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In recent years, the counterparty credit risk measure, namely the default risk in over-the-counter (OTC) derivatives contracts,
has received great attention by banking regulators, specifically within the frameworks of Basel II and Basel III. More
explicitly, to obtain the related risk figures, one is first obliged to compute intermediate output functionals related to the
mark-to-market position at a given time no exceeding a positive and finite time horizon. The latter implies an enormous
amount of computational effort is needed, with related highly time consuming procedures to be carried out, turning out into
significant costs. To overcome the latter issue, we propose a smart exploitation of the properties of the (local) time spent by
the Brownian motion close to a given value.
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1. Introduction

For some years now, due to the occurrence of events
leading to the financial crisis between 2007 and 2008,
regulators have forced financial institutions to adopt ad-
hoc procedures to predict, and therefore prevent, defaults.
In other words, banks have to be able to measure and
manage their default risk. As for both the credit and
the counterparty risk, in 2006 the Basel Committee for
Banking Supervision has inserted in the well-known
Basel II reform, two rather general methodologies for
calculating banks capital requirements, namely the stan-
dardized approach and the internal approach. While the
former one is based on the use of ratings from external
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credit rating agencies, the latter envisages the evaluation
of certain risk parameters, such as the exposure at default
(EAD) (cf. BCBS, 2006).

An interesting perspective concerns the so-called
counterparty credit risk (CCR), which represents the
default risk linked to over-the-counter (OTC) derivatives
contracts. The latter case implies the computation, as
intermediate outputs, of a large set of different functionals
related to the mark-to-market (MtM) of the position over
a future time horizon, at a given time t ∈ [0, T ], where
T < +∞ is the time horizon. Standard techniques for
the evaluation of such an exposure are based on classical
Monte Carlo methods, which are characterized by a
strong dependence on the number of assets considered
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and related high computational time costs (see, e.g.,
Liu, 2015). Other approaches have also been given,
considering, e.g., a geometric point of view (Sinkala and
Nkalashe, 2015), or general ambit stochastic processes
(Di Persio and Perin, 2015), or some optimal investment
control problems (Chevalier et al., 2013), even if, as a
general benchmark, the Monte Carlo set of methods are
the most widely used. Nevertheless, as mentioned, Monte
Carlo techniques are far from being computationally
satisfactory, even in simple cases. For example, a medium
bank requires D = O(104) derivative deals and U =
O(103) risk factors, evaluated in K = 20 time steps with
N = 2000 simulations, which allow for K × N × U =
4 × 107 grid points for the risk factor simulation and
K ×N ×D = 4× 108 tasks for deals evaluation.

To overcome these drawbacks, the literature
has recently proposed new techniques, e.g., vector
quantization (Bonollo et al., 2015; Callegaro et al.,
2015; 2017; Callegaro and Sagna, 2013), or more
enhanced hardware technologies, such as in the case
of grid computing and graphical processing units
(GPUs) (see, e.g., the works of Castagna (2013) or
Pagés and Wilbertz (2011) and the references therein).
In the context of American option pricing, other
methods recently investigated are the martingale-based
approach à la Rogers see, e.g., Lelong (2016), and
the simple least-squares approach (see Antonov
et al., 2015; Glasserman, 2012). A different solution
can be achieved exploiting the so-called polynomial
chaos expansion approach (see, e.g., Bernis and
Scotti, 2017; Di Persio et al., 2015) and the references
therein. Another possibility consists in exploiting the
properties of suitable mathematical tools, as for the case
of derivatives pricing via Brownian local time. Given
a probability space (Ω,F,P), we consider a standard
Brownian motion, {Wt}t≥0 defined on it. Then, for
ω ∈ Ω and a level a, an interesting point is to determine
how much time the sample path Wt(ω) spends close to a.
A possible answer dates back to the works written by Paul
Lévy in 1948, where the author introduced the concept of
Brownian local time (see Lévy, 1965).

The right approach consists in defining the Brownian
local time (BLT from now on) as the following density:

Lt(a) :=
1

2ε
lim
ε−→0

μ
{
x : |x− a| ≤ ε

}
, (1)

where μ represents the Lebesgue measure on the real line.

Remark 1. It is worth mentioning that there does not
exist a standard notation to define the BLT, since some
authors prefer to multiply the limit in (1) by 1/4ε, instead
of 1/2ε (see, e.g., Karatzas and Shreve, 1991).

More formally, the local time can be defined through
the so-called occupation formula (see Karatzas and
Shreve, 1991), namely by the following equation:

∫ t

0

f(Ws) ds = 2

∫

R

f(x)Lt(x) dx , (2)

where the left-hand side is a random measure, called oc-
cupation measure or sojourn measure, at fixed time t and
level x ∈ R, while f is an L1 function, f : R → R. We
refer to Section 3.2 for a more detailed discussion of the
BLT properties.

To what concerns the fine properties of the local time,
e.g., the identification of both its distribution function and
related density function and moments, we refer to the
works of Doney and Yor (1998), Karatzas and Shreve
(1991) or Takacs (1995), and references therein. It is
also worth mentioning that there exist many works dealing
with the theoretical applications of the BLT such as
an extension of Itô’s formula to convex functions, the
definition of the density of the occupation measure for a
Brownian motion with respect to the Lebesgue measure
(Bonollo et al., 2015), etc.

On the other hand, relatively limited literature
has been devoted to concrete applications of the BLT
and its properties. The latter lack can be easily
recognized in frameworks related to economy and finance.
Nevertheless, theoretical aspects of the BLT can be
fruitfully exploited to analyze a wide range of financial
tools, particularly with respect to the pricing of some
kinds of exotic path-dependent options as in the case,
e.g., of range accrual options and accumulators, where
the payoff depends on the time spent by the underlying
below or above a given level, between two boundaries, or
outside of them (see, e.g., Mijatovic, 2010). Moreover, the
use of the BLT is almost absent in the risk management
field. The present work aims at filling this gap by showing
that the numerical integration of the BLT density function
can be used to evaluate the risk exposure, hence obtaining
results that are very compelling when compared with
classical Monte Carlo benchmark algorithms.

The paper is organized as follows. In Section 2
we introduce the financial framework, focusing on
the regulatory viewpoint, and with emphasis to the
instructions for calculating the EAD and the credit value
adjustment (CVA). Then, in Section 3, the mathematical
setting is introduced also recalling the main properties of
the BLT, while in Section 4, we provide the local time ap-
proach to the aforementioned type of financial problems,
also analyzing its performances compared with more
standard techniques with respect to an EAD application.
Finally, in Section 5, we state our main conclusions and
outline future research directions.
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2. Counterparty risk: The financial
framework

2.1. Credit counterparty risk in the Basel approach.
In the Basel II framework, the counterparty credit risk
(CCR from now on) is a specific class of the broader
credit risk category. Let us recall the definition of the
Basel committee, shortly BCBS, as it is written by BCBS
(2006).

Definition 1. (Counterparty credit risk (CCR)) is the
risk that the counterparty in a transaction could default
before the final settlement of the transaction’s cash flows.
An economic loss would occur if the transactions or
portfolio of transactions with the counterparty has a
positive economic value at the time of default.

Unlike a firm’s exposure to credit risk through a loan,
the CCR creates a bilateral risk of loss: the market value of
the transaction is uncertain, it can be positive or negative
to either counterparty and can vary over time with the
movement of the underlying market factors. A typical
example is given by IRS. Several classes of financial
transactions are considered in the regulatory perimeter,
but most of the CCR arise from OTC derivatives, in the
peer-to-peer relationships with a defaultable counterparty.
From a practical perspective, the buyer of any option, or
the holder of a derivative with positive MtM, both are
facing a CCR. If the two counterparties agree upon a net-
ting set, e.g., a running compensation process in their
deals, the current exposure will be given by the positive
part of the algebraic sum of all deals.

As in the whole Basel setting, the risk must be dealt
with by setting apart an amount regulatory capital of the
bank which is linked to the risk measure called capital
requirement (BCBS, 2011):

K = EAD · 1.06 · LGD

{

Φ

[(
1

1− ρ

)0.5

Φ−1(PD)

+

(
ρ

1− ρ

)0.5

Φ−1(0.999)

]

− PD

}

· c , (3)

where EAD is the exposure at default, namely an estimate
of the extent to which a bank may be exposed to a
counterparty in the case of a default; LGD is the loss given
default, namely an estimate of the percentage of the credit
not recoverable in the case of insolvency; PD is the prob-
ability of default, namely an estimate of the likelihood
that a default will occur; ρ is the asset return correla-
tion coefficient; c is a constant which takes into account
some maturity adjustment and may vary with respect to
different regulatory portfolios, such as enterprise or retail
loans; 1.06 is a coefficient depending on the calibration
procedure made by the Basel committee; Φ is the
cumulative distribution function of a standard Gaussian
random variable; Φ−1 is simply the inverse of Φ, also
referred to as the quantile function.

As well highlighted in the BCBS definition (see
Definition 1), the EAD estimate makes the counterparty
risk very different from the normal credit risk for loans
and mortgages. In fact, the Basel formula (3) requires
a one-year measurement process, and the default time τ
could be, or it could not be, AT any future time t.

For a mortgage, we know the future exposure profile,
since it can be computed using the amortizing plan.
Differently, in the CCR, the EAD estimation is fairly
difficult, because of two different reasons: the future
exposure is stochastic and, further, it depends on the
market parameters via its specific evolution pricing model.

In other words, the CCR depends in its magnitude
both on the credit parameters (PD, LGD) and on the
market influenced EAD parameter; that is why it is also
referred to as the boundary risk. To summarize, the CCR
has to be determined according to (3) for the credit risk,
but its EAD input estimation is itself a hard challenge, to
which the Basel committee and the financial operators pay
most of their attention.

2.2. Exposure and CVA calculation in the Basel II–
III setting. In order to calculate the EAD quantity in
the CCR context in a robust and conservative way, the
Basel II framework (BCBS, 2006) defines two important
different approaches: the standard model and the in-
ternal model, also called EPE-based approach. In the
standard model, we have EAD = MtM + Add−On,
where the Add-On is computed exploiting a table which
depends on both the underlying asset class and on the
time to maturity. In this case, the idea is that such
an Add-On takes into account the future volatility by
additive coefficients. As an example, for an equity option
with maturity M years and such that 1 ≤ M ≤ 5,
we have that the Add-On is 8% of the notional amount,
while for an interest rate derivative it is just 0.5%. In the
EPE-based approach, to which the present work refers,
some notation has to be pointed out. Given a derivative
maturity time 0 < T < +∞, we consider K ∈ N

+ time
steps 0 < t1 < t2 < · · · < tK , which constitute the
so-called buckets array, denoted by BT,K , where usually,
but not mandatory, tK = T. For every tk ∈ BT,K , we
denote by MtM(tk, Sk) := MtM (tk, Stk) the fair value,
mark-to-market, of a derivative at time bucket tk, with
respect to the underlying value Sk considered at time tk.

For every tk ∈ BT,K , we denote by
MtM

(
tk, S

k
)

:= MtM(tk, S
tk) the fair value

(mark-to-market) of a derivative at time bucket
tk, with respect to the whole sample path
Sk := {St : 0 ≤ t ≤ tk} , and with initial time t0 = 0.

Taking into account previous definitions, we indicate
by ϕ = ϕ (T − tk, Sk,Θ) the pricing function for the
given derivative, where Θ represents the set of parameters
from which such a pricing function may depend, e.g., the
free risk rate r or the volatility σ.
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We give an account of the main amounts, as they are
defined in Basel III (BCBS, 2006), that will be used later
on to estimate the EAD. We introduce the expected expo-
sure of the derivative at time tk ∈ BT,K (EEk), as

EEk :=
1

N

N∑

n=1

MtM(tk, Sk,n)
+
, N ∈ N

+, (4)

which is the arithmetic mean of the positive part of N
Monte Carlo simulated MtM values, computed at the k-th
time bucket tk, with respect to the underlying S.

Remark 2. The positive part operator is effective if we
are managing a symmetric derivative, such as an interest
rate swap or a portfolio of derivatives. Nevertheless, it
is redundant if we consider a single option, as the fair
value of the option is always positive from the buy side
situation. We want to stress that the sell side does not
imply counterparty risk, hence it is out of context.

We evaluate the expected positive exposure (EPE) as

EPE :=
1

T

K∑

k=1

EEk ·Δk, (5)

where Δk = tk − tk−1 indicates the time space between
two consecutive time buckets at the k-th level. If the time
buckets tk are equally spaced, then the formula reduces
to EPE = 1

K

∑K
k=1 EEk. Therefore, the EPE value gives

the time average of EEk and reflects the hypothesis that
the default could happen, as a first approximation, at any
time with the same probability. We define the effected
expected exposure as follows EEE1 := EE1; EEEk :=
max {EEk,EEEk−1} , k = 1, . . . ,K , observing that,
due to its non decreasing property, EEEk takes into
account the fact that, once the time decay effect reduces
the MtM as well as the counterparty risk exposure, the
bank applies a roll out with some new deals. We also
define the effected expected positive exposure (EEPE) by

EEPE :=
1

T

K∑

k=1

EEEk ·Δk.

Remark 3. In order to avoid too many inessential
regulatory details, we will work on EEk and the EPE,
the others quantities being just arithmetic modifications
of them.

In what follows we shall rewrite previously defined
quantities in continuous time, and we add the index A to
indicate the adjusted definitions. Moreover we consider
the dynamics of the underlying St := {St}t∈[0,T ], T ∈
R

+ being some expiration date, as an Itô process, defined
on some filtered probability space

(
Ω,F,Ft∈[0,T ],P

)
.

As an example, St is the solution of the stochastic
differential equation defining the geometric Brownian

motion, Ft∈[0,T ] being the natural filtration generated by
a standard Brownian motion Wt = (Wt)t∈[0,T ] and with
respect to a complete probability space (Ω,F,P), where P
is often referred to as the so-called real world probability
measure, or an equivalent risk neutral measure under the
martingale approach to option pricing (see, e.g., Karatzas
and Shreve, 1991).

The adjusted expected exposure EEA is given by

EEA
k := EP

[
MtM (tk, Sk)

+
]

=

∫
ϕ (T − tk, Sk,Θ) dP (6)

∼= 1

N

N∑

n=1

MtM(tk, Sk,n)
+
= ̂EEA

k .

Similarly, we define the adjusted expected positive
exposure EPEA as

EPEA :=

∫
EEA

t dt =

∫∫
ϕ (t, Sk,Θ)dP dt . (7)

With respect to the latter formulation, the Basel definition
is simply one of many methods that can be used to
estimate the expected fair value of the derivative in the
future.

Remark 4. We skip any comment about the choice of
the most suitable probability measure P to be used in the
calculation of EEk, the latter being beyond the aim of the
present paper. For a detailed discussion on the role played
by the risk neutral probability, or by the historical real
world probability (see, e.g., Brigo et al., 2013).

Remark 5. Let us underline that the component usually
indicated as a discount factor, or a numeraire, is missing
in the EPE definition, the latter being a byproduct of the
conservative approach used in the risk regulation.

Besides the EAD, understood as a CCR measure,
also the credit value adjustment (CVA) may be specified.
According to Basel guidelines (BCBS, 2011), the CVA
represents the capital charge for potential MtM losses
associated with a deterioration in the credit worthiness of
a counterparty. Moreover, by introducing the CVA, the
expression of the derivative payoff provides a new term,
related to the value of the security emerging in the case of
a default. In particular, we have

Payoff = φ(mT , c) · �{τ>T}
+RRφ(mT, c) · �{τ≤T},

where τ is the counterparty default time, φ(mT , c) is the
terminal payoff at maturity T , where mT , resp. c, stands
for the path of the market parameters in [0, T ], resp. for
the contract clauses on which the payoff depends, while
RR := 1−LGD is the so called recovery rate, that is, the
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extent to which principal and accrued interest on a debt
instrument that is in default can be recovered, expressed
as a percentage of the instrument’s face value. Hence,
the CVA metrics performs an average reduction of the
MtM value and involves another form of risk, the CVA
risk, characterizing the uncertainty of the future CVA
evolution.

Remark 6. Let us note that one of the major credit
rating agencies, namely Moody’s, estimates defaulted
debt recovery rates using market bid prices observed
roughly 30 days after the date of default. Recovery rates
are measured as the ratio of price to par value (see the
report for Moody’s (2009) for further details).

2.3. Computational challenges. An extremely
interesting and challenging problem consists in the
concrete implementation of both the EPE and the CVA.
Because of the EPE (EAD) volatility, the counterparty
risk must be monitored frequently, hence the standard
requirement for an internal model validation is a daily
frequency. To have an idea of the magnitude of the
computational efforts for such a procedure, let us consider
that, in a medium size banking group that aims to satisfy
the regulators indications, we could observe D = 10000
deals in the book, N = 2000 simulations and K = 20
time steps. If we denote by PT the number of pricing tasks
for each CCR run, we easily get

PT = D ·N ·K = 4 · 108 . (8)

This example easily shows how great the required
computational effort is even though a big part of the
pricing algorithms is still represented by specific à la
Monte Carlo techniques. Hence, although the pricing
software and CPU features are adequate for front office
purposes, they become unsatisfactory for CCR evaluation
constraints. As for the storage requirements, we define the
new parameter α, i.e., the number of execution cases that
have to be stored to allow traceability and auditability of
the output results. We can fix α = 13, if we suppose an
end-of-month backup with one-year memory. Of course,
the storage is run on different record types, e.g., deal
information, payoff information, simulation information,
etc. For the sake of simplicity, we can think of the storage
as a unique large record type, denoted by RT, which takes
into account all the relevant information. Hence

RT = D ·N ·K · α = 5.2 · 109 . (9)

As each record could easily require 1000 bytes,
we raise to 5.2 terabytes of storage. In other words,
the CCR involves the computational hard challenges
related to the credit and market risk fields. In particular,
the high frequency of monitoring implies a number
of concrete practical implementations of efficient and

robust CCR calculation. In order to address the
previous challenges, important results have been achieved
exploiting techniques related to the so-called BigData
analysis as well as using graphical processing units
(GPU); see, e.g., the numerical investigations provided
by Castagna (2013) or Pagés and Wilbertz (2011).
Nevertheless, the solution to the computational challenges
posed by the CCR evaluation are neither completely,
nor satisfactory solved by the aforementioned software
improvements. That is why there is a growing and wide
interest in finding more effective theoretical techniques,
and related applied algorithmic procedures.

Remark 7. We would like to underline that while
the Basel Committee generally defines frameworks and
principles, it does not prescribe a mandatory model or
some numerical technique that one has to apply. Hence,
starting from the next section, we propose a novel method
to perform the EPE calculation, in the broad CCR setting,
by exploiting a BLT approach.

3. Mathematical setting

3.1. Black–Scholes market model. In what follows
we will refer to the celebrated Black and Scholes diffusion
process (see Black and Scholes, 1973), as a theoretical
benchmark for our proposal’s verification. Let us consider
a financial market, composed of a risk-less security B,
with constant return r, and a risky asset S, defined by
means of a geometric Brownian motion, namely

{
dBt = rBt dt,

dSt = Stμ dt+ Stσ dWt,
(10)

where μ ∈ R, σ > 0 and {Wt}t≥0 represents a standard
Brownian motion.

The SDE representing the geometric Brownian
motion in (10) admits the following unique solution:

St = S0 exp

{(
μ− σ2

2

)
t+ σWt

}
, (11)

which characterizes the dynamics of the underlying of
a derivative, namely a financial instrument that gives to
its owner a terminal payoff φ = φ(mT , c) evaluated at
the maturity T. To give an example, in the simple case
represented by considering a European call option, we
have φ := (ST − K)+, where the level K is called
the strike price of the option, since it provides a positive
profit if and only if ST > K. Let us recall that the
parameters r and σ represent the risk-free rate and the
volatility of the underlying, respectively. The risk-free
rate plays a key role in the evaluation process, that is, the
definition of the fair value (FV from now on) at time 0. In
other words, by an application of the Itô–Döblin lemma,
it is possible to show that, in the fair value evaluation,
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the actual drift μ, with μ > r, and the unknown risk
aversion of the market, or utility function, both disappear,
while the fair value can be simply calculated as the
discounted expected payoff, where the risk-neutral drift r
can straightly replace the expected drift μ in (11); see, e.g.,
the work of Hull (1999) for further details. In the basic
Black–Scholes simplified model, where the risk-free rate
r is deterministic and constant over time, this principle
leads to a general evaluation strategy given by

FVt = E[e−r(T−t)φ(mT , ct)] .

The Black–Scholes model gained several extensions
and criticism, e.g., sophistication in the payoff algebra,
due to the natural innovation process in the financial
markets. They allow to cover the effective requirements
or to get new profits by issuing new appealing products.
Generally speaking, we can have several clauses, e.g.,
the bundling of different strikes, barriers, memory effects,
occupation time clauses, etc., or the dependence of φ on
the whole sample path of St, as it happens when dealing
with the so-called Asian, look-back options; new models
for the underlying, that arise from the different dynamics
among the asset classes, e.g., considering interest rates
versus equity versus forex, or from the need of a better
calibration of the empirical data, e.g., volatility surface
versus flat volatility.

As a benchmark model for an interest rate
underlying, the Vasicek model (Vasicek, 1977) and the
Hull–White model (Hull and White, 1990) usually replace
the Black–Scholes one; an increase in the number of
risk sources, e.g., by taking into account the stochastic
behavior of volatility, as it happens in the Heston model
(Heston, 1993). For a complete review of models, resp. of
pricing formulas, see the work of Hull (1999), resp. Haug
(1983). Nevertheless, let us recall that, if dealing with
a whole portfolio of financial instruments, independently
from their features, the Mark-to-Market dynamics can be
adequately fitted by a log-normal process because of the
compensation or aggregation effect among several single
position returns.

This is a common practice in the asset management
sector, often referred to as the normal portfolio approach
(see, e.g., Saita, 2007). Moreover, also in the risk ma-
nagement approach, the lognormal Black–Scholes model
is quite satisfactory, as pointed out, e.g., by Glasserman
(2012), who proposes a particular type of incremental risk
charge (IRC) model. We recall that, in the real world,
one buys or sells a derivative for a given quantity, or
notional, namely one takes a position. Hence, in the
following, we will often replace the fair value by its
related mark-to-market expression (MtM), hence by the
fair value equipped with a quantity and a sign.

3.2. Local time and occupation time. Let {Wt}t≥0

be a standard Brownian motion, defined over the
probability space (Ω,F,P). The local time for the
Brownian motion Wt, or equivalently, the Brownian local
time (BLT), first introduced by Lévy (1965), can be seen
as a stochastic process indicating the amount of time spent
by the Brownian motion process close to a given level
a ∈ R. To quantify such a random time, Lévy (1965)
introduced the following random field:

Lt(a) =
1

2ε
lim
ε→ 0

μ
{
0 ≤ s ≤ t, : |Ws − a| ≤ ε

}
,

where t ∈ [0, T ], a ∈ R and μ is the Lebesgue
measure. Lt(a) was defined as the mesure de voisi-
nage, and Lévy proved its existence, its finiteness and its
continuity, (Lévy, 1965). More rigorously, let us recall the
following useful definition:

Definition 2. The random field {Lt(x, ω) : (t, x) ∈
[0, T ] × R, ω ∈ Ω} is called a Brownian local time if
the random variable Lt(x) is F-measurable, the function
(t, x) �−→ Lt(x, ω) results to be continuous and

Γt(B,ω) :=

∫ t

0

�B(Ws) ds =

∫

B

Lt(x, ω) dx, (12)

with 0 ≤ t ≤ ∞ and B ∈ B(R).
Let us also recall that the quantity on the left-hand

side of (12) is known as the occupation time of the
Brownian motion up to time t. A crucial theoretical point
consists in establishing the BLT existence. This is ensured
by Karatzas and Shreve (1991, Thm 6.1.1, Ch. 3). The
Brownian local time satisfies several useful properties.
For the sake of convenience, we report only the ones that
we are going to use for our computational purposes, while
we refer the interested reader to Karatzas and Shreve
(1991, Section 3.6) for a more comprehensive treatment
of the subject as well as for the proofs of the results which
we will exploit in what follows.

Proposition 1. For every Borel-measurable function f :
R → [0, T ], we have

∫ t

0

f(Ws(ω)) ds

=

∫

R

f(x)Lt(x, ω) dx, 0 ≤ t ≤ T .

(13)

As a consequence of Proposition (1), we have

∫ t

0

�R(Ws) ds =

∫

R

Lt(x, ω) dx = t. (14)

The following result is known in the literature as the
Tanaka–Meyer decomposition, (see the work of Karatzas
and Shreve (1991) for further details).



Estimating the counterparty risk exposure by usingthe Brownian motion local time 441

Proposition 2. Let us assume that the BLT exists
and let a ∈ R be a given number. Then the pro-
cess {Lt(a)}0≤t≤T is a nonnegative, continuous, additive
functional which satisfies

Lt(a)

= (Wt − a)+ − (z − a)+ −
∫ t

0

�(a,+∞)(Ws) dWs,

(15)

for 0 ≤ t ≤ T and for every z ∈ R.

Remark 8. Note that the representation given in
Proposition 2 can be generalized to a semimartingale.

The Brownian motion spends a random time over
any set A. Hence it is important to be able to derive its
density, namely, the probability that the BLT stands close
to a given level a, for a time dy. Such a density is given
by

g(y; t, a) =

√
2

πt
e−

(y+|a|)2
2t , (16)

(see Borodin and Salminen, 2002, Eqn. (1.3.4), p. 155).

4. Local time proposal for the CCR

4.1. Application of Brownian local time in finance:
Accumulator derivatives. In what follows we focus
our attention on a particular type of derivatives, namely
the Accumulator, which is a path-dependent forward
enhancement without a guaranteed worst case. More
precisely, an Accumulator is characterized by a contract,
agreed upon two parties, which provides that the investor
purchases/sells a pre-determined quantity of stock at a
settled strike price K, on specified observation days
t1, . . . , tn, tn ≤ T, T being the expiry of the contract.

Usually, an Accumulator is linked to an underlying
which is an exchange rate, but we have similar payoffs
with different names, range accrual, in the broad interest
rate derivatives frameworks. An example is given by the
FTSE Income Accumulator, identified through the ISIN
code XS1000869211, over the FTSE 100 Index, with the
plan start date on February 14th, 2014, the plan end date
on August 14th, 2020, and the maturity date on August
28th, 2020. The plan is expected to pay every three
months, the level depending on how the FTSE 100 Index
has performed over the quarter. The maximum income is
6.75% every year, paid if the underlying closes between
5000 and 8000 points on each weekly observation date.
Otherwise, the income will proportionally be reduced,
according to the time spent out of the range. Although
such a kind of derivative product exhibits some benefits,
e.g., a noticeable improvement in the exchange rate,
the lack of product costs and the existence of several
tailor-made features. On the other hand, there are some

drawbacks. The latter allowed the accumulator derivatives
to earn the nickname of “I will kill you later” products.

In order to permit more flexibility and to reduce
hedging costs, the accumulator contracts may include
one or two knock-out barriers in order to restrict the
maximum profit and/or the maximum loss by the investor.
Basically, if at the end of the i-th observation day, the
closing priceSi of the underlying hits the barrierH, for all
i = 1, . . . , n, then the option stops. We distinguish among
accumulator-out one-sided knock-out, accumulator-in
one-sided knock-out, accumulator-out range knock-out,
accumulator-in range knock-out, depending on whether
the investor purchases (resp. sells) a one-sided or range
knock-out call (resp. put) and sells (resp. purchases) a
one-sided or range knock-out put (resp./ call), with the
same strike price, fixing dates and expiry date. Hence, the
payoff Pi of an accumulator derivative at the observation
day ti, i = 1, . . . , n, is given by

Pi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if max
0≤τ≤ti

Sτ ≥ H,

Q(Sti −K) if max
0≤τ≤ti

Sτ < H, Sτ ≥ K,

gQ(Sti −K) if max
0≤τ≤ti

Sτ < H, Sτ < K,

(17)
whereQ is the purchase quantity and g is the gearing ratio,
both fixed by contract; see, e.g., the work of Lam et al.
(2009) for further details. For our purposes, we set Q = 1
and g = 2, hence implying that the fair value FV is given
by

FVi =
N∑

j=1

[
Ctj − Ptj

] · e−r(T−ti), (18)

where Ctj := C(S0,K, T − tj , σ,H), resp. Ptj :=
P (S0,K, T − tj , σ,H), represents the fair price of a
knock-out call option, resp. of knock-out put one. We
recall that, by assuming that the underlying evolves
according to the Black–Scholes, model, the call price and
the put price appearing in (18) have a closed form (see,
e.g., Lam et al., 2009).

4.2. Proposal for EE evaluation. In what follows we
show how the local time may be used as a handy tool in
the evaluation of the counterparty credit risk (CCR) for
accumulator derivatives. In the setting described by (10)
and (11), it is still possible to determine how long the
geometric Brownian motion, remains in the neighborhood
of any point a, for any given set. In other words, we could
attain the density of local time with respect to a geometric
Brownian motion; see, e.g., the work of Borodin and
Salminen (2002) for further details. In particular, we have

P(L(t, a) ∈ dy)

= f(y; t, a, σ, ν, S)
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=

√
2

πt
σa

( a

S

)ν
e−ν2σ2 t

2− (σ2ay+| log(a/S)|)2
2σ2t

+ |ν|σ2a
( a

S

)ν [
e−|ν|(σ2ay+| log(a/S)|)

×Erfc

(
σ2ay + | log(a/S)|

σ
√
2t

− |ν|σ
√

t

2

)

−e|ν|(σ
2ay+| log(a/S)|)

×Erfc

(
σ2ay + | log(a/S)|

σ
√
2t

+ |ν|σ
√

t

2

)]

, (19)

where t represents the time up to which the local time
is evaluated, a is the underlying, σ is the volatility
parameter,

ν := −1

2
+

r

σ2
,

r being the risk-free rate, S represents the spot price, and
Erfc(z) is the complementary error function, namely

Erfc(z) = 1− Erf(z),

Erf(z) =
2√
π

∫ z

0

e−x2

dx.

For convenience, from now on we will not consider
the presence of a knock-out barrier.

By recalling the expressions of the payoff and the fair
value stated in (17) and (18), and supposing a high fixing
frequency, we obtain

P(LT) =

N∑

j=1

[(Stj −K)+ − 2(K − Stj )
+]

≈
∫ T

0

[(St −K)+ − 2(K − St)
+] dt

=

∫

R

L(T, x)[(x−K)+ − 2(K − x)+] dx, (20)

where the last equality in (20) follows exploiting (13),
while L(t, x) is the BLT up to maturity T. As a
consequence, we are able to evaluate the corresponding
fair value for every observation day ti, i = 1, . . . , n,

FV
(LT)
ti

= e−r(T−ti)E

( ∫

R

L(T, x)[(x−K)+

− 2(K − x)+]dx
)

= e−r(T−ti)

∫

R

E[L(T, x)]
[
(x−K)+

−2(K − x)+
]
dx

= e−r(T−ti)

∫

R

∫ ∞

0

yf(y;T, x, σ, ν, S)

× [
(x −K)+ − 2(K − x)+

]
dy dx,

(21)

basically as an application of the Fubini theorem, in the
second equality, and by the very definition of the BLT
density given in (19).

Hence, as an intermediate first application, we use
the above pricing formula for our Accumulator, and we
compare three different pricing techniques for the Ac-
cumulator defined by (C − 2P ), where C and P are
respectively the Call option price and the Put option
price, namely: BSD, the straight BS evaluation, i.e.,
Eqn. (18); BSC, the continuous time version of BSD,
described in Section 4.3; LT: the time proposal given
by the formula (21). For a more detailed discussion of
the aforementioned quantities, i.e., concerning BSD, BSC
and LT, see Section 4.3. The results have been reported
in Table 1 and they have been obtained setting S0 = 1,
with N = 250 fixing dates. We can see that the accuracy
is very good, with just a small decay when the volatility
parameter increases. We are interested in evaluating the
EE and EPE introduced in Section 2.2. Hence, for all
ti, i = 1, . . . , n, we have

EE
(LT)
ti = E

(
FV

(LT)
ti

)
(22)

EPE
(LT)
ti =

1

T

∫ T

0

∫

R

e−r(T−t)
E(L(T, x))

× [(x−K)+ − 2(K − x)+] dxdt. (23)

Remark 9. By recalling that the expectation functional
E involves integration, it follows that the EPE requires the
evaluation of a triple integral. In consequence, we have
two further integration steps with respect to the usual MtM
current evaluation of the deal, against the expectation with
respect to the market parameters scenarios and the time
average, respectively.

Remark 10. We wonder which probability measure is
better to use when the expectation functional is evaluated.
In other terms, we are interested in choosing the most
appropriate distribution at any time t and for all market
parameters, which represent the input data for the pricing
function. As is well known in the literature, there are
two alternatives, namely the risk neutral distribution, or
the historical one. Since we mainly focus on computation
issues, we believe that the latter is not a relevant point.
Anyway, in agreement with the majority of the authors,
we follow the convention of adopting the historical
distribution. In the Black–Scholes framework, the latter
implies that there is a real world drift μ different from the
risk-free rate r, and such that μ > r.

4.3. Application and numerical results. To the extent
of testing the goodness of our local time proposal to
estimate the EE as well as the EPE, we compare the
algorithm described in the previous subsection with a
benchmark à la Black and Scholes (BSD). First of all,
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Table 1. Comparison between fair values obtained with the three methods.
r K σ FV BSD FV BSC FV LT Δ(LT,BSD)

0.01 0.9 15% 0.0961 0.0961 0.0961 0.00%
0.01 0.9 25% 0.0783 0.0784 0.0781 – 0.26%
0.01 1 15% – 0.0323 – 0.0322 – 0.0322 – 0.31%
0.01 1 25% – 0.0587 – 0.0585 – 0.0576 – 1.87%
0.02 0.9 15% 0.1008 0.1008 0.1008 0,00%
0.02 0.9 25% 0.0837 0.0837 0.0839 0,24%
0.02 1 15% – 0.0248 – 0.0247 – 0.0247 – 0.40%
0.02 1 25% – 0.0509 – 0.0508 – 0.0501 – 1.57%

let us fix the number of simulations, indicating them by
Nsim. Then, for every simulation,

• we consider Nday = 250 business days, indicated
by ti, i = 1, . . . ,Nday, for each of which ti, we
simulate the price of the underlying by using the
following discretization procedure:

Sti = Sti−1e

{(
r−σ2

2

)
Δti+σ

√
Δti·N (0,1)

}
,

where

Δti = ti − ti−1 =
1

Nday
, ∀i = 1, . . . , Nday.

• then we compute the Accumulator price by means of
the following formula:

FV
(BSD)
ti

= Δ

⎛

⎝
i∑

j=1

[(Sj −K)+ − 2(K − Sj)
+]

+

Nday∑

k=i+1

[Ctk − 2 · Ptk ]

)

· e−r(T−ti), (24)

where

Δ :=
T

Nday

and
Ctk = C(S0,K, r, σ, T − tk),

Ptk = P (S0,K, r, σ, T − tk)

are the call and put prices, respectively.

In order to evaluate the counterparty credit risk, we
choose 10 time steps, one every 25 business days.
Then we determine the expected exposure EE(BSD) and
the expected positive exposure EPE(BSD) by using (4),
and (5). Since an Accumulator derivative is characterized
by a daily, at least, fixing frequency, we could take into
account a continuous version of the derivative fair value.
Hence we consider

FV
(BSC)
t

∼=
∫ T

0

e−r(T−t)(Ct − 2Pt) dt, (25)

where
Ct = C(S0,K, r, σ, T − t),

Pt = P (S0,K, r, σ, T − t)

are the call and put prices computed as before.
Equation (25) allows us to consider a continuous version
of the benchmark, denoted by BSC. In order to compare
the LT and BSC approaches, we carry out a time
discretization approximating the BSC by retracing the
steps of the BSD algorithm and by considering 104

fixing dates, namely 40 observations per day, instead
of one. Finally, we are able to appraise the expected
exposure EE(BSC), resp. the expected positive exposure
EPE(BSC), again by exploiting (4), resp., (5). As regards
the local time algorithm, we use a numerical integration,
and, in order to have such an integration as efficient as
possible, we fixed convenient lower and upper bounds.

Numerical results. To show how the local time
techniques behave compared with classical approaches,
we provide the results reported in Table 2 which contains
the EPE values obtained with methods introduced in
the previous sections. More precisely, we run all the
algorithms for several strike, volatility and risk-free
parameters, according to the following choices: spot price
S0 = 5.7 ; strike price: K = [4.78, 3.75, 2.98]; volatility:
σ = [0.15, 0.2, 0.3] risk-free rate: r = [0.01, 0.02]
We have analyzed the aforementioned three methods,
whose values are described in columns 2–4, focusing
on the changes (Δ) in the EPE values in columns 5–7.
Every row is characterized by a triplet (Ki, σj , rh), i =
1, . . . , 3, j = 1, . . . , 3, h = 1, 2, to specify which values
of strike price, volatility and risk-free rate we refer.

Remark 11. Let us underline the meaning of the three Δ
comparisons in the right part of Table 2. Δ(BSC,BSD)
does not take into account our proposal, but it measures
the difference between the real world (BSD), where the
fixing is discrete over time, and its continuous version,
namely the BSC one. Δ(BSC,LT) has a double role.
On one hand, it measures the rightness of our algorithm
implementation, as the two methods are theoretically
equivalent. Once we verify that the difference is small,
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Table 2. Expected positive exposure of an accumulator derivative.
(K,σ, r) BSD BSC LT Δ(BSD,BSC) Δ(BSC,LT) Δ(BSD,LT)

(4.78, 0.15, 0.01) 0.9303454395 0.9303714275 0.9303781163 – 0.00279% 0.00072% 0.00351%
(4.78, 0.2, 0.01) 0.9049015095 0.9049413280 0.9048279190 – 0.00440% – 0.01253% – 0.00813%
(4.78, 0.3, 0.01) 0.8251642939 0.8251928714 0.8247838254 – 0.00346% – 0.04957% – 0.04611%
(3.75, 0.15, 0.01) 1.9686102762 1.9686111645 1.9686848833 – 0.00005% 0.00374% 0.00379%
(3.75, 0.2, 0.01) 1.9675941521 1.9676004514 1.9676336107 – 0.00032% 0.00169% 0.00201%
(3.75, 0.3, 0.01) 1.9547899122 1.9548275248 1.9547735333 – 0.00192% – 0.00276% – 0.00084%
(2.98, 0.15, 0.01) 2.7348505526 2.7348507540 2.7349168463 – 0.00001% 0.00242% 0.00242%
(2.98, 0.2, 0.01) 2.7348375084 2.7348378657 2.7348585689 – 0.00001% 0.00076% 0.00077%
(2.98, 0.3, 0.01) 2.7336498018 2.7336570672 2.7336545073 – 0.00027% – 0.00009% 0.00017%
(4.78, 0.15, 0.02) 0.9556220367 0.9556450742 0.9558308683 – 0.00241% 0.01944% 0.02185%
(4.78, 0.2, 0.02) 0.9318141129 0.9318494415 0.9318254905 – 0.00379% – 0.00257% 0.00122%
(4.78, 0.3, 0.02) 0.8548444479 0.8548671968 0.8542861489 – 0.00266% – 0.06797% – 0.06531%
(3.75, 0.15, 0.02) 1.9871484085 1.9871500602 1.9873803563 – 0.00008% 0.01159% 0.01167%
(3.75, 0.2, 0.02) 1.9862637277 1.9862700504 1.9864841609 – 0.00032% 0.01078% 0.01110%
(3.75, 0.3, 0.02) 1.9743416072 1.9743766907 1.9744396571 – 0.00178% 0.00319% 0.00497%
(2.98, 0.15, 0.02) 2.7496039372 2.7496047313 2.7497784936 – 0.00003% 0.00632% 0.00635%
(2.98, 0.2, 0.02) 2.7495932160 2.7495941376 2.7497625846 – 0.00003% 0.00613% 0.00616%
(2.98, 0.3, 0.02) 2.7485174039 2.7485245347 2.748661624 – 0.00026% 0.00499% 0.00525%

Table 3. Average elapsed time of the three algorithms, measured
in seconds.

BSC BSD LT

18.314768 4.98831 2.12311

with a more practical perspective it allows us to monitor
the numerical accuracy of the tools we used to perform
the various numerical integration involved in both the
techniques. Finally, Δ(BSD,LT) considers both the
previous effects and measures the global accuracy of our
BLT proposal, where we proxy, by continuous time, the
real world problem by a new, local time based, technique.

In order to complete the comparison between the
different methods proposed, we draw a parallel between
the execution times of the individual methods, which
is reported in Table 3. In particular, we invite the
reader to dwell on the last two columns, for which the
computational effort is comparable. We observe that the
elapsed time of the local time algorithm is less than the
elapsed time of the BSD approach and, on the average,
the former is about half the latter. Finally, we exhibit a
couple of graphs comparing the errors of the algorithm
LT and BSC, with respect to the exact case BSD, once
the strike price and the free risk rate have been set, while
the volatility σ changes. We observe that the relative
error in very good for small volatilities. To this extent,
we will investigate further the software implementation
details. Anyway, referring to the computational time in
the Table 3 above, we think that in the usual trade-off
(accuracy, time) the LT approach undoubtedly dominates
the BSC approximation, and it can compete with the true
BSD model.
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Fig. 1. Comparison between EPE changes for fixed risk-free
rates: Δ(BSD,BSC) vs. Δ(BSD,LT) with r = 1%
and K = 3.75 (a), Δ(BSD,BSC) vs. Δ(BSD,LT)
with r = 1% and K = 4.78 (b). The volatility parame-
ter varies between 10% and 30%.

4.4. Some remarks about computational complex-
ity. Once a new methodology or algorithm has been
proposed, one would like to make a general analysis of
the computation complexity of the new method compared
with its more traditional competitors; the some concerns
the accuracy and the convergence rate. In the simplest
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and naive case, one has just one parameter, N, say,
e.g., the number of simulations, the number of deals in
the portfolio, the number of time steps, etc., and the
computational complexity could be stylized by a single
“order” such as O (N) , O (

N2
)

and so on. Despite
this elegant theoretical approach, concrete applications are
characterised by extra difficulties. First, the proposal, or
the set of competitors, could depend on some different
parameters, and N could not be a proper summary of the
technique set up. Second, for each atomic algorithmic
task, namely for any simulation of a loop of N simulations,
the different competitors could contain calculations with
very different levels of complexity and elapsed time, t1
and t2, say. Hence it may happen that for small or medium
values of the parameter N the actual computational time
of the two algorithms does not match the asymptotic
order ranking, e.g., it may happen that t1 · N > t2 ·
N3/2. Third, finally, the observed computational times
depend on many implementation details: the numerical
integration method, bounded or unbounded integration,
the efficiency of the libraries embedded in the exploited
programming languages.

Coming back to the above tables of execution times
for BSD, BSC and LT, also focusing on the evaluation
of the EE and EPE values, loops behave similarly with
the cross-method in increasing the number of calculations,
and we observe that the BSC involves a time integration
of the rather complicated BS formula, while the BSD has
a complexity given by BS · tn, the second term being
the number of fixing times, and eventually the LT has
a complexity given by time-space integration of a quite
simple function which is the payoff itself. Moreover,
we optimized the latter by bounding both the infimum
and the supremum of the space integral. Therefore,
even without an exhaustive comparison, also for various
implementations, we can conclude that the LT proposal
allows for a good Accuracy versus Effort trade-off. We
also underline that extensions to other market parameters,
clauses and payoffs are needed.

5. Conclusions and further research

We have addressed the issue of the CCR assessment
for the so-called accumulator derivatives, within the
Black–Scholes, financial framework with one risky asset.
Since the corresponding payoff depends on the time spent
by a geometric Brownian motion near a given value,
we have exploited the notion of the BLT which turns to
play a crucial role in the derivative pricing step for CCR
evaluation. However, it is possible to involve the BLT also
in the risk factors simulation step: roughly speaking, for
each time bucket tk, we could employ the BLT to build up
the grid (tk, Stk,n) and the corresponding probabilities,
and evaluate the k-th expected exposure EEk as the sum
of weighted probability masses. We have proposed an

original approach founded on the possibility of expressing
the BLT in terms of its probability density.

The associated implementation with regard to EPE
evaluation leads to numerical results that significantly
improve those obtained by standard procedures à la
Black–Scholes. A smaller execution time and a better
EE appraisal accuracy make our method a competitive
tool, suggesting an extension of the local time approach to
more general derivatives, such as barrier options or Asian
options.

The next step consists in comparing our results with
those derived by Cordoni and Di Persio (2014; 2016).
Moreover, we also plan to use the results presented by
Takacs (1995), namely a generalization of the well-known
Lévy’s arc-sine law; see also Lévy (1939), who provides
the distribution of the occupation time given in (12). In
fact, we intend to use the related Takacs formula as an
alternative expression for the probability density stated in
(19) which has been extensively used in this paper.

Finally, we are aware that the one-dimensional
case turns out to be unrealistic, though relatively easy
to implement, albeit to work in the one-dimensional
framework is a very acceptable proxy for derivatives of
banks with corporate customers, i.e., small and medium
size enterprises; in these cases the i-th customer has a
very small number of deals, with the main dependence
on a single risk factor, e.g., the EUR interest rate curve.
After all, a large number of risk factors entails a very hard
estimation of correlations.

To overcome such drawbacks, financial institutions
resort to some heuristic and easy-to-extend methods.
For example, in the two-dimensional case it is common
practice to consider

〈
dW

(1)
t , dW

(2)
t

〉
= 0

between the asset classes, e.g., interest rate, forex or
equity, and 〈

dW
(1)
t , dW

(2)
t

〉
= dt

within the asset class. Such a procedure could be easily
extended to the N -dimensional case, with N � 1. This
is clearly a complicated issue. From a theoretical point
of view, the literature provides contributions related to the
study of the multidimensional BLT; see, e.g., the work of
Brydges et al. (2007) and the references therein.
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