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Warsaw University of Technology, ul. św. A. Boboli 8, 02-525 Warsaw, Poland

e-mail: {maciej.przybylski,bputz}@mchtr.pw.edu.pl

Searching for the shortest-path in an unknown or changeable environment is a common problem in robotics and video
games, in which agents need to update maps and to perform re-planning in order to complete their missions. D* Lite is
a popular incremental heuristic search algorithm (i.e., it utilizes knowledge from previous searches). Its efficiency lies in
the fact that it re-expands only those parts of the search-space that are relevant to registered changes and the current state
of the agent. In this paper, we propose a new D* Extra Lite algorithm that is close to a regular A*, with reinitialization
of the affected search-space achieved by search-tree branch cutting. The provided worst-case complexity analysis strongly
suggests that D* Extra Lite’s method of reinitialization is faster than the focused approach to reinitialization used in D*
Lite. In comprehensive tests on a large number of typical two-dimensional path-planning problems, D* Extra Lite was 1.08
to 1.94 times faster than the optimized version of D* Lite. Moreover, while demonstrating that it can be particularly suitable
for difficult, dynamic problems, as the problem-complexity increased, D* Extra Lite’s performance further surpassed that
of D*Lite. The source code of the algorithm is available on the open-source basis.
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1. Introduction

Goal-directed navigation without accurate knowledge of
the environment is a common problem in robotics and
video games. As an agent follows a path to a stationary
goal, it can discover changes within a certain range of
sensors, which will require re-planning. Incremental
heuristic algorithms are beneficial in this context; able
to reuse knowledge from previous searches, substantially
less computation time is needed for re-planning. In
this paper, we focus on optimal algorithms, with limited
discussion of suboptimal variants.

Incremental shortest-path searching algorithms are
typically used in a sense-plan-act scheme. During the
planning phase a stationary snapshot of the environment
is used. Discrepancies between the known map and
accurate map pertain to the appearance and disappearance
of obstacles. Although in both the cases (appearance and
disappearance) a previous search can be reused, some
techniques can be optimal in some cases and not in others.
Beyond the field of robotics and video games, these
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kinds of algorithms are applied to vehicle navigation, in
which quick re-computation of the optimal path is crucial.
Furthermore, as the majority of these algorithms are
general enough to be applied to shortest-path searching
in graphs, they are used across a variety of applications.
In this paper, we describe D* Extra Lite that is a novel,
general purpose, incremental shortest-path searching
algorithm.

In the present study, we analyzed several algorithms
that are suitable to general use (i.e., both appearance
and disappearance of obstacles) (see, e.g., Trovato, 1990;
Stentz, 1995; Podsędkowski, 1998; Podsędkowski et al.,
2001; Koenig et al., 2004; Koenig and Likhachev, 2005b;
Sun and Koenig, 2007; Sun et al., 2008; Hernández
et al., 2015). In a test framework, we then implemented
two of them; the popular, state-of-the-art D* Lite
(optimized version) (Koenig and Likhachev, 2005b) and
the recently-developed MPGAA* algorithm, which has
been shown to outperform D* Lite (Hernández et al.,
2015) in some problems. Following the results of
our analysis, we propose a new algorithm that appears
to outperform both D* Lite (optimized version) and
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MPGAA* in two-dimensional path-planning problems.
Accordingly, we called the new algorithm ‘D* Extra Lite’.
The main difference between D* Lite and D* Extra Lite
is in the way in which affected portions of the map are
reinitialized. The superior reinitialization process used
by D* Extra Lite allows the main searching function to
remain as simple as the original A* (Hart et al., 1968).

In addition, we analyze algorithms that are only
applicable to planning with the freespace assumption
(e.g., Koenig and Likhachev, 2005; Hernández et al.,
2009; 2011; 2014) due to techniques that can be also used
in general-purpose algorithms. The freespace assumption
is a special case of incremental path-planning, in which an
agent does not know the environment, and it is assumed
that this unknown space is free; thus only obstacles can
appear.

The paper is organized as follows. In Section 2
referring to problems in terms of graph searching, we
present the aim of this paper. In a review of related
work (Section 3), we discuss the present state of the
art in this area. At the beginning of Section 4, we
outline the main idea behind the D* Extra Lite algorithm.
Next, we compare D* Extra Lite with D* Lite (its
optimized version). Section 4, beyond the algorithm itself,
includes a theoretical discussion of the properties of D*
Extra Lite, as well as an extensive list of examples that
illustrate the behavior of this algorithm in typical cases of
environmental changes. Finally, in Section 5, we present
and discuss the results of some tests.

2. Problem formulation

Similarly to other texts concerned with path-planning
(e.g., Sturtevant, 2012; Stentz, 1995; Koenig and
Likhachev, 2005b; Hernández et al., 2015), in this
analysis, we utilized a two-dimensional path-planning
on an occupancy grid as our primary example. Within
such a domain, usually an agent’s movements can be
made to each of the four neighboring cells (used in the
examples throughout the paper) or to each of the eight
neighboring cells (used in the final experiments). If the
neighboring map-cell is occupied, we assume that the
transition remains possible, but the cost is infinite.

All feasible positions s of an agent on a map form a
state-space S. A transition between two states is possible
by execution of an action as,s′ ∈ A, where A is the set
of all feasible actions. For each action a cost function is
defined: cost(as,s′) ≡ cost(s, s′) : A → R

+. Although
within a single search episode, the action cost is constant,
it may change as observations are made between search
episodes.

A transition function γ(s, as,s′) : S×A → S returns
the state s′ achieved by execution of action as,s′ . An
inverse transition function γ−1(s, as′,s) : S × A → S
returns the state s′ from which state s can be achieved.

Herein it is assumed that for each pair of states, only one
action joins them.

With the transition function we can define a set of
successors Succ(s) = {s′ ∈ S|s′ = γ(s, as,s′)} and a set
of predecessors Pred(s) = {s′ ∈ S|s′ = γ−1(s, as′,s)}.

A path from s1 to sn is a sequence of such states,
and for each pair of consecutive states 〈si, si+1〉 an action
asi,si+1 in A must exist.

The domain used in this paper can be represented as
a graph G = (V,E), assuming that there exists a direct
state-to-node mapping s ∈ S → v ∈ V and a direct
action-to-edge mapping a ∈ A → e ∈ E. Therefore, in
this paper, we use the terms state and node, and action and
edge, interchangeably. However, it should be noted that
with the implementation of graph-searching algorithms,
nodes hold additional information, such as

• parent(s), a neighboring node that leads to the
start-state (or a goal state in the case of a backward
search),

• g(s), a value that represents the cost from the starting
node to s (or the cost from the goal node to s in the
case of a backward-search), calculated as follows:
g(s) = g(parent(s)) + cost(parent(s), s). In the
case the state s can be omitted, this value is referred
to as the g value.

The shortest-path search can be conducted from the
starting node (forward-search), and from the goal node
(backward-search). If the shortest path is found, an agent
follows it until a change in the environment that may affect
the path is observed. Such an observation is reflected by
a cost change at the edges of the graph (costs of actions),
and path re-planning is necessary.

3. Related work

The work of Stentz, who developed algorithms D*
(Stentz, 1994) and Focussed D* (Stentz, 1995), and that of
Koenig and Likhachev (2005b), who developed D* Lite,
are the most recognizable contributions to date to address
the problem of incremental shortest-path planning. All
three of the above-mentioned algorithms run backwards,
making them especially useful, as only the start-state
changes between search episodes, and the goal-state
remains unchanged; therefore, a significant part of the
explored search-space remains relevant. The general aim
behind these algorithms is to repair only the nodes (map
cells) in the affected part of the map, that is, unless the
current state of the agent is achieved by the searching
algorithm, in which case, preference is to nodes that will
lead to the current state of the agent.

Due to changes in the environment, a part of the
search-space may become inconsistent. While one part
may include under-consistent nodes with underestimated
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g values (when new obstacles appear), the other part may
feature over-consistent nodes with overestimated g values
(when obstacles disappear). In the case of underestimated
g values, the nodes need to be reinitialized. This allows
the algorithm to assign new values, which will most
likely be higher. In D*, Focussed D* and D* Lite,
reinitialization occurs during the search. In order to detect
an inconsistent node, each node has an additional value,
denoted by the k value in Focussed D*, and the rhs value
in D* Lite. Moreover, both algorithms utilize a heuristic
cost to the agent’s current state in order to guide searching.
In the searching phase, both the algorithms perform the
following two operations for each underestimated node.
Before the new g value is set, each underestimated node
is reinitialized. To assure that reinitialization precedes
setting the g value, the list of open nodes must be sorted
using a complex key value (i.e., min(rhs(s), g(s))).

A different approach is to reinitialize the affected
portion of the map and then to conduct a new search
of only that part. As argued by Stentz (1995), such an
approach is “inefficient when the robot is near the goal
and the affected portions of the map have long ‘shadows’.”
This approach, i.e., reinitialization of the entire affected
section of the search-space, can be found in the work of
Podsedkowski (1998; 2001), as well as in the Differential
A* algorithm proposed by Trovato (1990), revisited and
extended by Trovato and Dorst (2002). Differential A*
may be the most similar algorithm to the D* Extra Lite
presented in this paper. Unfortunately, an experimental
comparison of Differential A* with Focussed D* or D*
Lite has been neglected so far. However, with the
understanding gained from the work on D* Extra Lite,
also stated by Koenig and Likhachev (2005b), we can
propose that the reinitialization of the entire open-list
before each search episode inhibits efficient functionality
of the Differential A* algorithm (recompute_OPEN()
procedure in the pseudocode presented by Trovato and
Dorst (2002)).

In order to avoid re-computation of the entire
open-list, Focussed D*, D* Lite and D* Extra Lite use
a biased key value. A biased key value, in addition to
the calculated cost g and the heuristic cost h, includes
the km value, which grows proportionally to the cost
of the agent’s transition between each search episode.
Accordingly, it is ensured that nodes that were pushed
to the open-list in the previous and subsequent episodes,
will be popped in an order that will satisfy optimality
requirements without reordering the entire open-list.

D*, Focussed D* and D* Lite each run backwards,
from the goal to the current state of the agent, which
allows for the unaffected search tree to be easily reused.
However, it should be noted that it is also possible for
forward-search algorithms to reuse a previously explored
the search tree, e.g., LPA* (Koenig et al., 2004) or
Fringe-Saving A* (Sun and Koenig, 2007). Moreover,

adaptive algorithms, which do not reuse search-tree,
are continuously running from scratch in a forward
direction. These algorithms improve their h values
(they learn heuristics from previous searches), which
substantially accelerates subsequent search episodes. The
basic algorithm for this type is Adaptive A* (Koenig and
Likhachev, 2005a). Findings strongly suggest that AA* is
quicker than repeated A*, and can be faster then D* Lite,
however only with the use of buckets in place of the heap
as a priority queue for open-list managing.

We have discussed search-tree reuse and adaptive
heuristic learning techniques; however, there are other
algorithms based on AA* that make use of previously
found paths, i.e., Path Adaptive A* (Hernández et al.,
2009) and Multi-Path Adaptive A* (MPAA*) (Hernández
et al., 2014). While these algorithms also run forward
from the starting state, they can terminate before
achieving the goal node. As these algorithms record
previously constructed path(s), it is sufficient to construct
a path that remains connected with the goal node
(it has not been disconnected through changes in the
environment). The most complex adaptive algorithm may
be Tree Adaptive A* (Hernández et al., 2011), which
combines a reusable tree (like D* or LPA* algorithms)
with reusable paths, and accordingly, heuristic improving.

All the adaptive algorithms mentioned above are
limited to freespace assumption. Consequently, although
they can manage new obstacles, where there is a shortcut
available, their solutions fail to remain optimal. This
problem has been solved with Generalized Adaptive A*
(GAA*) (Sun et al., 2008), which, in the case of a
decrease in the edge cost, reestablishes the consistency
of h values by performing an uninformed backward
search throughout the explored search space. The
recent Multi-Path Generalized Adaptive A* (MPGAA*)
(Hernández et al., 2015) algorithm demonstrates the
benefits to be gained from the path reuse technique, by
combining it with the GAA* algorithm.

As MPGAA* can deal with increasing, as well as
decreasing edge costs, it can be compared with the D*
Lite. In the work of Hernández et al. (2015), MPGAA*
outperformed D* Lite in most cases. Therefore, in this
paper, we compare D* Extra Lite with MPGAA* and D*
Lite (an optimized version).

It is worth noting that GAA* (and MPGAA*)
is similar to LSS-LRTA* (Koenig and Sun, 2009).
LSS-LRTA* is a learning real-time algorithm that
searches forwards and can be stopped before it finds the
global solution. Reaching the goal can be assured, as
after each searching phase there is a learning phase in
which the algorithm updates the h values of each visited
node. The learning phase is a function equal to the
consistency reestablishing performed by GAA*. Without
a computation time limit, LSS-LRTA* undertakes a
global search, which makes it comparable to incremental
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planning algorithms. LSS-LRTA* has been shown to
outperform D* Lite in some settings; for a discussion,
refer to Koenig and Sun (2009).

Another novel and interesting approach is found in
the Dynamically Pruned A* (DPA*) algorithm (van Toll
and Geraerts, 2015). During its search, DPA* reuses
previously found paths for states pruning. For nodes
on a previously found path, DPA* does not expand the
entire neighborhood, it rather expands only subsequent
nodes from this path. In contrast, although DPA* reuses
previously found paths to the aforementioned adaptive
algorithms, it does not learn heuristics. DPA* was
designed for crowd simulation on navigation meshes
(sparse graphs), in which low memory requirements were
more important than short running times. Although DPA*
has been shown to be faster than repeated A* by 62%,
D* Lite is faster than repeated A* by at least one order
of magnitude (Koenig and Likhachev, 2005b). Therefore
DPA* was not selected for our comparison.

4. D* Extra Lite

4.1. Intuition. In most of incremental heuristic search
algorithms, the first search episode is equivalent to
the regular A* algorithm, which expands consecutive
search-space nodes until it reaches the goal node. This can
be in the case of a forward search (e.g., LPA*, MPGAA*)
or a backward search (e.g., D*, D* Lite). If the algorithm
sets parent pointers (for example, D* Lite does not), these
pointers form a tree with a root in the node from which the
search originated. We refer to this tree as the search tree.

If any change is observed to affect the explored
search space, particularly, an edge cost e(s1, s2) has
changed, a part of the visited search space (a branch of
the search tree) has become inconsistent and must be
re-explored. The inconsistent part of a search tree can be
defined as a branch of a search tree that contains nodes
supported by an edge e(s1, s2). A node s2 is supported
by an edge e(s1, s2) if the node s1 is a parent of node s2;
furthermore, if a node s2 is a parent of node s3 and s2 is
supported by e(s1, s2), then s3 must also be supported by
e(s1, s2).

The g values of nodes that belong to an inconsistent
search-tree branch, are either too high or too low. At that
point, all incremental algorithms (such as D*, D* Lite,
MPGAA*) distinguish between two situations—when the
cost of an edge has increased and when it has decreased.

If the root of the search-tree has not changed,
such is the case of incremental search algorithms
running backwards (e.g., D* and D* Lite), the following
observations can be made.

In the situation in which the cost of an edge e(s1, s2)
decreases, it is sufficient to reopen the s1 node and
continue the search. This is owing to the fact that
the g values in the inconsistent part of the search-tree
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Fig. 1. Agent (star), following the move from C1 to C2, ob-
serves cell C4 to become free (chessboard) (a). There-
fore, nodes sC3, sB4 and sC5 have to be re-opened (b).
Figure (c) illustrates search-space following re-planning.
White inner shape: open nodes, gray inner shape: closed
nodes, arrows: parent node pointers, cross: goal node,
black squares: obstacles, dashed line: affected edges.
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Fig. 2. Agent (star), following the move from C1 to C2, ob-
serves cell D4 to be occupied (chessboard) (a). The en-
tire branch supported by the edge e(sC4, sC5) must then
be cut (b). As the space left by the cut branch may be
filled by another branch, the nodes that neighbor the cut
branch are re-opened. A new optimal solution emerges
that is on a different branch from the initial branch (c).

are higher than should be (nodes are over-consistent).
Optimal path-searching algorithms change the g value
only if g(s2) > g(s1)+cost(s1, s2), which also functions
to prevent the algorithm from re-exploration of consistent
nodes. Moreover, in this situation, the affected branch
of the search tree cannot shrink (it can grow or stay
unchanged). In Fig. 1, an example of edge-cost decrease
is depicted. As cell C4 became free, the cost of
the corresponding edges e(sC3, sC4), e(sB4, sC4) and
e(sC5, sC4) decreased from infinity to one (Fig. 1(a)). As
explained, there is no need to cut any branch; however,
nodes sC3, sB4 and sC5 must be re-opened (Fig. 1(b)).1

If the cost of an edge e(s1, s2) increases, all nodes
in the branch of the search-tree supported by this edge
become under-consistent, which means that its g values
are lower than they should be. As the condition
g(s2) > g(s1) + cost(s1, s2) is not fulfilled, the simple
reopening of s1 will not lead the algorithm to re-establish
consistency. Therefore, before the algorithm begins new
search, it must make such nodes over-consistent. This

1In the example, in addition to nodes sC3, sB4 and sC5, a start
node sC2 has been opened to properly handle the termination condition,
which is a property of the D* Extra Lite algorithm explained later.
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is achieved by setting its g values to infinity or by
marking them as unvisited. If the cost of the e(s1, s2)
edge increases, the affected search-tree branch may shrink
or even—covered by other unaffected branches—it may
disappear. Thus, parent nodes of nodes that belong to the
affected area may change radically, as shown in Fig. 2.

The main issue is to decide which nodes should
be made over-consistent and which nodes should be
re-explored. The idea behind the D* Lite algorithm
is to make over-consistent and to re-explore only those
nodes that lead towards the starting-node (i.e., the current
state of the agent). For both the operations (making
node over-consistent and node re-exploration) the same
open-list is used. This is made possible by introduction
of the rhs value for each node, which ensures that
nodes will be made over-consistent and re-explored in
the correct order. An advantage of this approach is that
only necessary nodes are reinitialized and re-explored.
A disadvantage of D* Lite is that making some nodes
inconsistent and reopening their neighbors is a part of a
search loop that involves operations on the open list, and
this may hinder the efficiency of the algorithm.

As already discussed, following an increase in the
cost of the edge e(s1, s2), the entire affected searchtree
branch becomes inconsistent. The main idea behind the
D* Extra Lite algorithm is to cut the whole branch at
once. This is unlike D* Lite, which while searching,
reinitializes single nodes. Branch cutting is a simple
recursive operation that makes nodes unvisited without
employing the open list. After the branch cut there will
be a gap in the frontier fringe to be repaired. Therefore,
apart from reopening the s1 node, all nodes belonging to
neighboring branches will also need to be reopened. Only
then is the search-space reinitialized and ready for a new
search episode.

4.2. D* Extra Lite algorithm. D* Extra Lite, like
other incremental algorithms, operates on procedures that
utilize a sense-plan-act scheme. In our implementation,
D* Extra Lite shares such basic procedures with D*
Lite (Algorithm 1). The algorithms start with an
initial map update and a search-space initialization
(lines 3–4 in Algorithm 1). The main loop (lines
5–10 in Algorithm 1) iteratively runs searching, action
selection and execution, map update and reinitialization.
The SEARCH() procedure consists of another loop
that repeatedly performs SEARCHSTEP() while a goal
condition has not been met, and the open list is not empty.
The ACTIONSELECTION() procedure chooses the action
(leading to successive state) that will achieve the goal
with the least cost. The REINITIALIZE() procedure will
instantly terminate if no change is observed.

Procedures that distinguish D* Lite from D* Extra

Algorithm 1. Procedures common for the D* Lite and D*
Extra Lite algorithms.
1: function MAIN()
2: slast = sstart
3: MAPUPDATE()
4: INITIALIZE()
5: while sstart �= sgoal do
6: if NOT SEARCH() then
7: return goal is not reachable

8: sstart =ACTIONSELECTION(sstart)
9: MAPUPDATE()

10: REINITIALIZE()
11: function SEARCH()
12: while open-list is not empty do
13: if SOLUTIONFOUND() then
14: return true
15: SEARCHSTEP()
16: return false
17: function ACTIONSELECTION(sstart)
18: return argmins′∈Succ(sstart)(cost(sstart, s

′) + g(s′))

Lite are shown side by side in listings Algorithms 22

and 3, respectively, but even within these procedures,
several elements are similar.

Both the algorithms must operate while the agent’s
start state changes between searching episodes. In
heuristic search algorithms, the key value to prioritizing
an open list is usually calculated as a sum of an
heuristic value h(sstart, s), which in the case of a
backward-search is the cost-to-start, and the g(s) value, is
the cost-from-goal. Owing to an agent’s transitions toward
decreasing g values, h values should be recalculated.
Recalculation of the key for each open node, and
reordering of an open list, would hinder the efficiency of
the search algorithm. Therefore, another solution is used.

If the agent changes its state from the previous start
state st0 to the new start state st1, than for some nodes
previously calculated h values are underestimated, while
other are overestimated. If the h value is underestimated,
i.e., h(st0, s) < h(st1, s), the node will be removed
from the top of the open list too early; thus its key has
to be recalculated and the node has to be re-pushed to
the open list (lines 14–17 in Algorithms 2 and 3). A
more serious situation is when the h value of a node is
overestimated, i.e., h(st0, s) > h(st1, s). In this case, the
node might be removed from the top of the open list too
late and the algorithm will not find the optimal solution.
In the worst case, the h value will be overestimated by
h(st0, st1) (Fig. 3). To avoid overestimated h values, a
bias value km can be added to the heuristic calculated for
nodes added after agent’s transition (line 2 in Algorithms 2
and 3). If the km value is increased by h(st0, st1), all
nodes pushed to the open list before the agent’s transition
will have been underestimated (or exactly) h values, i.e.,

2The pseudocode of D* Lite (optimized version) presented here is
not an exact copy of the pseudocode by Koenig and Likhachev (2005b);
however, it is the same algorithm without any modifications.
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Algorithm 2. D* Lite (optimized version) procedures.
1: function CALCULATEKEY(s)
2: return

[min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))]

3: function SOLUTIONFOUND()
4: return key(TOPOPEN())>= CALCULATEKEY(sstart)

AND rhs(sstart) <= g(sstart)

5: function INITIALIZE()
6: km = 0
7: for all s ∈ S do
8: g(s) = rhs(s) = ∞
9: rhs(sgoal) = 0

10: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))

11: function SEARCHSTEP()
12: s =TOPOPEN()
13: POPOPEN()
14: kold = key(s)
15: knew = CALCULATEKEY(s)
16: if kold < knew then
17: PUSHOPEN(s, CALCULATEKEY(s))
18: else if g(s) > rhs(s) then
19: g(s) = rhs(s)
20: REMOVEOPEN(s)
21: for all s′ ∈ Pred(s) do
22: if s′ �= sgoal then
23: rhs(s′) = min(rhs(s′), cost(s′, s) + g(s))

24: UPDATEVERTEX(s′)
25: else
26: gold = g(s)
27: g(s) = ∞
28: for all s′ ∈ Pred(s) ∪ s do
29: if rhs(s′) = cost(s′, s) + gold AND s′ �= sgoal then
30: EVALUATERHS(s′)
31: UPDATEVERTEX(s′)
32: function REINITIALIZE()
33: if any edge cost changed then
34: km = km + h(slast, sstart)
35: slast = sstart
36: for all directed edges (u, v) with changed cost do
37: cold = cost(u, v)
38: update edge cost cost(u, v)
39: if cold > cost(u, v) then
40: if u �= sgoal then
41: rhs(u) = min(rhs(u), cost(u, v) + g(v))

42: else if rhs(u) = cold + g(v) then
43: if u �= sgoal then
44: EVALUATERHS(u)
45: UPDATEVERTEX(u)
46: function UPDATEVERTEX(s)
47: if g(s) �= rhs(s) then
48: PUSHOPEN(s, CALCULATEKEY(s))
49: else if g(s) = rhs(s) AND open(s) then
50: REMOVEOPEN(s)
51: function EVALUATERHS(s)
52: rhs(s) = ∞
53: for all s′ ∈ Succ(s) do
54: rhs(s) = min (rhs(s), cost(s, s′) + g(s′))

In the pseudocode, the following (though not explained elsewhere)
functions are also used: TOPOPEN()—returns the node with the lowest key
in the open list; POPOPEN()—removes the node with the lowest key in the
open list; PUSHOPEN(s,k)—if node s is not open, it inserts s to the open
list with key k, if node s is open, it updates the priority (if necessary); RE-
MOVEOPEN(s)—removes node s from the open list; open(s)—indicates
if node s is in the open list.

Algorithm 3. D* Extra Lite procedures.
1: function CALCULATEKEY(s)
2: return

[g(s) + h(sstart, s) + km; g(s)]

3: function SOLUTIONFOUND()
4: return TOPOPEN() = sstart

OR (visited(sstart) AND NOT open(sstart))

5: function INITIALIZE()
6: km = 0
7: visited(sgoal) = true
8: parent(sgoal) = NULL
9: g(sgoal) = 0

10: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))

11: function SEARCHSTEP()
12: s =TOPOPEN()
13: POPOPEN()
14: kold = key(s)
15: knew = CALCULATEKEY(s)
16: if kold < knew then
17: PUSHOPEN(s, CALCULATEKEY(s))
18: else
19: for all s′ ∈ Pred(s) do
20: if NOT visited(s′) OR g(s′) > cost(s′, s) + g(s) then
21: parent(s′) = s
22: g(s′) = cost(s′, s) + g(s)
23: if NOT visited(s′) then
24: visited(s′) = true

25: PUSHOPEN(s′, CALCULATEKEY(s′))
26: function REINITIALIZE()
27: if any edge cost changed then
28: CUTBRANCHES()
29: if seeds �= ∅ then
30: km = km + h(slast, sstart)
31: slast = sstart
32: for all s ∈ seeds do
33: if visited(s) AND NOT open(s) then
34: PUSHOPEN(s, CALCULATEKEY(s))
35: seeds = ∅
36: function CUTBRANCHES()
37: reopen_start = false
38: for all directed edges (u, v) with changed cost do
39: if visited(u) AND visited(v) then
40: cold = cost(u, v)
41: update edge cost cost(u, v)
42: if cold > cost(u, v) then
43: if g(sstart) > g(v)+cost(u, v)+h(sstart, u) then
44: reopen_start = true

45: seeds = seeds ∪ v
46: else if cold < cost(u, v) then
47: if parent(u) = v then
48: CUTBRANCH(u)
49: if reopen_start = true AND visited(sstart) then
50: seeds = seeds ∪ sstart
51: function CUTBRANCH(s)
52: visited(s) = false
53: parent(s) = NULL
54: REMOVEOPEN(s)
55: for all s′ ∈ Succ(s) do
56: if visited(s′) AND NOT parent(s′) = s then
57: seeds = seeds ∪ s′
58: for all s′ ∈ Pred(s) do
59: if visited(s′) AND parent(s′) = s then
60: CUTBRANCH(s′)
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st0 sst1

h(st0,s)
h(st1,s)h(st0,st1)

c(st0,st1)

Fig. 3. If the agent (star) moves from st0 to st1, then the h
value of node s will change. For the s node, the pre-
vious h value was h(st0, s); however, following the
agent’s transition, a new h value should be h(st1, s).
Assuming that for the heuristic function the triangle in-
equality h(st0, st1) + h(st1, s) ≥ h(st0, s) holds, the
worst case of overestimation of the h value for node s,
i.e., h(st0, s) − h(st1, s), will be equal to h(st0, st1),
though, in general, the traveled path cost c(st0, st1) ≥
h(st0, st1). If, in the next search episode, the old h value
is used for open-list prioritizing, the s node may be re-
moved from the top of the open list too late. White inner
shape: open nodes, gray inner shape: closed nodes.

h(st0, s) ≤ h(st1, s) + km. The km value is increased at
each reinitialization step (line 34 in Algorithm 2, line 30
in Algorithm 3). Koenig and Likhachev (2001) provide a
proof that the use of a biased key value does not affect
the optimality of the D* Lite algorithm. As D* Extra
Lite differs from D* Lite only in the reinitialization, the
proof presented by Koenig and Likhachev (2001), to some
extent, can also be adapted to D* Extra Lite.

Another common element of D* Lite and D* Extra
Lite is that a key used for open-list sorting is a pair
of values: key(s) = [key1(s), key2(s)] (line 2 in
Algorithms 2 and 3). As both algorithms allow for the
reopening of previously closed nodes, in the case of
multiple nodes with equal key1(s) values, the tie-breaking
rule should be to favor nodes with lower key2(s), which
is g(s) in D* Extra Lite and min(rhs(s), g(s)) in D* Lite.
This measure preserves optimality.

Referring to the previous explanations, changes in
the environment affect branches of the search tree. The
affected branch must be re-explored with special attention
given to the case of edge cost increase. To re-explore
such a branch, it must be reinitialized. D* Lite recognizes
and reinitializes affected nodes while searching. Such
an approach requires the use of the rhs(s) value, which
can be understood as a pre-g(s) value (g(s) takes the
rhs(s) value when s is over-consistent; line 19 in
Algorithm 2). Comparing rhs(s) and g(s) values is a
basic method for recognizing affected nodes (specifically
under-consistent).

In contrast to D* Lite, the D* Extra Lite algorithm
always reinitializes the entire affected under-consistent
branch of a search tree. In consequence, at the beginning
of searching, the search space has no under-consistent
nodes, but over-consistent, consistent and unvisited nodes
only. Therefore, it is possible to keep the SEARCHSTEP()
(Algorithm 3) almost as simple as the A* algorithm.

The REINITIALIZE() procedure (Algorithm 3)
is executed if the cost of any visited edge has
changed. Tree-cutting is the first step of reinitialization
(CUTBRANCHES() in Algorithm 3). For each edge with
changed cost, the CUTBRANCHES() procedure does one
of two possible operations. If the cost of the e(u, v) edge
has decreased, the v node is added to the list of seeds to
be reopened later (lines 42, 45 in Algorithm 3). If the
cost of the e(u, v) edge has increased and node v is the
parent of node u, the branch is cut starting from u (lines
46–48 in Algorithm 3). The cutting operation is simple,
marking nodes unvisited. The CUTBRANCH() procedure
is the recursive procedure which traverses throughout
the branch, i.e., a next node to cut s′ has to be such a
predecessor of a current node s, that s is the parent of s′

(lines 58–60 in Algorithm 3).
Each successor node s′, such that s �= parent(s′) is

placed in the list of seeds (lines 55–57 in Algorithm 3).
Although seeds are simply nodes to reopen, as they might
be cut later, they cannot be merely pushed to the open list.
Following the CUTBRANCHES() procedure, the REINI-
TIALIZE() procedure pushes to the open list only these
nodes from the seeds list that remain visited and are not
already open (lines 32–34 in Algorithm 3). This operation
repairs the frontier-gap made by branch cutting.

D* Extra Lite succeeds if the start node is on the top
of the open list, such as in the A* algorithm, or, if the start
node has been closed in some previous searching episode
and has not been cut in the reinitialization.

In the case of an edge-cost decrease, there may
be a shorter path. Therefore, to preserve optimality,
the start node should be reopened. However, not in
every case of the edge-cost decrease does the start node
need to be reopened. Herein, another optimization of
the algorithm is possible. Assuming that h(sstart, u) is
admissible, for a decreased e(u, v) edge cost, the start
node sstart requires reopening only if g(sstart) > g(v) +
cost(u, v) + h(sstart, u). Otherwise, it is impossible for
a path containing an e(u, v) edge to be shorter. This
condition is checked and applied in lines 42–44 and 49–50
of Algorithm 3. Such a situation is depicted in Fig. 4 in
Episode 5.

4.3. Discussion of the algorithm. D* Extra Lite
is very similar to D* Lite, thus these algorithms have
similar both time and space complexities. For example,
the implementation using a binary heap has O(n logn)
time complexity, where n is the number of expanded
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nodes. If there are only over-consistent or uninitialized
nodes, both the algorithms are almost equivalent. In
this case, for D* Lite, only lines 12–24 (Algorithm 2)
of the SEARCHSTEP() function are used, while the
SEARCHSTEP() function of the D* Extra Lite algorithm
is designed for such a case exclusively. If edge costs
decrease, reinitialization is also similar for both the
algorithms—both reopen nodes that support a changed
edge, (lines 39–41 in Algorithm 2 and lines 42–45 in
Algorithm 3).

The main difference between D* Lite and D* Extra
Lite is in the edge-cost increase. D* Lite reinitializes and
re-expands only those nodes that lead toward the agent’s
current state, while D* Extra Lite always reinitializes
the entire under-consistent branch of the search-tree.
Therefore, in this study we investigate the complexity of
reinitialization, only. We do this for the n-th searching
episode. Let us consider a sufficiently large graph and
an agent with a finite observation range. Since the
observation range is finite, the number of changed edges
is negligibly small. Therefore, the cost of operations in
lines 32–45 (Algorithm 2) of D* Lite and lines 36–46
(Algorithm 3) of D* Extra Lite can also be neglected. The
crucial operations are in lines 26–31 (Algorithm 2, which
are a part of the SEARCHSTEP() function) and 32–34,
48 and 51–60 (Algorithm 3, which are mainly the CUT-
BRANCH() function).

Now, let us introduce the following numbers relevant
to D* Extra Lite: nto_cut—number of under-consistent
nodes to cut; nto_open—number of nodes to open in
order to repair the frontier gap; nopen,DEL—number of
nodes in the open-list; ntree—number of nodes in the
search tree after the previous search episode, such that
nto_cut + nto_open ≤ ntree and nopen,DEL ≤ ntree.

For D* Lite, we can define numbers as follows:
nto_reinit—number of nodes to be reinitialized for which
key(s) ≤ key(sstart); nopen,DL—number of nodes in the
open-list; never_visited—number of nodes visited, such
that nto_reinit ≤ never_visited − 1 and nopen,DL ≤
never_visited . In some cases, all visited nodes must be
reinitialized. For example, this could happen when, after
traversing a long corridor, right before reaching the goal,
an agent encounters a dead end and must take a new path
through a corridor that was not initially chosen.

Furthermore, at each n-th step of the agent, the
relation ntree ≤ never_visited holds. As D* Extra Lite
instantly cuts all under-consistent branches, it is likely that
ntree < never_visited .

The computation times of reinitialization of

under-consistent nodes for D* Lite and D* Extra Lite are

Treinit,DL

≈ nto_reinit · (cpop;13(nopen,DL)

+ cpush;31,48(nopen,DL)

+ ch;31,48 + cpreds;28 + b · ccost;29
+ log b · (csuccs;30,53 + b · ccost;30,53)
+ log b · (cpush|del;31,48|50(nopen,DL)

+ ch;31,48)),

(1)

Treinit,DEL

≈ nto_cut · (cdel;54(nopen,DEL) + cpreds;58

+ csuccs;55) + nto_open · (cpush;34(nopen,DEL)

+ ch;34).

(2)

As expected, iterations over changed edges have
been omitted. Computation times of particular
functions are marked as c<function name>;<code lines>, where
calculation times of the open-list operations, such as push,
pop and delete, may depend on the number of open
elements. b is a domain-specific branching factor (number
of neighbors).

Now, let us consider the worst-case scenario, in
which all nodes that have ever been visited must be
reinitialized. In such a case, D* Lite nto_reinit =
never_visited − 1, and D* Extra Lite nto_cut =
never_visited − 1. Additionally, for D* Extra Lite,
nto_open = 1, i.e., only the root (the goal node) will be
reopened. The worst-case computation times are

Treinit,DL

≈ never_visited · (
cpop;13(nopen,DL) + cpush;31,48(nopen,DL)

+ ch;32,48 + cpreds;28 + b · ccost;29
+ log b · (csuccs;30,53 + b · ccost;30,53)
+ log b · (cpush|del;31,48|50(nopen,DL) + ch;31,48)),

(3)

Treinit,DEL

≈ never_visited · (cdel;54(nopen,DEL)

+ cpreds;58 + csuccs;55).

(4)

Although there exists no general relationship between
nopen,DL and nopen,DEL, for both algorithms, those
numbers may be large; for example, while D* Lite
removes only consistent nodes, it may keep many
inconsistent nodes from any of previous searches, D*
Extra Lite, due to branch cutting, may maintain a rugged
frontier. However, for a sufficiently large graph, it can
be assumed that nopen,DL ≈ nopen,DEL ≈ nopen.
Furthermore, assuming that an open-list is implemented
using a binary heap, the time of pushing, popping and
deletion operations is the same, namely cheap(nopen) ≈
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lognopen. Equations (3) and (4) can be transformed as
follows:

Treinit,DL

≈ never_visited · ((2 + log b)

· cheap(nopen) + (1 + log b) · ch + cpreds

+ log b · csuccs + b · (1 + log b) · ccost),

(5)

Treinit,DEL

≈ never_visited · (cheap(nopen)

+ cpreds + csuccs).

(6)

From (5) and (6) it is clear that in the worst-case scenario,
the following relation holds: Treinit,DEL < Treinit,DL.
Moreover, as the reinitialization time (1) depends on
branching factor b, D* Lite is more domain sensitive than
D* Extra Lite.

In contrast, there exists a scenario that D* Lite
could solve easily while D* Extra Lite would struggle.
Let us assume that there is only one under-consistent
node for which key(s) < key(sstart). In such a case
nto_reinit = 1. D* Extra Lite would need to cut an entire
branch and reopen all nodes that are neighboring to this
branch. For a sufficiently large graph, it is likely that
nto_cut + nto_open > nto_reinit thus, from (1) and (2),
Treinit,DEL > Treinit,DL. Indeed, such a scenario is
observable on random maps with low fill-ratio. However,
these random maps are artificial, and therefore specific
with their salt-and-pepper-like changes. For typical maps
from video games as well as better structured maps of
rooms, D* Extra Lite remains quicker than both D* Lite
and MPGAA*.

A further improvement of D* Extra Lite is possible
for undirected graphs. For domains such as presented
here path-planning on a grid-map, in which Succ(s) ≡
Pred(s), the CUTBRANCH() function can be simplified.
This is demonstrated in Algorithm 4.

Algorithm 4. CUTBRANCH() procedure of the D* Extra
Lite algorithm for domains in which Succ(s) ≡ Pred(s).
1: function CUTBRANCH(s)
2: visited(s) = false
3: parent(s) = NULL
4: REMOVEOPEN(s)
5: for all s′ ∈ Pred(s) do
6: if visited(s′) AND parent(s′) = s then
7: CUTBRANCH(s′)
8: else
9: seeds = seeds ∪ s′

In our opinion, in addition to a superior
reinitialization-time, D* Extra Lite is easier to implement
and more reliable than D* Lite. For example, while
to ascertain if a node is a parent of another node, D*
Extra Lite relies on topological relations only (i.e.,
parent(s); lines 47, 56 and 59 in Algorithm 3), D* Lite

uses comparison rhs(s) = cost(s, s′) + g(s′) (lines
29, 42 in Algorithm 2). A comparison in the case of
a cost expressed with real numbers, is an error-prone
operation for computers. If, due to numerical issues,
the admissibility of a heuristic is broken, D* Lite may
produce local minima. This would make it impossible
to reconstruct the path. MPGAA*, another algorithm
implemented and used in our benchmark, is also
vulnerable to numerical errors; numerical issues may
affect the output of the GOALCONDITION() function,
which would lead the algorithm to run unnecessary search
steps.

4.4. Example. In this example, we refer to a
grid-world domain. An agent can move in cardinal
directions only. The cost of the motion between two
unoccupied neighboring cells is one. An occupied cell is
treated as a regular cell; however, the cost of entering or
leaving such a cell is infinite. The heuristic function uses
the Manhattan distance. For example, while to ascertain
if a node is a parent of another node, D* Extra Lite relies
on topological relations only (i.e., parent(s); lines 47, 56
and 59 in Alg. 3), D* Extra Lite in action is presented
in Fig. 4. Each sub-figure depicts the complete state of a
search space. Consecutive episodes are organized in rows.
Each episode begins with the initialization/reinitialization
of the search space, after which searching commences.
When a solution is found, an agent follows decreasing
g values leading towards the goal. After each step, an
observation is performed. Any change observed in the
explored search space ends the current episode and starts
a new episode from reinitialization.

In Fig. 4, each visited grid cell (i.e., visited node) has
been assigned four values, which are the h value in the
bottom left, the g value in the top left, the f value in the
top right, and the km value in the bottom right. The value
f = h+ g + km is the first part of a key value calculated
in line 2 in Algorithm 3. Closed nodes have gray-filled
inner shape. Nodes with a white-filled inner shape remain
on the open-list. An arrow between nodes always points
to the parent node.

Episode 1 commences with initialization. In Fig. 4
the goal cell is marked with a cross sign. Initially,
the goal node has h = 3, g = 0, f = 3. The
km value is set to 0. The current state of an agent
is depicted with a star. The second sub-figure in the
row in Fig. 4 depicts the state of the search space after
searching. If the start node is visited and it is on top
of the open list or has already been closed in a previous
search episode, the searching algorithm succeeds (line
4 in Algorithm 3). After searching, the agent follows
decreasing g values, until it notices any change in the
environment. In Episode 1, after two steps of the agent,
the cell C3 changed its state to ‘occupied’. The affected
search-tree branch is indicated with a dashed line (the
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Fig. 4. D* Extra Lite example in action (white inner shape: open nodes, gray inner shape: closed nodes).
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third sub-figure of Episode 1 in Fig. 4). Observation of
this change ends Episode 1.

Episode 2 commences with reinitialization. Due
to a change in the C3 cell, the costs of edges
e(sC3, sB3), e(sC2, sC3) and e(sD3, sC3) have increased.
Consequently, nodes supported by these edges became
under-consistent (theirs g values are lower than they
should be). In this case, the reinitialization procedure
will cut the entire affected branch (lines 46–48 in
Algorithm 3). As no particular order is required, cutting
may start from any of the C2, D3 or C3 nodes. If
the cutting procedure starts from node C2, the branches
supported by D3 or C3 will be cut later. During branch
cutting, neighboring nodes are pushed to the list of seeds
(line 57 in Algorithm 3, or line 9 in Algorithm 4 for the
undirected graph). According to the CUTBRANCHES()
procedure, seeds contains a number of nodes of which
only a select few remain visited. The nodes that are
not yet on the open list are reopened (lines 32–34 in
Algorithm 3). Following the reinitialization that began
Episode 2, nodes B2 and B3 have been reopened.
During the reinitialization, a km has been increased by
h(sE2, sD3) = 2 (line 30 in Algorithm 3). Episode 2 ends
after the change observed in cell D4.

In the reinitialization at the beginning of Episode 3,
the value of km is increased by h(sD3, sC2) = 2. The
node corresponding to cell D5 is reopened (lines 45,
32–34 in Algorithm 3). The values of the D2 node has
been set to h = 4, g = 1, km = 3 which results in f = 8.
As g(sstart) > g(sD5)+cost(sD4, sD5)+h(sstart, sD4),
the start node must be reopened (lines 43–44, 49–50 in
Algorithm 3).

Episode 3 ends with the observation of cell B1
becoming occupied. At the beginning of Episode 4, the
affected branch is cut. However, the node corresponding
to the agent’s state is closed and unaffected; therefore, the
success condition is realized (line 4 in Algorithm 3) and
no further searching is required.

Following the transition from D2 to D3, the agent
observes that the cost of the e(sE4, sE5) edge has
decreased, which ends Episode 4. However, there is no
need for further searching. This is because g(sstart) =
g(sE5) + cost(sE4, sE5) + h(sstart, sE4), and no shorter
path can exist (no need to reopen the start node, which is
checked in line 43 in Algorithm 3).

5. Experimental results

In the experiments we compared the following three
algorithms: D* Lite (optimized version) (Koenig and
Likhachev, 2005b), MPGAA* (Hernández et al., 2015)
and D* Extra Lite. These experiments were run on an
Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz machine,
with 8 GB of RAM, running 64-Bit Linux.

All the three algorithms have been implemented
in C++ within the same programming framework3 and
compiled using the gcc (4.8.4) compiler with o3 level of
optimization.

This framework, in addition to the algorithms,
provides a heap implementation. Heap implementation
realizes a lazy node removal and update, i.e., the RE-
MOVEOPEN() function (line 50 in Algorithm 2, and
line 54 in Algorithm 3) marks only the node(s) to be
removed. An actual node removal takes place when
the marked node is on top of the open list. The
following domain-specific functions for 2D grid-based
path planning are also provided: benchmark maps and
problem-loading, cost and heuristic functions (both use
the Euclidean distance represented with integer numbers
multiplied by a factor of 1000), a neighborhood selection
function (an eight-neighbor grid) and the MAPUPDATE()
function, which simulates a 360° rangefinder working
with a resolution of 1° at a specific observation range.
For that reason, simple ray tracing is used. (If a laser
beam encounters an obstacle, ray tracing for that beam is
stopped.) For each algorithm tested within the framework,
the graph representing the entire search-space (equal to
the size of the map) is allocated at the beginning.

Every benchmark problem has been solved in
accordance with the main function presented in
Algorithm 1, that is, the map is updated after each
step of an agent. If any change observed in the map
affects the shortest path, reinitialization and a consecutive
search are performed, though such necessity is checked
by each algorithm in a different way. While the main
function is running, a number of parameters are logged;
these are: search function running time, reinitialization
running time, search steps count, open list operations
count, predecessor list query count, successor list query
count, and traveled path cost. The total running time is
simply the sum of the search and reinitialization function
running time; thus, it does not include the map-update
time.

These algorithms have been tested within the
following two settings: planning with the freespace
assumption (Setting 1), in which obstacles are only
added, and planning on maps with shortcuts and barriers
(Setting 2), in which obstacles may appear or disappear.

In the experiments, maps and problems from the
benchmark prepared by Sturtevant (2012) have been
used. This benchmark provides a number of maps and
randomly generated problems for 2D grid-based path
planning, of which the following map sets were used:
random_10, artificially generated maps with a fill-ratio
of 10% (Fig. 5(a)); rooms, artificially generated maps
consisting of square rooms of different size (8–64 pixels)

3 The source code is available at https://bitbucket.org
/maciej_przybylski/heuristic_search.

https://bitbucket.org
/maciej_przybylski/heuristic_search.
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with narrow—of a single pixel size—passages in walls
(Fig. 5(b)); wc3, maps from the World of Warcraft 3
video game (Fig. 5(c)); sc, maps from the Starcraft video
game (Fig. 5(d)); mazes, artificially generated maps with
passages of varying widths (1–32 pixels) (Fig. 5(e)).

As Sturtevant (2012) argues, the wc3 and sc maps
are a good approximation of outdoor environments, and
while the rooms maps simulate indoor environments very
well, random map problems are typically used for the
benchmarking of incremental path planning algorithms
(Stentz, 1995; Koenig and Likhachev, 2005b; Hernández
et al., 2015). Finally, this mazes map set benefits from
many difficult problems with dead-ends.

Each data-set features distinct characteristics. In the
mazes map set, it is possible for even a minor change
to cause an extensive modification to the shortest path.
Additionally, this random dataset is characterized by
many small changes that do not significantly affect the
path. Such a property of maps is related to the dimension
parameter described and calculated for each map set by
Sturtevant (2012). (Refer to Table 1, for a dimension value
for each map set used in the experiments.) The dimension
of a map set describes the increase in the number of nodes
at each depth of searching. As explained by Sturtevant
(2012), this dimension is an estimate of the branching
factor of the search tree generated while searching (not to
be confused with the number of applicable actions, which
is domain specific).

In each setting, we used maps sized 512×512
(except for the sc map set in which few maps are
larger) with an observation range of 10 map cells.
For each original map, a map with modifications was
prepared. According to the suggestions of Sturtevant
(2012), our experimental results were ordered by the
problem length (plots in Figs. 6 and 7). In Setting 1, in
Fig. 6, the x-coordinate indicates the true shortest path
calculated by the A* algorithm running on a modified
map, which is initially unknown for the agent. In
Setting 2, in Fig. 7, the x-coordinate indicates the
overhead of the initially known shortest path over the
true shortest path, that is, true_shortest_path_cost −
initial_shortest_path_cost.

The plots in Figs. 6 and 7 were created by grouping
problems into buckets. This was according to Sturtevant’s
(2012) proposition, except that the bucket size may vary
between map sets. Additionally, in the background of
each plot, a histogram illustrates a coverage by problems.
Plot values were calculated for buckets that contained a
minimum of seven successfully solved problems. For
each bucket, a mean was calculated to be presented in the
plot. This value excluded the two most extreme values in
that bucket.

5.1. Planning with the freespace assumption.
Planning with the freespace assumption is a scenario in

which the first planning episode is performed on an empty
map. Obstacles are added to the map only if they are
observed within the observation range, which means that
action costs can only increase.4 As there is no need to
reestablish values consistency for h, in this case MPGAA*
(Hernández et al., 2015) behaves similarly to MPAA*
(Hernández et al., 2014). Although this is a preferable
situation for MPGAA*, as it requires reinitialization of
underestimated nodes, it is the most demanding scenario
for D* Lite and D* Extra Lite.

In Table 1, average parameters values logged for
planning with the freespace assumption are shown. For
each map set, 10,000 randomly selected problems have
been solved. In the majority of cases, D* Extra Lite is
the quickest (highlighted Tt values in Table 1), only for
random maps with 10% fill-ratio does D* Lite outperform
the other two algorithms. Given that artificial maps have
the highest dimension, generally, they are less cluttered.
As discussed in the complexity analysis, this is the most
preferable scenario for D* Lite.

Other parameters listed in Table 1 offer further
support to results of the complexity analysis. Since D*
Lite performs reinitialization while searching, the number
of search steps for D* Extra Lite is lower than that for
D* Lite, as well as the number of operations on the heap.
In turn, due to search-tree branch cutting, D* Extra Lite
performs many more iterations over the list predecessors.
The number of iterations over the list of successors for
the mazes map set is also interesting, since it is higher
for D* Lite than for D* Extra Lite. These results are
consistent with the worst-case time complexity of D* Lite
(Eqn. (3)) and D* Extra Lite (Eqn. (4)), such that D* Lite
may perform the iteration over successors up to log b times
more often than D* Extra Lite.

Finally, in Table 1, the traveled-path cost is
presented. D* Lite and D* Extra Lite are equivalent;
however, the traveled path cost varies for MPGAA*.
This is due to the fact that, while many paths of the
same length exist in the 2D grid domain, different
algorithms break ties in different ways. (For example,
D* Lite and D* Extra Lite break ties as shown in line
18 of Algorithm 1.) Although all three algorithms are
optimal, the consequences of the selected next step are
unpredictable, and a chosen path could be a dead end.

In Figs. 6(a)–(f) the total time is shown as a function
of problem length. For problems of a short length,
the algorithms finished missions in a comparable time,
although with an increasing path length, differences
become more pronounced. For the random_10 maps
(Fig. 6(a)), D* Lite is noticeably the quickest. However,
with an increasing problem complexity, differences
between the algorithms increase in favor of D* Extra

4 A video demonstrating the three algorithms tested in this
study in planning with freespace assumption is available at
https://youtu.be /al2L_TJXnoY.

https://youtu.be
/al2L_TJXnoY
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(a) (b) (c) (d) (e)

Fig. 5. Sample maps from the Sturtevant (2012) benchmark: portion of a random map (a), portion of a rooms map (2), wc3 (World of
Warcraft 3) (c), sc (Starcraft) (d), maze (e).

Table 1. Average experimental results for planning with freespace assumption. Dim.: dimension (Sturtevant, 2012), Tr: reinitialization
time [ms], Ts: search time [ms], Tt: total time [ms], Rt: total time ratio, #S.Steps: number of search steps, #Heap: number
of heap operations, #Preds: number of iterations over predecessors, #Succs: number of iterations over successors, P. Cost:
traveled path cost [map cells].

Map set Dim. Tr Ts Tt Rt #S.Steps #Heap #Preds #Succs P. Cost Algorithm

random
10%

1.13
3.53 21.51 25.04 1.00 26151 86745 41032 17773 378.844 D* Extra Lite
0.57 22.55 23.11 0.92 26119 90777 23387 972 378.844 D* Lite Opt.
0.13 27.64 27.77 1.11 32621 92960 0 32621 378.031 MPGAA*

rooms 0.88
6.58 42.66 49.24 1.00 81348 189873 72708 34510 891.093 D* Extra Lite
1.51 51.75 53.27 1.08 89149 250085 40511 16464 891.093 D* Lite Opt.
0.30 176.85 177.15 3.60 277328 834970 0 277328 909.645 MPGAA*

wc3 0.75
2.19 19.93 22.12 1.00 33384 75607 28994 10502 461.109 D* Extra Lite
0.66 24.28 24.94 1.13 35867 104626 19348 6241 461.109 D* Lite Opt.
0.13 69.44 69.57 3.15 100582 296381 0 100582 463.155 MPGAA*

sc 0.41
10.90 87.56 98.46 1.00 163964 381328 149447 59992 1621.865 D* Extra Lite
2.60 114.67 117.28 1.19 186328 541962 96924 49940 1621.865 D* Lite Opt.
0.49 586.66 587.16 5.96 947837 2770506 0 947837 1616.717 MPGAA*

random
40%

0.09
22.04 89.26 111.31 1.00 225760 564389 232905 126502 6613.036 D* Extra Lite
10.27 153.53 163.80 1.47 332119 898930 129432 164981 6613.036 D* Lite Opt.
1.75 416.04 417.79 3.75 902292 2692626 0 902292 6531.051 MPGAA*

mazes 0.02
80.85 365.23 446.08 1.00 714783 1843893 826248 441713 18254.245 D* Extra Lite
26.75 839.49 866.24 1.94 1093015 3328033 535517 1041180 18254.245 D* Lite Opt.
4.99 4013.32 4018.31 9.01 6806971 19593377 0 6806971 18396.122 MPGAA*

Lite, including for random maps. In the case of random
maps with a fill-ratio of 40% (Fig. 6(e)), which due to
obstacle density are more similar to mazes, D* Extra Lite
is 1.47 times faster than D* Lite. MPGAA* seems more
case-sensitive than D* Lite and D* Extra Lite; total-time
plots for MPGAA* in Figs. 6(b)–(e) are more uneven than
are corresponding time plots for the other algorithms.

5.2. Planning on maps with shortcuts and barriers.
A characteristic property of D* Lite, D* Extra Lite and
MPGAA* is that they reveal different behaviors when
confronted with an action-cost increase and decrease,
therefore, we propose a new test. Considering that
in the first half of the problems, obstacles were added
only (barriers), and in the second half, obstacles were
removed only (shortcuts), problems were resolved simply
by solving the first half with the freespace assumption,
and in the second half, assuming the opposite, such that,

although to begin with the agent knows the entire map,
as the true map is empty, obstacles can only disappear.
Using this approach, for each of three representative
map sets (namely random_10, rooms and wc3), 5,000
problems with shortcuts and 5,000 problems with barriers
were solved. In Fig. 7, results with a negative path cost
overhead correspond to problems with shortcuts, while
results with a positive path cost overhead correspond to
problems with barriers.

In Figs. 7(a), (d) and (g) represent the total time for
the random_10, wc3 and rooms map sets, respectively. D*
Extra Lite outperforms D* Lite and MPGAA* algorithms
for barriers (positive path cost overheads in Figs. 7 (d) and
(g)). Moreover, the superiority of D* Extra Lite increases
with the difference between true path-length and initial
path-length. Next to the total time charts, the search time
Figs. 7(b), (e), (h) and the reinitialization time plots for
each map set are presented Figs. 7(c), (f), (i). The search
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Fig. 6. Total running time for planning with the freespace assumption, for the random_10 (a), rooms (b), wc3 (c), sc (d), random_40
(e) and mazes (f) map sets; in the background the histogram of problems plotted in gray.

time is a dominating component for all three algorithms;
however in the case of MPGAA* and D* Extra Lite, the
reinitialization time is also meaningful.

A property of the D* Extra Lite algorithm is that
the reinitialization time is high only in the case of added
obstacles. This is because under-consistent nodes have
to be made over-consistent, which is achieved using the
CUTBRANCH() procedure (Algorithm 3). In contrast
to D* Extra Lite, MPGAA*’s reinitialization time is
higher when obstacles are removed. This is owing to its
reestablishing procedure for the h value consistency. In
the case of shortcuts, D* Lite and D* Extra Lite only
reopen affected nodes, and perform regular searches in
the same manner. Therefore, the total time for these two
algorithms is almost equal.

In Table 2 average parameters for the shortcuts and
barriers setting are reported. The average values of
particular parameters for barriers are similar to the ones
presented in Table 1. Where results illustrate the effect of
shortcuts, it can be seen, as expected, that the total time,
as well as the other parameters, are similar for D* Lite and

D* Extra Lite, and noticeably larger for MPGAA*.

5.3. Summary of experimental results. The
experiments were conducted within two settings, in which
512 × 512 maps sized from six different map sets were
used. For each map set 10,000 randomly selected
problems were solved. In most experiments, D* Extra
Lite performed on the average from 1.08 to 1.94 times
faster than D* Lite (optimized version), and from 1.11
up to 9.01 times faster than MPGAA*. Only in tests on
random maps with a 10% fill-ratio was D* Lite 1.08 times
faster than D* Extra Lite.

The weakness of D* Extra Lite is the number of
iterations over predecessors and successors, which for
all map sets except mazes was higher than for the other
two algorithms. This property should be taken into
consideration when selecting an algorithm for particular
domain. In domains with finite search spaces, such
as 2D video game maps, it is possible to initialize the
entire search spaces at the beginning. An iteration
over a node’s neighbors is then a simple operation
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Fig. 7. Running times for planning with shortcuts and barriers, for the random_10 (a)–(c), rooms (d)–(f) and wc3 (g)–(i) map sets; in
the background the histogram of problems plotted in gray.

with pointers. However, as in domains with a large
or infinite search-space nodes are expanded bit-by-bit,
domain-dependent implementations of Pred(s) and
Succ(s) have to be called instead of operations with
pointers; therefore, results may differ. Although it should
be noted that the common technique of caching; can
amortize the running time. Nevertheless, the results of

the present study show that in the worst-case scenario
D* Extra Lite performs fewer operations than D* Lite.
Therefore, irrespective of the implementation, D* Extra
Lite is the best choice for difficult, dynamic problems.

The experimental results presented in the paper were
gained from tests conducted with an observation range
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Table 2. Average experimental results for planning with shortcuts and barriers. Tr: reinitialization time [ms], Ts: search time [ms],
Tt: total time [ms], Rt: total time ratio, #S.Steps: number of search steps.

Map set
Shortcuts Barriers

Algorithm
Tr Ts Tt Rt #S.Steps Tr Ts Tt Rt #S.Steps

random
10%

0.64 42.38 43.02 1.00 42337 3.44 20.29 23.73 1.00 23295 D* Extra Lite
0.46 41.92 42.38 0.99 42097 0.76 20.83 21.59 0.91 23991 D* Lite Opt.

79.08 63.17 142.25 3.31 219139 0.19 28.68 28.87 1.22 31006 MPGAA*

rooms
0.34 44.28 44.62 1.00 46932 7.21 46.70 53.91 1.00 79038 D* Extra Lite
0.25 45.23 45.48 1.02 46815 1.63 56.71 58.34 1.08 86192 D* Lite Opt.

213.40 155.09 368.49 8.26 558437 0.35 164.00 164.35 3.05 250108 MPGAA*

wc3
0.17 22.68 22.85 1.00 27166 4.41 36.99 41.40 1.00 71476 D* Extra Lite
0.12 23.50 23.62 1.03 27085 1.43 48.71 50.14 1.21 79794 D* Lite Opt.

70.53 68.81 139.34 6.10 234615 0.30 179.73 180.03 4.35 305136 MPGAA*

Table 3. Average total time [ms] (Tt) and total-time ratios with
regard to D* Extra Lite (Rt) across different observa-
tion ranges [map cells]; the test conducted with the
freespace assumption on 100 problems from the wc3
map set.

Observation D* Extra Lite D* Lite Opt. MPGAA*
range Tt Tt Rt Tt Rt

10 22.42 24.83 1.11 125.41 5.59
20 24.82 26.45 1.07 129.08 5.20
50 23.19 25.48 1.10 147.59 6.36

100 18.66 20.51 1.10 94.34 5.06

of 10 map cells. In Table 3 average total running times
are presented for the planning with freespace assumption
on wc3 maps with different observation ranges. Across
all three algorithms, the running time changed slightly
with longer observation ranges. This was the result
of more observed changes in the environment, which
increased the extent to which the search tree became
inconsistent. However, with a longer observation range,
more information was gathered. Nevertheless, the
observed relationship between the total running time of
each of the analyzed algorithms was maintained across the
different observation ranges.

6. Conclusions and future work

In this paper, we analyzed several incremental
path-planning algorithms, including the recent MPGAA*
(Hernández et al., 2015), the popular Focussed D*
(Stentz, 1995), and the currently state-of-the-art D*
Lite (Koenig and Likhachev, 2005b). We also revisited
older ideas, such as Differential A* (Trovato, 1990).
In order to gain a deeper insight into properties of
incremental heuristic search algorithms, we proposed a
new benchmark scenario. This scenario involved planning
for both shortcuts and barriers. As for the results of our
analysis, we proposed a novel D* Extra Lite algorithm
that is both robust and simple. In typical two-dimensional

navigation problems D* Extra Lite outperforms both D*
Lite (optimized version) and MPGAA*. In addition to
comprehensive tests, we have conducted the worst-case
complexity analysis which showed that, independently of
a particular domain and implementation, D* Extra Lite is
faster than D* Lite.

D* Extra Lite is a general purpose, incremental
shortest-path algorithm able to work on directed and
undirected graphs. It is almost as simple as a regular
A* algorithm, only extended with search-tree cutting and
frontier-gap repairing. A strong advantage of the D* Extra
Lite algorithm over D* Lite is that it performs branch
cutting as a simple, recursive operation that makes nodes
unvisited without the use of complex operations on the
open list. Moreover, from our observations, D* Extra Lite
is less vulnerable to numerical errors than MPGAA* and
D* Lite.

Additionally, the D* Extra Lite algorithm can be
extended easily. We have already extended D* Extra Lite
to anytime version (currently unpublished), similarly to
that of Anytime D* (Likhachev et al., 2005), and it could
also be extended to a truncated version, similar to Anytime
Truncated D* (Aine and Likhachev, 2016).

A natural application for D* Extra Lite is navigation
of a mobile robot. Currently, we are working on
the application of D* Extra Lite for path planning in
environments with moving objects using the time-layered
search-space architecture presented by Przybylski and
Siemiątkowska (2012). In the future we plan to test D*
Extra Lite in various domains, especially in hierarchical
planning with the use of semantic maps that comprise
topological and metrical information (Przybylski et al.,
2015) combined with grid-based maps (Belter et al.,
2016).
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