
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 2, 385–399
DOI: 10.1515/amcs-2017-0027

A HYBRID SCHEDULER FOR MANY TASK COMPUTING IN BIG DATA
SYSTEMS

LAURA VASILIU a, FLORIN POP a,c,∗, CATALIN NEGRU a, MARIANA MOCANU a,
VALENTIN CRISTEA a, JOANNA KOLODZIEJ b

aComputer Science Department, Faculty of Automatic Control and Computers
University Politehnica of Bucharest, 313, Splaiul Independentei, 060042 Bucharest, Romania

e-mail: laura.vasiliu@hpc.pub.ro, {florin.pop,catalin.negru}@cs.pub.ro,
{mariana.mocanu,valentin.cristea}@cs.pub.ro

bInstitute of Computer Science
Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

e-mail: jokolodziej@pk.edu.pl

cNational Institute for Research and Development in Informatics (ICI)
8–10, Mareşal Averescu, 011455 Bucharest, Romania

e-mail: florin.pop@ici.ro

With the rapid evolution of the distributed computing world in the last few years, the amount of data created and processed
has fast increased to petabytes or even exabytes scale. Such huge data sets need data-intensive computing applications and
impose performance requirements to the infrastructures that support them, such as high scalability, storage, fault tolerance
but also efficient scheduling algorithms. This paper focuses on providing a hybrid scheduling algorithm for many task
computing that addresses big data environments with few penalties, taking into consideration the deadlines and satisfying
a data dependent task model. The hybrid solution consists of several heuristics and algorithms (min-min, min-max and
earliest deadline first) combined in order to provide a scheduling algorithm that matches our problem. The experimental
results are conducted by simulation and prove that the proposed hybrid algorithm behaves very well in terms of meeting
deadlines.

Keywords: many task computing, scheduling heuristics, QoS, big data systems, simulation.

1. Introduction

Task scheduling and resource allocation represent
a fundamental research area in distributed systems.
Optimization of scheduling process and data distribution
have impact on minimization of operational costs of data
processing and transmission (Chmaj et al., 2012; Benziani
et al., 2014; Różycki et al., 2016). Also, by allocating
a limited set of resources for a specific number of
jobs, to achieve cost reduction, minimization of their
execution failure probability and total completion
time is mandatory (Janiak et al., 2013; Gąsior and
Seredyński, 2015). Furthermore, there are efforts
to reduce network traffic (Cabrera et al., 2016) in

∗Corresponding author

order to minimize the amount of energy consumed
by a telecommunication infrastructure (Jaskóła
et al., 2016). Extensive experimental results showed
high efficiency of meta-heuristics in solving various
computation models (like many read/write tasks for
game-based applications), when there is additional
cost for secure task scheduling (Kołodziej and
Xhafa, 2011). Energy-aware data-intensive computing
for dynamic systems (Niewiadomska-Szynkiewicz
et al., 2014) depends on multi-control and security
facilities (Karpowicz et al., 2015) with an important
impact on publish/subscribe services and stream
processing (Dimitriou et al., 2013; Bourdena
et al., 2014; Esposito et al., 2015; Mavromoustakis
et al., 2015). These services face with reliability requests

laura.vasiliu@hpc.pub.ro
{florin.pop,catalin.negru} @cs.pub.ro
{mariana.mocanu, valentin.cristea}@cs.pub.ro
jokolodziej@pk.edu.pl
florin.pop@ici.ro

386 L. Vasiliu et al.

for data harvesting (Esposito et al., 2013; 2014; He et
al., 2016) or stream processing considering specific cloud
platforms.

In the world of big data, a key role is played
by the platform schedulers that have to cope with the
new asymptotic scales (Sfrent and Pop, 2015). There
is no universal scheduler that can be efficient on all
platforms and on all environment. Moreover, collected
data are complex and can be found in all forms:
raw data, Web logs, streaming, environmental data,
structured or unstructured data. New requirements arise
for the nowadays platforms that should manage and
accommodate data received at high rates. Unfortunately,
large amounts of all these data are meaningless, so new
ways of analysing, processing, filtering and storing are
needed to cope with the new challenges (Russom, 2011).

Today’s computing platforms used for data-intensive
applications must manage heterogeneous resources and
heterogeneous workloads. The scheduling algorithms that
are used for big data have several constraints among which
we can mention the deadlines of the tasks, the makespan
of the applications, the utilization and load balancing of
the resources, the data locality and so on. Therefore,
there is a need for scheduling algorithms that satisfy
the constraints of the applications and infrastructure of
a computing platform. Furthermore, these scheduling
algorithms should accommodate the large amounts of
requests that need to be addressed. Finding an efficient
task scheduling algorithm proves to be an NP-complete
problem. As a consequence, we need heuristics that help
us find a near optimal solution.

The scheduling problem that we address is stated
as follows: consider a finite set of resources and an
application with an unbounded number of tasks. Each task
must be executed on a specific machine, having specific
computational requirements and data. A machine can
process one task at a time and preemption is not allowed,
which means that once a task starts its execution, it can no
longer be interrupted. We have an additional constraint
represented by the deadlines of each task that must be
taken into consideration when scheduling the tasks. We
must schedule and send for execution all the tasks with
minimum penalties and high throughput. In data-intensive
applications, energy is consumed just to move data around
without performing useful computation. Consequently,
a good balance between the computing resources and
performed workload is mandatory (Negru et al., 2015).

Moreover, as regards the model we consider the
case of data dependent tasks. But at some point, a data
dependent model may enforce execution dependencies.
The workload represents a large amount of complex
information received at high speed, so this paper
proposes a hybrid scheduler for dealing with these
requirements and designed for big data environments.
Related to the available resources, each machine is

responsible for the execution of an infinite number of
tasks; by infinite, we understand the repetitive and
non-deterministic execution of tasks. In our model, we
consider the case of a low machine heterogeneity and
high task heterogeneity (Bessis et al., 2011). A high
heterogeneity degree of resources (e.g., virtual machines)
has as a consequence higher energy consumption at
the datacenter level (Negru et al., 2016). Due to its
heterogeneity regarding tasks and workloads, and data
dependencies between tasks, the algorithm consist of two
phases: the task selection phase and the machine selection
phase for that task.

Big data processing represents the general context
of the paper. For validating the proposed algorithm, we
build a task scheduling simulator that supports multiple
scheduling algorithms like first come first served, min-min
or min-max heuristic. In this paper, we describe the
integration of our proposed methodologies with real
platforms, like Hadoop, OpenStack and IBM BlueMix.

To summarize our contributions in this paper, we
proposed:

• a hybrid scheduling algorithm for many task
computing based on min-min, min-max and earliest
deadline first heuristics;
• a new measure for QoS that considers how the

deadlines are respected in our proposed model;
• a set of methodologies for direct integration of the

proposed model in real environments.

The paper is organized as follows. Section 2 starts
with the arguments and challenges offered by big data
processing models that represent a basis for our research.
Then, the motivation behind our proposed model is
depicted. Next, Section 3 shows the proposed model
of the hybrid scheduler for many task computing. The
hybrid algorithm proposed is described there. Section 4
describes the experimental evaluation and performance
analysis of this new algorithm. Then, Section 5 offers
guidelines of integration in real cloud environments. The
paper ends with Section 6 presenting the conclusions and
future approaches.

2. Background and related work

2.1. Transforming big data into smart data. In
many scientific studies and use cases, the concept big
data refers to large and complex datasets that cannot be
accommodated by the traditional databases, processing
and analysis tools in reasonable time (Zikopoulos and
Eaton, 2011). For example, 90% percent of the world’s
data has been created in the last two years. In general,
the big data term refers to scales up to petabytes and
exabytes of data, and not only the datasets but also
the tools that are needed to store or to process data in

A hybrid scheduler for many task computing in big data systems 387

real time, platforms that must ensure privacy, security
and recovery of the information in the case of any
imaginable situation. Challenges arise at every step:
from manipulating vast volumes of complex information
at high speeds, to structured, raw, semi-structured or
unstructured data, to extracting the relevant information,
analyzing it in real time or storing it. Currently, the data
sets are continuously growing and this imposes limitations
in the field of simulations or research. For enabling
an efficient big data environment, not only storage and
computational resources are needed, but also frameworks,
like MapReduce, that can distribute the work among
many nodes. Big data analytics is the method through
which large data sets are examined to discover patterns,
connections or meaningful information.

The volume of data refers to the large amounts of
generated data. An outstanding increase in the amounts
of data has been recorded in the last few years, from
terabytes to petabytes. Vast amounts of data are generated
each day. For example, Twitter generates 7 TB of data,
Facebook 10 TB, CERN almost one petabyte of data every
second from experiments with the Large Hadron Collider
(LHC). Every type of data is stored: from structured
to unstructured data. The huge amounts of data have
different origins: science, telecommunications, financial,
medical, environmental, surveillance, social media and
social networks and so on. Sensors, science, software
logs, cameras, or wireless sensor networks, mobile
devices, sensors, experiments, environmental events and
so on, generate these data (Manyika et al., 2014). These
vast volumes highlight the data processing challenges:
storage, analysis, processing and management of valuable
content. All this is possible with the help of cloud
storage, where data can be stored in different locations
and processed all together by software. This property
of big data plays an important part in processing phase
because the scheduling algorithms should be able to
adjust to these large data sets. The scheduling phase
makes a big difference in getting a fast valuable content
from the datasets. Even the smallest optimization to the
scheduling algorithm represents a step ahead in getting the
meaningful data in time.

Along with the growth in data size, the complexity
and variety of data have increased, too. As regards
data diversity, new challenges arise with the new means
of generating it like sensors, smart devices, the Web,
social media, experiments or applications (Zikopoulos
and Eaton, 2011). Big data systems, using NoSQL
databases, should handle complex data: starting with the
traditional one, like relational data, and continuing with
the non-traditional one, like raw data, semi-structured or
unstructured data. Almost 80% of the world’s data is
now unstructured and traditional databases cannot be used
anymore for storing and managing them (Manyika et al.,
2014). Big data systems must be able to store, process and

analyze all these various types of data: photos, videos,
voice, sensor data. In the scheduling phase, the data
variety plays an important role since different types of data
must be processed and mapped to dedicated resources.

In terms of big data, the volume and its variety refer
to other scales than before, like in the case of velocity,
and so is the case of velocity, which now focuses on
the speed of generating data and on how fast it can be
handled. Velocity is defined as the speed at which the
data is flowing (Zikopoulos and Eaton, 2011). Big data
must provide means of storing, retrieving and processing
these complex data at high speeds. The increase in data
generating sources led to a constant flow of data at a speed
that cannot be handled by traditional systems any more. A
good example can be the social media messages that are
spread in seconds. Since the time of delivery services is
highly important, e.g., for the financial markets, also the
speed of manipulating and analyzing complex data in real
time plays a key role. As IBM people are saying, one
must “perform analytics against the volume and variety
of data while it is still in motion, not just after it is at
rest” (Zikopoulos and Eaton, 2011). Data velocity is
highly important for the scheduling part of processing big
data because the scheduler must be able to adjust and deal
with the high loads of data at peak times. Let us suppose
that important news is released on the social networks. In
several seconds, the piece of data starts to flow and so,
many data of all types (text, photos, videos) are rapidly
generated. Therefore, having a scheduler that can handle
the peak rates of an application is crucial.

Another important aspect of big data is verac-
ity. This property refers to data trustworthiness.
Because the volume and complexity of data are
increasing, its quality and accuracy are becoming less
controllable (Normandeau, 2013). Getting the meaningful
data is essential because, this way, the processing and
analyzing time of relevant data is reduced. Moreover,
the storage space is saved by keeping only the relevant
information. The veracity characteristic plays an
important role in ensuring the quality of service (QoS) of
an application.

The value of the datasets is also important. This
means that it does not matter how big the data
volume is or how complex it is unless we can extract
the meaningful information. Storing and processing
meaningless data represents a waste of money, time,
business and obtaining the relevant information becomes
more difficult. Furthermore, scheduling jobs that are
analyzing or processing useless data is inefficient in
terms of costs (occupied resources, consumed energy) and
introduces delays for getting the relevant information.

The volatility of big data refers to how long the
data are valid and how long they should be stored.
The scheduling for volatile data must be implemented
for real time systems. The scheduler should take into

388 L. Vasiliu et al.

consideration the deadlines of the submitted jobs so that
relevant data could be processed. In the case of volatile
data, the datasets must be processed and analyzed in real
time, otherwise one cannot obtain meaningful information
from it.

2.2. Motivation behind our research. The motivation
behind this paper and solving this problem of scheduling
for many task computing is related to the large and
complex data sets that are constantly growing. Nowadays
the data are very diverse. They are generated in
large amounts from all fields: environment, economics,
Web logs, medicine, sensors, surveillance cameras,
search indexes, social media, social networks, scientific
experiments and so on. Thus, every little performance
optimization makes a big difference when handling huge
datasets (Negru et al., 2013).

In 2013, the engineers from CERN announced that
in the last 20 years “CERN Data Center has recorded
over 100 petabytes of physics data” (Aamodt et al.,
2008). Furthermore, they claim from their records that
the collisions in the Large Hadron Collider (LHC) have
generated almost 75 petabytes of data between 2010 and
2013. The amounts of data are so large that the CERN
Data Center sends them to other data centers from around
the world to be processed and analyzed. Engineers must
find the relevant collision among almost 15 petabytes of
data generated every year. For these large data sets, data
storage and fast access to data are required. The CERN
data center can processes almost one petabyte of data
every day. The CERN engineers say that there are 6000
changes that are performed in the database every second
and more than one million jobs run daily. Furthermore, at
peak rates, 10 gigabytes of data are transferred from the
data center to other locations every second.

A concrete applicability for our scheduling model
could be represented by the CyberWater project. The
purpose of this project is using advanced computational
and communications technologies to implement a new
framework for managing water and land resources in a
sustainable and integrative manner. The focus of this
effort is on acquiring diverse data sets structured and
unstructured from various sources like sensor networks,
the Web, regulatory institutions, in a common digital
platform that is subsequently used for storage, process
and analysis to offer routine decision making in normal
conditions and for helping in critical situations related
to water and environment in general, such as accidental
pollution in the case of flooding (Nicolae et al., 2014).
Other examples of applications that may benefit from
our scheduling model could be any of the following
social network applications: Facebook, Picasa, Flick,
LinkedIn. They all make part and are generators of big
data volumes, high velocity complex data sets. Let us
take the case of an application like Facebook, an online

social networking service. A user can generate diverse
data in many ways: by uploading photos, creating albums,
writing comments, giving “Likes”, adding friends, posting
videos, sharing information. As a worldwide platform,
Facebook handles huge amounts of complex information
that have a high rate of appearance. Facebook stores,
accesses and analyzes more than 30 petabytes of user
generated data. In Tables 1–4 we can see some statistics
of Facebook statistics from 2014 provided by Statistic
Brain (Hepburn, 2011). From the statistics below, we
can notice the high rate of updates, data diversity and
large amounts of data that are handled by the Facebook
platform.

2.3. Big data reduction. As the volumes and
complexity of big data are increasing, it is essential to
make reductions in these large amounts of data in order
to get greater insights and accuracy of data for making
good decisions. Moreover, it is very important to reduce
the high volumes into meaningful data.

The analytics for data reduction can be divided into
three categories (Delen and Demirkan, 2013):

• Descriptive analytics: mines the data and uses
business intelligence in order to provide trending
information. The descriptive analysis mines data
from past or current events to provide a context for
future decisions. They compute descriptive statistics
(i.e., counts, sums, averages, percentages, min,
max, additions and so on) that summarize certain
groupings or a filtered version of the data (Reed
and Dongarra, 2015). In general, they are based
on standard aggregate functions in databases. The
possible scenarios of using this type of analytics
can be found in management reporting such as
marketing, sales, finance, and so on.

• Predictive analytics: forecasts events based on
statistical models. The predictive analysis provides
various likely future scenarios based on historical
and current facts for events or situations by using
statistical models and data mining. Among the
predictive capabilities, in the article by Waller and
Fawcett (2013) the forecasting and the simulation are
mentioned. This helps users to make better decisions
that are based on relevant data. For predicting,
the model uses trends of time-series data and
correlations for identifying patterns. A good example
for using this model could be the case of a company
that wants to predict the customer behaviour based
on customer data (Delen and Demirkan, 2013).

• Prescriptive analytics: makes use of optimizations
and simulations to suggest actions. The prescriptive
model analyzes possible actions and provides
options based on the previously made descriptive

A hybrid scheduler for many task computing in big data systems 389

Table 1. General Facebook statistics regarding the number of Facebook users and usability.
Facebook statistics Data

Total number of monthly active Facebook users 1,310,000,000
Total number of mobile Facebook users 680,000,000
Increase in Facebook users from 2012 to 2013 22%
Total number of minutes spent on Facebook each month 640,000,000
Percent of all Facebook users who log on in any given day 48%
Average time spent on Facebook per visit 18 minutes
Total number of Facebook pages 54,200,000

Table 2. Demographic Facebook statistics related to a user’s average usability.
Facebook demographics Data

The average number of friends per Facebook user 130
The average number of pages, groups, and events a user is connected to 80
The average number of uploaded photos per day on Facebook 205

and predictive analysis. The suggested solutions
consist of a reliable path for the optimal solution
together with explanations why these are the
recommendations and what implications the
actions might have (Waller and Fawcett, 2013).
Furthermore, the prescriptive model takes into
consideration the risks and offers suggestions on
how to overcome them.

2.4. Many task computing (MTC). This concept was
introduced by Raicu et al. (2008) to represent a connection
between high throughput computing (HTC) and high
performance computing (HPC) paradigms. In comparison
with HTC, MTC uses many computing resources for a
large number of short computational tasks (independent
or dependent tasks). A characteristic for MTC is that
the metrics considered for this paradigm are measured in
seconds, e.g., FLOPS, tasks/sec, MB/s I/O rates (Raicu
et al., 2008). In contrast, the HTC metrics are measured
per month, e.g., jobs.

The problem space can be partitioned into four
main categories: tightly coupled MPI (message passing
interface) applications, analytics category like data mining
analysis (MapReduce), the loosely coupled applications
involving many tasks and the fourth category represented
by data-intensive many-task computing with many tasks
and large datasets. The MTC is designed to belong
two main categories: big data and many tasks and the
latter is represented by the many loosely coupled tasks.
The typical tasks for MTC are enumerated as follows:
“small or large, uniprocessor or multiprocessor, compute
intensive or data-intensive” (Raicu et al., 2008).

The suitable applications for MTC are the loosely
coupled ones that are communication-intensive but not
using MPI (message passing interface) as HTC does.
Raicu et al. (2008) claim that the HPC platforms are
suitable to host MTC applications. One important fact

is that the MTC supports broader categories of tasks
in comparison with HTC. MTC can handle fine-grained
tasks, independent or dependent tasks. In addition, tightly
coupled applications and loosely coupled ones can be
found together on the same MTC platform. Moreover,
MTC focuses on data-intensive applications as nowadays
a big difference has been noticed between the amount
of processing power and the storage performance. MTC
computations include multiple distinct activities, coupled
via files, shared memory, or message passing.

Large MTC applications may stress the HPC
hardware and software. Among the challenges that
arise we can mention the “local resource manager
scalability and granularity, the efficient utilization of raw
hardware, shared file system contention and scalability,
data management, I/O management, reliability at scale,
application scalability, and understanding the limitations
of HPC systems to identify suitable MTC applications.”
Running MTC applications on cloud systems may face
challenges like internode communication performance.

There are four factors that sustain the deployment
of MTC applications on petascale HPC systems: (i)
the I/O subsystems of petascale systems offer unique
capabilities needed by MTC applications, (ii) the cost to
manage and run on petascale systems like the Blue Gene
is less than that of conventional clusters or grids; (iii)
large-scale systems inevitably have utilization issues, (iv)
some applications are so demanding that only petascale
systems have enough compute power to get results in a
reasonable time-frame, or to exploit new opportunities in
such applications.

3. Hybrid scheduler for many task
computing in big data systems

This section introduces the model and the algorithms that
were combined for obtaining our proposed hybrid

390 L. Vasiliu et al.

Table 3. General Facebook statistics regarding the number of Facebook users and usability.
Every 20 minutes on Facebook Data

Links shared 1 million
Friends requested 2 million
Messages sent 3 million

Table 4. General Facebook statistics regarding the number of Facebook users and usability.
Every 60 seconds on Facebook Data

Posted comments 510
Status updates 293,000
Photos uploaded 136,000

scheduling algorithm in big data environments.
Furthermore, the pseudo-code for the proposed algorithm
is presented.

3.1. General model. This section introduces the model
that we are going to use in building our hybrid scheduler.
For our model, we consider a heterogeneous computing
environment. The workload is very diverse and so are the
machine resources capabilities. We address the following
problem: a finite set R of resource machines and a finite
set T of tasks submitted. Let

T = {T1, T2, . . . , Tn} (1)

be the set of n tasks that are submitted. We assume
that the inter-task data dependencies and preemption are
not allowed. When scheduling the tasks we take into
consideration also the deadlines of every task. Let

R = {R1, R2, . . . , Rm} (2)

be the set of m heterogeneous resource machines on
which the tasks are scheduled. Each machine maintains
a task queue with the ready tasks already submitted by the
scheduler. On each machine, the tasks from the queue are
scheduled in the first-come first-served order.

The set of tasks and resources are known from the
beginning along with each resource capability. A resource
is defined by the following parameters:

Ri = {Pi, Di, Qi}, i = 1, . . . ,m, (3)

where

• Pi represents the computing power of resource Ri, in
MFLOPS;

• Di represents the available disk on resource Ri, in
megabytes;

• Qi is the queue of tasks of resource Ri, that are
scheduled locally in the first-come first-served order.
This queue is empty at the beginning and is filled by
the scheduler with tasks.

When the tasks are received for scheduling, they
arrive with several requirements and parameters. Each
task knows its computational and data requirements for
execution. We also know the deadline time of the task. A
task is defined by the following characteristics:

Tj = {pj , dj , arrivalTimej , startTimej ,

availableDataj}, j = 1, . . . , n,
(4)

where

• pj represents the processing units needed by Tj to be
executed;

• dj represents the required disk for executing Tj ;

• arrivalTimej is the time at which Tj arrives for
scheduling;

• startTimej represents the latest time at which the task
can be sent for execution; this represents the deadline
for Tj;

• availableDataj indicates whether or not the task has
the data available so that it can start executing.

The cost function for executing a task Tj on resource
Ri is stated as following:

Costij = Pi × pj +Di × dj ,

i = 1, . . . ,m, j = 1, . . . , n. (5)

For the scheduling algorithm we need to be able to
estimate the time required by a task to run on a certain
machine. To this end, we need the processing (Pi) and
data (Di) capabilities of a machine and the memory (pj)
and data (dj) requirements of a task Tj . Assuming this,
the estimated time to compute for a task is:

ETC(Tj , Ri) =
pj

Pi
+

dj

Dj
. (6)

Throughout this paper, we use the term “cluster” by
referring to a set of heterogeneous machines with different

A hybrid scheduler for many task computing in big data systems 391

computational and data capabilities, interconnected with
high-speed links that are able to perform different tasks
with certain resource requirements.

The proposed scheduling model is a hybrid algorithm
between min-min and min-max heuristics, combined with
the earliest deadline first in the nonpreemptive version.

3.2. Existing scheduling heuristics. We describe
various heuristics that are combined for building our
hybrid scheduling algorithm. For these heuristics, we
compute the estimated execution time of all the tasks
on all the available resources. We consider Eij =
ETC(Tj , Ri) the estimated execution time of task Tj ,
j = 1, . . . , n on resource Ri, i = 1, . . . ,m . We define
Wi as being the previous workload on resource Ri. The
time needed for Ri to finish the execution of all allocated
tasks is

n∑

j=1

Eij +Wi, i = 1, . . . ,m. (7)

The next heuristics consider two metrics for
evaluating the performance of the scheduling algorithm.
These are the makespan and the flowtime. The first one
represents the time when the latest task finishes. The flow-
time is defined as the sum of all finalization times of all
tasks. According to this, the formulas for computing the
makespan and flowtime are (Izakian et al., 2009)

makespan = max
i

{∑

j

Eij +Wi

}
, (8)

flowtime =
m∑

i=1

n∑

j=1

Eij . (9)

The cost of the data transmission was removed
from the objective function because, when we run the
scheduling algorithm all tasks are ready in the system, so
these transfers do not affect the scheduling and allocation
processes.

Min-min is a heuristic that uses as metric the
minimum completion time (MCT). This indicates that
the task that can be completed earliest will be executed
first. Let us define U as the set of unmapped tasks that
have to be scheduled. Based on these tasks, the set
of minimum completion times is computed as Cij =
min(completion_time(Tj , Ri)) (Izakian et al., 2009). The
entries of set Cij represent unmapped tasks. The next step
consists in selecting the task with the overall completion
time among the set Cij . The selected task is assigned to
be executed on the corresponding resource and removed
from the set of unmapped tasks. The selected resource
workload is updated. This procedure is repeated until
there are no unmapped tasks left. As stated in (Izakian
et al., 2009) this heuristic minimizes the flowtime. The
pseudo-code of this heuristic is shown in Algorithm 1.

The min-max heuristic, proposed by Izakian et al.
(2009), uses two metrics for assigning each task: the
minimum completion time and the minimum execution
time. This heuristic is composed of two steps. At the
beginning, the set of unmapped tasks U is considered.
Firstly, the set of minimum completion times is computed
for all available machines being Cij (already defined).
In the second phase, the task with the maximum
value obtained by dividing the minimum execution
time by its execution time is selected for scheduling.
As demonstrated, the min-max heuristic minimizes the
makespan. Algorithm 2 presents the pseudo-code of this
heuristic.

Algorithm 1. Min-min heuristic.
1: U = set of unmapped tasks;
2: while U �= φ do
3: Z ← φ;
4: for each Tj ∈ U do
5: for each Ri, i = 1, 2, . . . ,m do
6: Cij = Wi + Eij ;
7: end for
8: Cxj = mini=1,2,...,m {Cij};
9: Z ← Z ∪ Cxj ;

10: end for
11: Select Cqp = minCxy∈Z {Cxy};
12: Allocate task Tp to resource Rq;
13: Wq = Wq + Eqp;
14: U ← U − Tp;
15: end while

Algorithm 2. Min-max heuristic.
1: U = set of unmapped tasks;
2: while U �= φ do
3: Z ← φ;
4: for each Tj ∈ U do
5: for each Ri, i = 1, 2, . . . ,m do
6: Cij = Wi + Eij ;
7: end for
8: Cxj = mini=1,2,...,m {Cij};
9: Ehj = mini=1,2,...,m {Eij};

10: Kxj = Exj/Ehj ;
11: Z ← Z ∪Kxj;
12: end for
13: Select Kqp = maxKxy∈Z {Kxy};
14: Allocate task Tp to resource Rq;
15: Wq = Wq + Eqp;
16: U ← U − Tp;
17: end while

This earliest deadline first (EDF) scheduling
algorithm considers for execution the unmapped task
whose deadline is closest to the current point in time. In

392 L. Vasiliu et al.

our paper, we will consider the algorithm version in which
task preemption is not allowed.

The first-come first-served (FCFS) scheduling policy
is a nonpreemptive algorithm that minimizes the context
switch overhead. The algorithm puts in a queue the jobs in
the order of their arrival and sends them for processing in
this order. This algorithm best suits the computed bound
jobs and imposes high penalties to short jobs.

3.3. Proposed hybrid model. Our hybrid scheduling
algorithm is a combination of the min-min heuristic,
min-max heuristic and the EDF algorithms for addressing
the stated problem. At each moment, there are two sets of
tasks: the waiting and the ready set of tasks. A waiting
task goes from the waiting set to the ready set of tasks
each time the data for that task is ready.

The proposed scheduling algorithm uses the
following metrics for assigning each task: the minimum
completion time, the minimum execution time and the
minimum deadline. At the beginning, all tasks are in a
waiting list. When the data dependencies for a task are
solved, it passes from the waiting list to the ready list, as
shown in Algorithm 3. We begin by considering the set
of ready tasks U .

Firstly, the set of minimum completion times and
second minimum completion times is computed for all
available machines. Between the tasks with minimum
completion time and second minimum completion time,
that task is selected that has the maximum execution time.
In the last step, among the selected tasks in the previous
step, the task with the earliest deadline first is selected for
scheduling. The steps described above are repeated until
the set of unmapped tasks becomes empty.

4. Experimental results

In order to be able to benchmark the new hybrid scheduler
that we propose, we have designed and built a task
scheduling simulator for implementing and testing the
algorithm. The simulation platform supports multiple
scheduling algorithms among we can mention: first come,
first served, min-min heuristic, min-max heuristic, the
proposed hybrid scheduler. Integrating a new scheduling
algorithm to the platform is very easy.

The task scheduling simulator keeps two lists of
tasks: the waiting tasks and the ready ones. The
waiting tasks signify those tasks for which the data
dependencies have not been solved, so they were not ready
for scheduling. The ready list consists of tasks for which
the data required were ready and they could be scheduled
at any time from the moment that they entered the ready
list. For simulating this behavior, we assumed that at every
100 milliseconds, from a range of 5 up to 5000 tasks,
depending on the amount of tasks, the tasks were passing
from the waiting list to the ready list of tasks. Regarding

Algorithm 3. Proposed heuristic.
1: WaitingTask = set of waiting tasks;
2: ReadyTask = set of ready tasks;
3: while WaitingTask �= φ do
4: for each Tj in WaitingTask do
5: if Tj has data ready then
6: ReadyTask← ReadyTask ∪ Tj ;
7: WaitingTask← WaitingTask− Tj ;
8: end if
9: end for

10: end while
11: U ← ReadyTask;
12: while U �= φ do
13: Z ← φ
14: for each Tj ∈ U do
15: for each Ri, i = 1, 2, . . . ,m do
16: Cij = Wi + Eij ;
17: end for
18: Cxj = mini=1,2,...,m {Cij};
19: Cyj = mini=1,2,...,m;x �=y {Cij};
20: Z ← Z ∪max {Exj, Eyj};
21: end for
22: Select Eqp = minExy∈Z {Exy};
23: Allocate task Tp to resource Rq;
24: Wq = Wq + Eqp;
25: U ← U − Tp;
26: end while

the deadlines, at every second, the deadline for all tasks in
both lists, waiting and ready, were decreased by one.

The task scheduling simulator reads from an input
file the configuration of the tasks and resource machine
properties. This way we could simulate the task and
the machine heterogeneity environment. The simulator is
composed of the Task and Resource entities encapsulating
the properties defined in the configuration file. Each
Resource is running in a separate thread and puts in a
queue the received tasks for scheduling. The tasks from
the queue of each resource are executed in the first-come,
first-served order. For simulating the execution, a sleep
time is introduced for that thread. The sleep time equals
the estimated time to compute the task on that resource.
Each supported algorithm is running in a different thread
until no tasks are left in the ready and waiting lists. The
algorithms consider for scheduling only the tasks from the
ready queue. Each scheduling algorithm puts the selected
task for execution in the chosen resource’s queue.

For evaluating the proposed hybrid algorithm and
for comparing its performance with the other scheduling
algorithms, we considered the makespan, the flowtime,
the number of deadlines met and the QoS (1), as can be

A hybrid scheduler for many task computing in big data systems 393

noticed in Figures 1–4. We adopted

QoS =

⎧
⎨

⎩

make_span
nmd

if nmd > 0,

make_span if nmd = 0,
(10)

where nmd is the number of missed deadlines.
In our simulation we used a setup with low

heterogeneity workloads and low heterogeneity resources.
The tasks execution varied from 25 milliseconds and
reached up to 110 milliseconds on different scenarios.

Along with varying the number of tasks and the
number of machines, we also varied the frequency at
which the tasks were ready for scheduling. Moreover, we
varied the deadlines of the tasks according to their number.
For example, let us take the scenario with 500000 tasks
in which we used deadlines of 500 seconds. Depending
on the number of tasks and resources, we also adjusted
the deadlines of the tasks so as data were neither too
tight, nor too loose. In order to accommodate the tasks
in a reasonable time, we simulated a setup with 100
machines. Moreover, the rate at which data dependencies
were resolved was 10000 every 100 milliseconds. This
way, we had 10000 tasks every 100 milliseconds ready
for scheduling.

With respect to makespan, the new algorithm
proposed did not produce good results compared with
the other two algorithms but, in terms of flowtime, the
algorithm’s performance is close to the results of the other
two.

The results prove that the proposed hybrid algorithm
scheduler behaves very well in terms of meeting deadlines
compared with the other two heuristics. It meets all the
deadlines even for 500000 tasks, whereas the other reach
up to almost 40000 missed deadlines.

As regards the measurement of the QoS, our
proposed hybrid scheduling algorithm obtains the best
results among the other two heuristics. This proves
that for our problem, the hybrid scheduler has a good
performance.

5. Integration of real cloud environments

This section describes several possible integrations of
the proposed hybrid scheduler for many task computing
in a couple of cloud platforms used for big data
processing, such as Hadoop, OpenStack and BlueMix.
Before describing the possibilities and modifications for
integrating the algorithm, first we highlight the three
main phases of the hybrid scheduling algorithm that we
proposed: (i) for each task, select the first and second best
resources that minimize the cost function (sum between
the execution time and the previous workload on that
machine); (ii) between the two selected resources from
the first step, choose the one that minimized the execution

time; (iii) select the task with the earliest deadline for
execution.

All the above steps are repeated until no tasks are left
unmapped. We consider for scheduling only the tasks that
have the data ready.

5.1. Hadoop integration. Hadoop is an open-source
Apache software project for distributed processing of
huge amounts of data across clusters of computers.
It includes several modules (Shvachko et al., 2010):
Hadoop Common (the libraries that support the other
Hadoop modules), the Hadoop Distributed File System
(a distributed file system that provides high-throughput
access to application data), Hadoop MapReduce (a
programming model for processing and generating large
data sets).

Yarn represents the MapReduce 2.0 version that
decouples the resource management from the processing
components. Yarn separates two major functionalities
into different daemons: the JobTracker for resource
management and the job scheduler/monitor. This way,
there is a global ResourceManager and an Application-
Master for each application, which can be a single
MapReduce job or a directed acyclic graph of jobs. Yarn
brings new opportunities in the following way (Vavilapalli
et al., 2013):

• Scalability: as the ResourceManager is responsible
only for the scheduling part, it is able to manage large
clusters more efficiently;

• Compatibility with MapReduce: The already users
of MapReduce can easily deploy their application to
Yarn, as no changes are required.

• Improved cluster utilization: There are no longer
dedicated map or reduce slots so each slot can
be either run as a reducer or a mapper. This
new functionality drives a better cluster utilization.
Furthermore, the ResourceManager optimizes the
cluster utilization taking into consideration the
capacity guarantees, fairness or SLAs.

• Support for workload other than MapReduce: Other
programming models like graph processing or
iterative modeling are supported by the platform.

• Agility: as the MapReduce library and the
resource manager layer have been decoupled, this
brings much more freedom for their evolving
independently.

Regarding the data-computation framework, besides
the global ResourceManager there are NodeManagers for
each slave node. The ResourceManager is the highest
level of authority for allocating the resources between
applications. An ApplicationMaster is in charge with

394 L. Vasiliu et al.

0 5000 10000 15000 20000 25000 30000 35000

10 tasks, 3 machines

100 tasks, 3 machines

1000 tasks, 5 machines

10000 tasks, 20 machines

100000 tasks, 50 machines

500000 tasks, 100 machines

Makespan (miliseconds)

10 tasks, 3
machines

100 tasks, 3
machines

1000 tasks, 5
machines

10000 tasks, 20
machines

100000 tasks,
50 machines

500000 tasks,
100 machines

min-min heuristic 9812627600238562235422130

min-max heuristic 10212987420191451873421019

hybrid scheduling algorithm 20217778840301862582034345

Fig. 1. Comparison results on makespan (milliseconds).

10 tasks, 2
machines

100 tasks, 3
machines

1000 tasks, 5
machines

10000 tasks,
20 machines

100000 tasks,
50 machines

500000 tasks,
100 machines

min-min heuristic 348 3701 37543 376051 904156 2011492

min-max heuristic 354 3762 39826 384012 932478 2098364

hybrid scheduling algorithm 365 3843 40307 392379 880609 2216407

1

10

100

1000

10000

100000

1000000

10000000

Fl
ow

tim
e
(m

ill
ise

co
nd

s)

min-min heuristic min-max heuristic hybrid scheduling algorithm

Fig. 2. Comparison results on flowtime (milliseconds).

the negotiation of the resources with the ResourceMan-
ager. In addition, it works with the NodeManagers for the
execution and monitoring of the tasks.

The ResourceManager comprises two modules: the
Scheduler and the ApplicationsManager. The former
manages the allocation of resources to applications
that have several requirements, e.g., capacities or task
queues. The scheduler is not responsible for monitoring
or tracking the applications status. Furthermore, it is
not in charge with restarting the failed tasks. Based
on the resource requirements of an application such
as memory, CPU, disk or network, the scheduler
makes the mapping between the resources and the
applications. These requirements are encapsulated into
a resource container entity (Sharma and Ganpati, 2015).
The ApplicationsManager is in charge with the job
submissions, the negotiation of the container for the
application and restart from failure of the Application-
Master. The per-node NodeManager is responsible for
monitoring the containers resource usage and sending

feedback to the ResourceManager/Scheduler. The Ap-
plicationMaster associated with each application is in
charge with the negotiation for proper resource containers
from the scheduler, taking their status and monitoring the
progress.

Let us consider a scenario with multiple jobs
submitted for execution. The jobs have different con-
straints (need a variable number of slots for mappers
and reducers) and have different deadlines for constraints.
When a job is submitted, a schedule test is performed
in order to obtain the number of map and reduce slots
required for its execution. The three steps described at the
beginning of the section can be customized in the Hadoop
system as follows:

(i) select the two jobs that have found the smallest
number of available slots for execution;

(ii) between the two jobs, select the one with the shortest
execution;

(iii) select the job with the earliest deadline.

A hybrid scheduler for many task computing in big data systems 395

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 tasks, 2 machines

100 tasks, 3 machines

1000 tasks, 5 machines

10000 tasks, 20 machines

100000 tasks, 50 machines

500000 tasks, 100 machines

Percent ofmissed deadlines

min-min heuristic min-max heuristic hybrid scheduling algorithm

Fig. 3. Comparison of results on the number of missed deadlines.

0,1 1 10 100 1000 10000 100000

10 tasks, 3 machines

100 tasks, 3 machines

1000 tasks, 5 machines

10000 tasks, 20 machines

100000 tasks, 50 machines

500000 tasks, 100 machines

QoS Measure
min-min heuristic min-max heuristic hybrid scheduling algorithm

Fig. 4. Comparison of results on the QoS.

5.2. OpenStack integration. OpenStack is an open
source infrastructure as a service platform for public
and private clouds (Sefraoui et al., 2012). It is a
cloud operating system that controls compute, storage
and networking resources throughout a data center. We
shall next focus on the computing resources provided and,
in more depth, the scheduling system of the platform.
Through OpenStack, enterprises and service providers can
offer computing resources on demand, by provisioning
and managing large networks of virtual machines. The
developers that deploy cloud applications can access
the resources through APIs and the administrators
and users through a Web-based dashboard. The
compute architecture scales horizontally on standard
hardware (Litvinski and Gherbi, 2013).

OpenStack’s compute project Nova includes a filter
scheduler that decides on where to create a new instance
based on two steps: filtering and weighting. The scheduler

was designed only for the compute nodes. The scheduling
flow is the following: at first, a dictionary of unfiltered
hosts is constructed; after that these hosts are filtered
based on some properties (image properties, compute
capabilities, RAM, disk and so on) and then the host with
the highest weight is chosen and put in the list of selected
hosts.

Finally, it sorts the selected hosts based on the weight
and provision instances on them. The filter scheduler
supports many filtering strategies and gives the flexibility
of building customized filtering algorithms. As they
state, the weigher is a way to select the best suitable
host from a group of valid hosts by giving weights to
all the hosts in the list (Litvinski and Gherbi, 2013).
The weights are computed per instance. For finding a
prioritize order between the weights, all the weighers have
to define a multiplier that is applied before computing the
weight for a node. The weights are normalized before

396 L. Vasiliu et al.

so that the multiplier can be applied easily (Litvinski and
Gherbi, 2013). The general formula for the weight is

weight = w1 × norm(w1) + w2 × norm(w2) + . . .

+ wn × norm(wn).

(11)

Before customizing the proposed hybrid scheduler
for the OpenStack platform, consider the following
scenario. Suppose that a user wants to start more than
100 VMs at a time and each VM has different resource
capabilities and different deadlines. In this case, we refer
to deadline as the latest time when the VM should be
started. For implementing the proposed hybrid scheduler,
we have to adapt the algorithm to the architecture and
workflow of OpenStack. By translating the three steps of
the proposed scheduling algorithm described above into
the OpenStack architecture, we should design our own
filter that does the following:

• for each VM, choose the first and second hosts
that best match best the resource constraints for the
selected VM;

• between the selected two hosts for deploying the
VM, choose the one with the least workload;

• choose the VM with the earliest deadline for
scheduling.

The OpenStack VM instances scheduler requires
two steps: the filtering phase and the weighing phase.
For creating a new customized filter, one has to inherit
the BaseHostFilter class and implement the host_passes
method that returns true if the filter accepts the host. As
parameters, the host_passes method receives the state of
the host and the filter properties. Multiple filters can be
used simultaneously. There are also some defined filters
that can be extended or combined to offer the functionality
required in the first step. Among them we can mention
the ComputeCapabilitiesFilter, the ImagePropertiesFil-
ter, the RamFilter or the DiskFilter.

The ComputeCapabilitiesFilter, which is described
by Litvinski and Gherbi (2013), verifies whether the
capabilities of a host match the requirements of the VM
instance. The ImagePropertiesFilter is used to check if a
host can satisfy the VM’s image properties. The RamFil-
ter filters the hosts based on their RAM and the DiskFilter
based on the disk allocation, such that only the hosts that
have enough disk space are considered.

5.3. Integration with BlueMix. The integration with
this platform requires building a dedicated service inside
BlueMix PaaS. BlueMix is the platform as a service
solution provided by IBM, available in beta version since
February 2014. Built on top of the IBM’s Open Cloud

Architecture, it offers a diverse set of services and runtime
frameworks enhancing the developers to rapidly build
cloud applications (Kobylinski et al., 2014; Gheith et al.,
2016).

The service should receive as input the set of
tasks and the set of resource with their capabilities,
requirements and data dependencies. As a result, the
service should output the order of the tasks execution
and their assignment to the resources received. By
implementing this service on top of BlueMix we shall
have the following benefits: improve the time application
or infrastructure provisioning; offer flexible capacity;
address the deficiency of tech resources; reduce the
total cost of ownership; enhance the exploration of new
workloads such as social, mobile or big data.

6. Conclusions and future work

In this paper we achieved the goal of designing and
benchmarking a hybrid scheduling algorithm for many
task computing that matches our problem description. The
problem that we tried to solve was scheduling tasks in a
heterogeneous big data environment, taking into account
the data dependencies between tasks and deadlines of the
tasks. Moreover, in scheduling the phase we considered
the requirements of the tasks and the capabilities of the
available resources.

We described how this scheduling algorithm can
be integrated with various big data platforms such as
Hadoop, the OpenStack infrastructure as a service and
the BlueMix platform as a service. With the help of
our built-in task scheduling simulator, we compared the
results of the proposed algorithm with the min-min and
min-max heuristics. This way we proved that our hybrid
algorithm meets the deadlines better than the other two
scheduling algorithms and obtains a good QoS.

While developing the hybrid scheduling algorithm,
we designed and built a task scheduling simulator in order
to test the performance of the proposed algorithm. The
task scheduling simulator is built in such a way that adding
a new scheduling algorithm and testing it is very simple.

We can conclude that the scheduling algorithm
addresses a current problem that exists in today’s
platforms and big data environments: the scheduling of
many task computing with deadlines that have a high
velocity.

A future improvement to the algorithm could be to
load balance the work between the resources. For this
purpose, when taking the scheduling decisions we could
consider the task queue of each resource. When we refer
to the task queue, we do not only think of the length of the
queue, but also of the length of the tasks.

Another future enhancement to the algorithm could
be to schedule chunks of some tasks at a time for the cases
when there are not so many tasks in a time slice.

A hybrid scheduler for many task computing in big data systems 397

As a future work, the algorithm should be deployed
and tested in real environments like Hadoop, OpenStack
or BlueMix.

Acknowledgment

The research presented in this paper is supported
by the following projects: the CyberWater grant
of the Romanian National Authority for Scientific
Research, CNDI-UEFISCDI, project number 47/2012;
MobiWay: Mobility Beyond Individualism: An In-
tegrated Platform for Intelligent Transportation Sys-
tems of Tomorrow, PN-II-PT-PCCA-2013-4-0321; clue-
Farm: An Information System Based on Cloud Ser-
vices Accessible Through Mobile Devices, to Increase
Product Quality and Business Development Farms,
PN-II-PT-PCCA-2013-4-0870; DataWay: Real-time Data
Processing Platform for Smart Cities: Making Sense of
Big Data, PN-II-RU-TE-2014-4-2731.

We would also like to thank the reviewers for their
time and expertise, constructive comments and valuable
insight.

References
Aamodt, K., Quintana, A.A., Achenbach, R., Acounis, S., Adler,

C., Aggarwal, M., Agnese, F., Rinella, G.A., Ahammed, Z.
and Ahmad, A. (2008). The Alice experiment at the CERN
LHC, Journal of Instrumentation 3(08): S08002.

Benziani, Y., Kacem, I., Laroche, P. and Nagih, A. (2014). Exact
and heuristic methods for minimizing the total completion
time in job-shops, Studies in Informatics and Control
23(1): 31–40.

Bessis, N., Sotiriadis, S., Cristea, V. and Pop, F. (2011).
Modelling requirements for enabling meta-scheduling in
inter-clouds and inter-enterprises, 2011 3rd International
Conference on Intelligent Networking and Collaborative
Systems (INCoS), Fukuoka, Japan, pp. 149–156.

Bourdena, A., Mavromoustakis, C. X., Kormentzas, G., Pallis,
E., Mastorakis, G. and Yassein, M.B. (2014). A resource
intensive traffic-aware scheme using energy-aware routing
in cognitive radio networks, Future Generation Computer
Systems 39: 16–28.

Cabrera, G., Niklander, S., Cabrera, E. and Johnson, F. (2016).
Solving a distribution network design problem by means of
evolutionary algorithms, Studies in Informatics and Con-
trol 25(1): 21–28.

Chmaj, G., Walkowiak, K., Tarnawski, M. and Kucharzak,
M. (2012). Heuristic algorithms for optimization of
task allocation and result distribution in peer-to-peer
computing systems, International Journal of Applied
Mathematics and Computer Science 22(3): 733–748, DOI:
10.2478/v10006-012-0055-0.

Delen, D. and Demirkan, H. (2013). Data, information
and analytics as services, Decision Support Systems
55(1): 359–363.

Dimitriou, C.D., Mavromoustakis, C.X., Mastorakis, G. and
Pallis, E. (2013). On the performance response of
delay-bounded energy-aware bandwidth allocation scheme
in wireless networks, 2013 IEEE International Conference
on Communications Workshops (ICC), Budapest, Hun-
gary, pp. 631–636.

Esposito, C., Cotroneo, D. and Russo, S. (2013). On
reliability in publish/subscribe services, Computer Net-
works 57(5): 1318–1343.

Esposito, C., Ficco, M., Palmieri, F. and Castiglione, A.
(2015). A knowledge-based platform for big data analytics
based on publish/subscribe services and stream processing,
Knowledge-Based Systems 79: 3–17.

Esposito, C., Platania, M. and Beraldi, R. (2014). Reliable
and timely event notification for publish/subscribe services
over the internet, IEEE/ACM Transactions on Networking
22(1): 230–243.

Gąsior, J. and Seredyński, F. (2015). Decentralized job
scheduling in the cloud based on a spatially generalized
Prisoner’s Dilemma game, International Journal of Ap-
plied Mathematics and Computer Science 25(4): 737–751,
DOI: 10.1515/amcs-2015-0053.

Gheith, A., Rajamony, R., Bohrer, P., Agarwal, K., Kistler, M.,
Eagle, B.W., Hambridge, C., Carter, J. and Kaplinger, T.
(2016). IBM BlueMix mobile cloud services, IBM Journal
of Research and Development 60(2–3): 7–1.

He, C., Li, J., Liao, Z. and Zhang, C. (2016). MPS: A multipath
publish/subscribe model in information-centric network,
International Journal of Wireless and Mobile Computing
10(2): 130–137.

Hepburn, A. (2011). Facebook statistics, stats & facts for 2011,
www.digitalbuzzblog.com.

Izakian, H., Abraham, A. and Snášel, V. (2009). Performance
comparison of six efficient pure heuristics for scheduling
meta-tasks on heterogeneous distributed environments,
Neural Network World 19(6): 695–710.

Janiak, A., Kwiatkowski, T. and Lichtenstein, M. (2013).
Scheduling problems with a common due window
assignment: A survey, International Journal of Applied
Mathematics and Computer Science 23(1): 231–241, DOI:
10.2478/amcs-2013-0018.

Jaskóła, P., Arabas, P. and Karbowski, A. (2016). Simultaneous
routing and flow rate optimization in energy-aware
computer networks, International Journal of Applied
Mathematics and Computer Science 26(1): 231–243, DOI:
10.1515/amcs-2016-0016.

Karpowicz, M.P., Arabas, P. and Niewiadomska-Szynkiewicz,
E. (2015). Energy-aware multilevel control system
for a network of Linux software routers: Design and
implementation, IEEE Systems Journal PP(99): 1–12.

Kobylinski, K., Bennett, J., Seto, N., Lo, G. and Tucci, F. (2014).
Enterprise application development in the cloud with IBM
BlueMix, Proceedings of the 24th Annual International
Conference on Computer Science and Software Engineer-
ing, Markham, Ontario, Canada, pp. 276–279.

www.digitalbuzzblog.com

398 L. Vasiliu et al.

Kołodziej, J. and Xhafa, F. (2011). Modern approaches
to modeling user requirements on resource and task
allocation in hierarchical computational grids, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 21(2): 243–257, DOI: 10.2478/v10006-011-0018-x.

Litvinski, O. and Gherbi, A. (2013). OpenStack
scheduler evaluation using design of experiment
approach, 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC 2013), Paderborn, Germany,
pp. 1–7.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R.,
Roxburgh, C. and Byers, A.H. (2014). Big data: The
next frontier for innovation, competition, and productivity,
2011, McKinsey Global Institute 5(33): 222.

Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E.,
Stratakis, D., Perakakis, E., Kopanakis, I., Papadakis, S.,
Zaharis, Z.D. and Skeberis, C. (2015). A social-oriented
mobile cloud scheme for optimal energy conservation, in
G. Mastorakis et al. (Eds.), Resource Management of Mo-
bile Cloud Computing Networks and Environments, IGI
Global, Hershey, PA, pp. 97–121.

Negru, C., Mocanu, M. and Cristea, V. (2015). Impact of virtual
machines heterogeneity on data center power consumption
in data-intensive applications, ACM Symposium on Prin-
ciples of Distributed Computing: PODC 2015, Donostia-
San Sebastián, Spain, pp. 91–102.

Negru, C., Mocanu, M., Cristea, V., Sotiriadis, S. and Bessis, N.
(2016). Analysis of power consumption in heterogeneous
virtual machine environments, Soft Computing: 1–12,
DOI: 10.1007/s00500-016-2129-7.

Negru, C., Pop, F., Cristea, V., Bessisy, N. and Li, J. (2013).
Energy efficient cloud storage service: Key issues and
challenges, 2013 4th International Conference on Emerg-
ing Intelligent Data and Web Technologies (EIDWT),
Xi’an, China, pp. 763–766.

Nicolae, A.A., Negru, C., Pop, F., Mocanu, M. and Cristea, V.
(2014). Resource-aware hybrid scheduling algorithm in
heterogeneous distributed computing, International Con-
ference on Network-Based Information Systems, Salerno,
Italy, pp. 221–229.

Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kamola,
M., Mincer, M. and Kołodziej, J. (2014). Dynamic power
management in energy-aware computer networks and data
intensive computing systems, Future Generation Com-
puter Systems 37: 284–296.

Normandeau, K. (2013). Beyond volume, variety and velocity
is the issue of big data veracity, Inside Big Data, HP
Newsletter: 12 September 2013.

Raicu, I., Foster, I.T. and Zhao, Y. (2008). Many-task computing
for grids and supercomputers, Workshop on Many-Task
Computing on Grids and Supercomputers, MTAGS 2008,
Austin, TX, USA, pp. 1–11.

Reed, D.A. and Dongarra, J. (2015). Exascale computing and
big data, Communications of the ACM 58(7): 56–68.

Różycki, R., Waligóra, G. and Węglarz, J. (2016). Scheduling
preemptable jobs on identical processors under varying
availability of an additional continuous resource, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 26(3): 693–706, DOI: 10.1515/amcs-2016-0048.

Russom, P. (2011). Big data analytics, TOWI Best Practices Re-
port, Fourth Quarter.

Sefraoui, O., Aissaoui, M. and Eleuldj, M. (2012). Openstack:
Toward an open-source solution for cloud computing,
International Journal of Computer Applications 55(3):
38–42.

Sfrent, A. and Pop, F. (2015). Asymptotic scheduling for many
task computing in big data platforms, Information Sciences
319(C): 71–91.

Sharma, G. and Ganpati, A. (2015). Performance evaluation of
fair and capacity scheduling in Hadoop YARN, 2015 Inter-
national Conference on Green Computing and Internet of
Things (ICGCIoT), Greater Noida, India, pp. 904–906.

Shvachko, K., Kuang, H., Radia, S. and Chansler, R. (2010). The
hadoop distributed file system, 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST),
Incline Village, NV, USA, pp. 1–10.

Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth,
S. et al. (2013). Apache Hadoop: Yet another resource
negotiator, Proceedings of the 4th Annual Symposium on
Cloud Computing, Santa Clara, CA, USA, p. 5.

Waller, M.A. and Fawcett, S.E. (2013). Data science, predictive
analytics, and big data: A revolution that will transform
supply chain design and management, Journal of Business
Logistics 34(2): 77–84.

Zikopoulos, P. and Eaton, C. (2011). Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming
Data, 1st Edn., McGraw-Hill, New York, NY.

Laura Vasiliu received her MSc in 2014 in the field of parallel and
distributed algorithms at the University Politehnica of Bucharest, Fac-
ulty of Automatic Control and Computers. Her research interests are
in resource management in distributed systems, as well as design and
implementation of cloud applications.

Florin Pop is a professor at the Department of Computer Science and
Engineering at the University Politehnica of Bucharest. His general re-
search interests are large-scale distributed systems (design and perfor-
mance), grid computing and cloud computing, peer-to-peer systems, big
data management, data aggregation, information retrieval and ranking
techniques, and bio-inspired optimization. He is also a scientific re-
searcher within the National Institute for Research and Development in
Informatics (ICI), Bucharest, Romania.

Catalin Negru is a PhD student at computer science and a systems en-
gineer at the Computer Science and Engineering Department of the Uni-
versity Politehnica of Bucharest. His research interests include cloud
computing, data storage, energy efficiency, resource management and
cost optimization. His PhD thesis is focused on cost optimization in
cloud storage systems through resource management methods and tech-
niques.

A hybrid scheduler for many task computing in big data systems 399

Mariana Mocanu is a professor of computer science at the Univer-
sity Politehnica of Bucharest. She coordinates the team for interoperable
products and services for decision support, based on geospatial data, and
has a long experience in developing information systems for industrial
and economic processes, and in project management. She does teaching
for both undergraduate and master’s degrees in software engineering,
systems integration, software services and logic design. She is the co-
ordinator of the H2020 project: Data4Water—Excellence in Smart Data
and Services for Supporting Water Management.

Valentin Cristea is a professor in the Computer Science Department
of the University Politehnica of Bucharest. His main fields of expertise
are large scale distributed systems and e-services. He teaches courses,
supervises PhD students, leads projects, and is active in the research
related to these topics. He is a member of the IEEE and the ACM.

Joanna Kolodziej, PhD, DSc in computer science, graduated in mathe-
matics from Jagiellonian University in Cracow (Poland) in 1992, where
she also obtained her PhD in theoretical computer science in 2004. The
main topics of her research are evolutionary computations, mathematical
modeling of stochastic processes, grid and cloud computing, intelligent
networking, scalable computation, multi-agent systems, and global opti-
mization meta-heuristics.

Received: 26 November 2016
Revised: 20 February 2017
Re-revised: 14 March 2017
Accepted: 20 March 2017

	Introduction
	Background and related work
	Transforming big data into smart data
	Motivation behind our research
	Big data reduction
	Many task computing (MTC)

	Hybrid scheduler for many task computing in big data systems
	General model
	Existing scheduling heuristics
	Proposed hybrid model

	Experimental results
	Integration of real cloud environments
	Hadoop integration
	OpenStack integration
	Integration with BlueMix

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

