly detected. We use a simple strategy, which relies
completely on the matching of the local descriptors of
salient visual features. Perhaps a more advanced strategy,
involving active testing of the discovered loop closures
against the environment model (Endres et al., 2014),
would bring more consistent precision improvements
in pose-based SLAM with respect to RGB-D visual
odometry alone.

Observations as to the small relative errors incurred
by the frame-to-frame motion estimation in PUT VO are
confirmed by the quantitative results in Table 1. This table
presents the root mean square errors (RMSEs) and the
maximum errors of translation and rotation for the same
trajectory as Figs. 10 and 11. Table 1 shows also that
PUT VO and PUT SLAM are much faster than RGB-D
SLAM. The PUT SLAM version achieves a similar speed
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Table 1. Comparison of the relative translation errors (RPEs) for the PUT VO/SLAM and RGB-D SLAM systems: the TUM RGB-D
benchmark fr1_desk sequence.

system and type of feature translation translation rotation rotation frames per
detector or detector/descriptor RMSE [m] max. error [m] RMSE [◦] max. error [◦] second [Hz]

PUT VO (FAST-D) 0.038 0.20 1.33 6.50 30.6
PUT SLAM (FAST-D+ORB) 0.027 0.11 1.51 7.78 29.4
PUT SLAM (FAST-D+SURF) 0.032 0.17 1.97 14.37 29.3
RGB-D SLAM (ORB) 0.025 0.21 2.29 36.43 10.5
RGB-D SLAM (SURF) 0.022 0.14 2.15 36.43 10.0

as the VO version, since the pose-graph optimization
is implemented in a separate thread and synchronized
with the front-end. Thus, a single cycle of loop closure
and optimization cannot take more time than motion
estimation between two consecutive RGB-D keyframes
(including tracking). This constraint ensures real-time
operation of the whole PUT SLAM system. Loop closure
detection has linear complexity in the number of locations
(i.e., keyframes in our case) being considered as the
loop closure candidates (Cummins and Newman, 2010);
thus, in a general case, the time constraint limits the
scale of loops that can be detected. However, in PUT
SLAM this limitation is alleviated by the local loop
closure formulation: the number of candidate keyframes
is already limited by the required maximum Euclidean
distance from the current sensor pose. Therefore, in most
cases all the candidate keyframes can be evaluated within
the tight time period, particularly using the fast ORB
computations.

6. Conclusions

The experiments have demonstrated that the extraction of
point features from RGB-D data that simultaneously takes
into account the images and the depth data increases the
robustness and precision of the visual odometry method,
used either as a stand-alone self-localization system,
or as a front-end in pose-based SLAM. Management
of the detected keypoints proved to be important as
well, as it allows us to obtain features with the spatial
distribution that is well suited for robust estimation of
the motion between the RGB-D frames that are located
relatively far apart. The proposed FAST-D point feature
detector is built upon the solid mathematical analysis
of the image formation and general coplanarity tests,
but provides a flexible and computation-efficient solution
for real-time RGB-D data processing. The robustness
and computation speed of the proposed algorithms is
of particular importance to the tracking-based visual
odometry pipeline, which is very efficient, but only if it
is fed with reliable point features.

The proposed PUT VO system is characterized by
high precision of the local motion estimation and achieves
relative position errors along the trajectory at the same

level as for the more complicated RGB-D SLAM system.
Our results obtained on the TUM RGB-D benchmark can
be also compared to the performance of the new version
of RGB-D SLAM (Endres et al., 2014), and results
achieved by several visual odometry algorithms, which
were compared by Whelan et al. (2013). However, the
trajectory recovered by PUT VO using the frame-to-frame
motion estimation always exhibits some drift. In PUT
SLAM a possibility to decrease this drift arises whenever
the sensor re-visits already explored areas. It was
shown by the experimental results that the pose-based
SLAM version of our system also benefits from the
improved precision of the front-end, providing that all the
pose-graph constraints resulting from the detected loop
closures are correct. Any incorrect loop closures have to
be rejected by the back-end (Belter et al., 2015), as the
front-end is not aware of the whole pose-graph structure
and the outcome of the optimization process.

A more advanced strategy for loop closure detection
and outlier rejection is one of the main goals of our further
research on RGB-D based self-localization. Another
promising direction is to directly include some of the point
features in the graph optimized by the back-end. The
g2o package makes it possible to include features in the
optimization process, but further research is needed on the
modelling of the uncertainty of these features.
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versity of Technology in 2005. He received the
Ph.D. degree from the same university in 2013.
In the same year he was appointed an assis-
tant professor at the Institute of Control and In-
formation Engineering there. His research in-
terests include computer vision, embedded sys-
tems, robotics, parallel processing and high per-
formance computing.

Michał Nowicki graduated from the Poznań Uni-
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