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The paper aims at studying a class of second-order partial differential equations subject to uncertainty involving unknown
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1. Introduction

We consider the following second-order differential
equation:

ÿ(t, η) −Δy(t, η) +my(t, η) + γẏ(t, η)

= g(y(t, η)) + (Bv(t))(η) + f(t, η) (1)

for almost every (a.e.) (t, η) ∈ T×Ω,

with the boundary condition y(t)|G = 0 for a.e. t ∈ T,
and the initial conditions.

y(0) = y0 ∈ V = H1
0 (Ω),

ẏ(0) = y10 ∈ H = L2(Ω)
(2)

Here, T = [0, ϑ], 0 < ϑ < +∞, Ω is an open bounded
domain with the Lipschitz boundary G, Δ is the Laplace
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operator, m = const >0, γ = const > 0, g(·) : R → R

is a Lipschitz function with some constant L, g(0) = 0,
f(·) ∈ L∞(T ;H) is a given function, and B is a linear
continuous operator acting from a Hilbert space U with
a norm | · |U and an inner product (·, ·)U (the space of
disturbances) into the space H (B ∈ L(U ;H)).

Before formulating our main problem, we define a
solution of Eqn. (1). Any function y(·) ∈ C(T ;V ) such
that

ẏ(·) ∈W (T ;V ) = {x(·) ∈ C(T ;H) :

ẋ(·) ∈ L2(T ;V
∗)}

and y(·) satisfies

ÿ(t)−Δy(t) +my(t) + γẏ(t)

= g(y(t)) +Bv(t) + f(t)

in V ∗ for a.e. t ∈ T
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is called a solution of Eqn. (1) on the interval T and is
defined by y(·) = y(·; y10, y0, u(·)). Due to Gajewski
et al. (1974), for any v(·) ∈ L2(T ;U), there exists a
unique solution of Eqn. (1) on the interval T .

A function v(·) (an input) on the right-hand side of
Eqn. (1) is unknown. It is only known that this function is
an element of the space L2(T ;U). Along with Eqn. (1),
there is one more equation of a similar form, namely

ẍ(t)−Δx(t) +mx(t) + γẋ(t) = g(x(t))

+Bu(t) + f(t) inV ∗ for a.e. t ∈ T (3)

with the initial condition

x(0) = xh0 ∈ V, ẋ(0) = xh10 ∈ H. (4)

At every time moment t, the derivatives of solutions of
Eqns. (1) and (3) are measured; i.e., the values ẏ(t) and
ẋ(t) are defined. These measurements can be performed
with errors; i.e., instead of functions ẏ(·) and ẋ(·), we
know some functions ξh(·) ∈ L∞(T ;H) and ψh(·) ∈
L∞(T ;H) with the properties

|ẏ(t)− ξh(t)|H ≤ h, (5)

|ẋ(t)− ψh(t)|H ≤ h for a.e. t ∈ T.

In the latter case, we assume that the initial states of
Eqns. (1) and (3) satisfy the relations

|xh10 − y10|H ≤ h, |xh0 − y0|V ≤ h. (6)

Here and below, h ∈ (0, 1) is a value of the measurement
error, the symbol | · |H (| · |V ) stands for the norm in
the space H(V ), and the symbol (·, ·)H denotes the scalar
product in the space H .

In the case where the solutions of Eqns. (1) and (3)
are measured with no error (then xh0 = y0 and xh10 =
y10), it is necessary to specify a family of functions uα(·)
(depending on a parameter α ∈ (0, 1)) with the following
properties. First, at every time t ∈ T , the functions uα(·)
depend on the derivatives of solutions ẏ(t) and ẋα(t), i.e.,

uα(t) = uα(ẏ(t), ẋα(t)),

where xα(·) = x(·; y10, y0, uα(·)). Second, the following
convergences:

uα(·) → u∗(·) inL2(T ;U), (7)

xα(·) → y(·) inW (V ;H) asα→ 0 (8)

take place. Here, the symbol xα(·) = x(·; y10, y0, uα(·))
denotes the solution of Eqn. (3) with the right-hand side
u(t) = uα(t); i.e., xα(·) is the solution of the equation

ẍ(t)−Δx(t) +mx(t) + γẋ(t)

= g(x(t)) +Buα(t) + f(t)

inV ∗ for a.e. t ∈ T (9)

with the initial condition (4) (with xh0 = y0, x
h
10 = y10),

W (V ;H) = {w(·) ∈ C(T ;V ) : ẇ(·) ∈ C(T ;H)}.

Further, u∗(·) = u∗(·; y(·)) means an element of the set
U(y(·)) of minimal L2(T ;U)-norm and U(y(·)) is the set
of all functions u(·) ∈ L2(T ;U) generating the solution
y(·) of Eqn. (1), i.e.,

U(y(·))
=

{
u(·) ∈ L2(T ;U) :

(ÿ(t)−Δy(t) +my(t) + γẏ(t), z)H

= (Bu(t) + f(t), z)H for a.e. t ∈ T ∀z ∈ V
}
. (10)

Note that the set U(y(·)) (10) is convex and closed in
the space L2(T ;U). Therefore, the element u∗(·) is
unique. In addition, when defining the set U(y(·)), we use
the solution y(·) of Eqn. (1) generated by some function
v(·) ∈ L2(T ;U). Therefore, the setU(y(·)) is non-empty,
since it contains at least this function v(·).
Remark 1. Note that one and the same solution of
Eqn. (1) can be derived by multiple inputs. In compliance
with the approach conventional in the theory of ill-posed
problems we reconstruct u∗(·).

In the case where solutions of Eqns. (1) and (3) are
inaccurately measured (then inequalities (5) and (6) are
fulfilled), it is necessary to specify a two-parameter family
of functions uα.h(·) (depending on α ∈ (0, 1) and h ∈
(0, 1)) with the properties

uα,h(t) = uα,h(ξh(t), ψh(t)),

|ẋh(t)− ψh(t)|H ≤ h,

and the convergences

uh(·) = uα(h),h(·) → u∗(·) inL2(T ;U), (11)

xh(·) → y(·) inW (V ;H) ash→ 0, (12)

for an appropriate concordance of α = α(h) and h.
Here the symbol xh(·) = x(·;xh10, xh0 , uh(·)) stands for
the solution of Eqn. (3) with the right-hand side u(t) =
uα,h(t); i.e., xh(·) is the solution of the equation

ẍ(t)−Δx(t) +mx(t) + γẋ(t)

= g(x(t)) +Buh(t) + f(t)

inV ∗ for a.e. t ∈ T (13)

with the initial condition (4). Equations of the form (9)
and (4) with properties (7) and (8) (respectively, equations
of the form (13) and (4) with the properties (11) and (12))
are called differential equations of reconstruction. Thus,
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the problem under consideration in this paper consists in
designing differential equations of reconstruction.

The problem described above belongs to the class
of problems of dynamical inversion (Lavrentiev et al.,
1980; Schwaller et al., 2013; Banks and Kunisch, 1989;
Lasiecka et al., 1999; Mordukhovich and Zhang, 1997;
Mordukhovich, 2008; 2011). The methodology of
solving this problem suggested below uses an approach
described, e.g., by Kryazhimskii and Osipov (1995),
Maksimov (2002; 1996; 1995), Maksimov and Pandolfi
(2001), Maksimov and Tröltzsch (2006), Kryazhimskii
and Maksimov (2010), or Kapustyan and Maksimov
(2014). This approach is based on the combination of
the principle of feedback control (known in the theory
of guaranteed control) with a model (Krasovskii and
Subbotin, 1988) and one of the basic methods of ill-posed
problems—that of the smoothing functional (Lavrentiev
et al., 1980).

Note that problems of dynamical reconstruction were
studied by Kryazhimskii and Osipov (1995), Maksimov
(2002), Maksimov and Pandolfi (2001), Maksimov and
Tröltzsch (2006) or Kryazhimskii and Maksimov (2010).
In these papers, systems described by ordinary differential
and parabolic equations were considered. For hyperbolic
equations and variational inequalities, this approach was
developed by Maksimov (1995; 1996). In the works of
Mordukhovich (2011), Maksimov and Tröltzsch (2006),
Kryazhimskii and Maksimov (2010) or Maksimov (1995;
1996), the case where an input is subject to instantaneous
constraints u(t) ∈ P , with P being a convex, closed and
bounded set from a uniformly convex Banach space, was
considered. In the present paper, continuing a series of
works (Maksimov, 2002; Maksimov and Pandolfi, 2001),
we consider the case where such a constraint is absent. Let
us emphasize that the developed approach to the study of
dynamic systems in uncertainty conditions is significantly
different from the well-known stochastic approach to deal
with problems under uncertainties, which in fact has not
been largely developed for distributed parameter systems.
In our case we do not assume the availability of any
probabilistic information on perturbations. The absence
of such information is quite realistic in many practical
problems, in particular, those governed by PDE systems
(see, e.g., Mordukhovich, 2008; 2011).

2. Equations of reconstruction: The case of
precise measurement of solutions

First, we consider the case where the derivatives of the
solutions y(·) and x(·) are measured without any error.
Namely, we assume that, at every time t ∈ T , elements
ẋ(t) ∈ H and ẏ(t) ∈ H are known. Let the function
uα(·) on the right-hand side of Eqn. (9) be defined by the

formula

uα(t) = α−1B∗(ẏ(t)− ẋα(t)), (14)

whereB∗ is the conjugate operator. Then Eqn. (9) has the
form

ẍα(t)−Δxα(t) +mxα(t) + γẋα(t)

= g(xα(t)) + α−1BB∗(ẏ(t)− ẋα(t)) + f(t)

inV ∗ for a.e. t ∈ T. (15)

Theorem 1. Let γ > Lϑ. Then the convergences (7) and
(8) take place.

The assertion of Theorem 1 follows from
Theorem 1.2.1 of Maksimov (2002, p. 23) and Lemma 2
given below. To prove this lemma, the following
statement is necessary. This result can be treated as a
variant of the classical Gronwall lemma, while being
different from the usual formulations of the latter (see,
e.g., Warga, 1972).

Lemma 1. (Barbashin, 1970) Let φ(·) and F (·) be non-
negative and integrable functions on some interval t0 ≤
t ≤ t0 + a, a > 0. Let L be a positive constant. If the
inequality

φ(t) ≤ F (t) + L

t∫

t0

φ(s) ds, t0 ≤ t ≤ t0 + a,

is valid, then the estimate

φ(t) ≤ F (t) + L

t∫

t0

exp{L(t− s)}F (s) ds

takes place.

Lemma 2. Let the functions uα(·) on the right-hand side
of Eqn. (9) have the following properties:

sup
t∈T

{|y(t)− xα(t)|2V + |ẏ(t)− ẋα(t)|2H} ≤ C0α, (16)

|uα(·)|L2(T ;U) ≤ |u∗(·)|L2(T ;U). (17)

Then the convergences (7) and (8) take place.

Here C0 is some constant independent of t and α.
In turn, the inequalities (16) and (17) follow from the
following result:

Lemma 3. Let the conditions of Theorem 1 be fulfilled.
Then the function uα(·) of the form (14) satisfies the con-
ditions of Lemma 2.
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Proof. Let μα(t) = xα(t) − y(t). By (15), we conclude
that μα(t) is a solution of the equation

μ̈α(t)−Δμα(t) +mμα(t) + γμ̇α(t)

= g(xα(t))−g(y(t))+(Buα)(t)−(Bu∗)(t), t ∈ T
(18)

with the initial conditions

μα(0) = 0, μ̇α(0) = 0.

Introduce the Lyapunov function

V (t) = |μ̇α(t)|2H + |μα(t)|2V +m|μα(t)|2H

+ 2γ

t∫

0

|μ̇α(τ)|2H dτ

+ α

t∫

0

|uα(τ)|2U dτ, t ∈ T.

(19)

Taking (19) into account, we deduce that

V̇ (t)− α|u∗(t)|2U
= 2(g(xα(t))− g(y(t)), μ̇α(t))H

+ 2(B(uα(t)− u∗(t)), μ̇α(t))H

+ α|uα(t)|2U − α|u∗(t)|2U for a.e. t ∈ T.

(20)

Note that (see (14)) for a.e. t ∈ T

uα(t) = argmin
{
α|v|2U

− 2(B∗(ẏ(t)− ẋα(t)), v)U : v ∈ U
}
. (21)

Using (21), we see that

V̇ (t)− α|u∗(t)|2U
≤ 2(g(xα(t))− g(y(t)), μ̇α(t))H

≤ 2L|μα(t)|H |μ̇α(t)|H
≤ |μ̇α(t)|2H + L2|μα(t)|2H ≤ cV (t),

(22)

where c = max{1,m}max{1, L2}. In addition,

V (0) = 0. (23)

In this case, using Lemma 1, the inequality

t∫

0

ec(t−τ) dτ ≤ c−1ect,

(22) and (23), we get

V (t) ≤ α

t∫

0

|u∗(τ)|2U dτ

+ cα

t∫

0

{
ec(t−τ)

τ∫

0

|u∗(p)|2U dp
}
dτ

≤ α(1 + ecϑ)

ϑ∫

0

|u∗(τ)|2U dτ ≤ C0α.

(24)

The inequality (16) is proved. Let us verify the
inequality (17). It is easily seen that the inequality

V (t)− α

t∫

0

|u∗(τ)|2U dτ

≤ V (0) + 2Lϑ

t∫

0

|μ̇α(τ)|2H dτ (25)

is true. In this case, from (25) it follows that

|μα(t)|2V + |μ̇α(t)|2H +m|μα(t)|2H

+ α

t∫

0

{|uα(τ)|2U − |u∗(τ)|2U} dτ ≤ V (0). (26)

By virtue of (23) and (26), we obtain (17). The proof is
complete. �

From Theorem 1 it follows that Eqn. (15) is the
differential equation of reconstruction in the case of
precise measurements of the solution.

3. Equations of reconstruction: The case of
inaccurate measurement of solutions

Consider the case where the derivatives of the solution
y(·) of Eqn. (1) and the solution x(·) of Eqn. (3) are
inaccurately measured. Namely, we assume that, at every
time t ∈ T , some elements ξh(t) and ψh(t) satisfying (5)
are known. Let the function uh(·) in (13) be defined by

uh(t) = α−1B∗(ξh(t)− ψh(t)). (27)

In this case, Eqn. (13) takes the form

ẍ(t)−Δx(t) +mx(t) + γẋ(t)

= g(x(t)) + α−1BB∗(ξh(t)− ψh(t)) + f(t)

inV ∗ for a.e. t ∈ T. (28)

Let, as above, u∗(·) = u∗(·; y(·)) be the element of the set
U(y(·)) of minimal L2(T ;U)-norm.
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Theorem 2. Let α = α(h) ∈ (0, 1) for h ∈ (0, 1). Let
also γ > Lϑ and hα−2(h) ≤ C = const > 0 for h ∈
(0, 1). Then the convergences (11) and (12) take place.

The assertion of Theorem 2 follows from the results
below.

Lemma 4. Let the conditions of Theorem 2 be fulfilled.
Then there exists h∗ ∈ (0, 1) such that the inequalities

sup
t∈T

{|y(t)− xh(t)|2V + |ẏ(t)− ẋh(t)|2H}

≤ C1(α(h) + h), (29)

|uh(·)|2L2(T ;U) ≤ r1(h)|u∗(·)|2L2(T ;U) + r2(h) (30)

are fulfilled for h ∈ (0, h∗). Here

r1(h) → 1, r2(h) → 0 as h→ 0;

C1 is some constant independent of t, α, and h.

Proof. By (27) and (5), the inequality

|uh(t)|2U ≤ 2b2α−2(h2 + |μ̇h(t)|2H), t ∈ T,

is valid. Here α = α(h), μh(t) = xh(t) − y(t), and b =
|B∗|L(H;U) is the norm of the linear continuous operator
B∗ ∈ L(H ;U). In this case, for t ∈ T , we have

t∫

0

|uh(τ)|2U dτ ≤ 2b2α−2

t∫

0

|μ̇h(τ)|2H dτ + c1h
2α−2.

(31)
It is easily seen that

(B(uh(t)− u∗(t)), μ̇h(t))H

≤ (B(uh(t)− u∗(t)), ψh(t)− ξh(t))H

+ c2h{|u∗(t)|U + |uh(t)|U} for a.e. t ∈ T.

(32)

From (1) and (13), it follows that the function μh(t) is a
solution of the equation

μ̈h(t)−Δμh(t) +mμh(t) + γμ̇h(t)

= g(xh(t))− g(y(t)) +B(uh(t)− u∗(t))
inV ∗ for a.e. t ∈ T (33)

with the initial conditions

μh(0) = y0 − xh0 , μ̇h(0) = y10 − xh10.

Introduce the Lyapunov function (see (19))

V (t) = |μ̇h(t)|2H + |μh(t)|2V

+m|μh(t)|2H + 2γ

t∫

0

|μ̇h(τ)|2H dτ

+ α

t∫

0

|uh(τ)|2U dτ, t ∈ T.

(34)

By virtue of (34), we conclude that for a.e. t ∈ T

V̇ (t)− α|u∗(t)|2U
= 2

(
g(xh(t))− g(y(t)), μ̇h(t)

)
H

+ 2
(
B(uh(t)− u∗(t), μ̇h(t))

)
H

+ α|uh(t)|2U − α|u∗(t)|2U .

(35)

Note that the control uh(t) of the form (27) is defined by
the rule

uh(t) = argmin
{
α|v|2U

− 2(B∗(ξh(t)− ψh(t)), v)U : v ∈ U
}
.

(36)

From (35), (32) and (36), we deduce that

V̇ (t)− α|u∗(t)|2H ≤ cV (t) + 2c2h
{
|u∗(t)|U

+ |uh(t)|U
}

for a.e. t ∈ T.
(37)

Using the inclusion u∗(·) ∈ L2(T ;U), we have

ϑ∫

0

|u∗(τ)|U dτ ≤ c3.

It follows from this inequality, (37), and the inequality

V (0) = |μ̇h(0)|2H + |μh(0)|2V +m|μh(0)|2H
≤ (2 +mb20)h

2,

by analogy with (24), that

V (t) ≤ c4(h+ α) + c5h

t∫

0

|uh(τ)|2U dτ. (38)

Here b0 > 0 is a constant such that

|z|H ≤ b0|z|V for every z ∈ V.

In turn, from (38), by virtue of (31), we conclude that

V (t) ≤ c4(h+ α)

+ c6hα
−2(h2 +

t∫

0

|μ̇h(τ)|2H dτ).
(39)

From (39), it follows that the estimate

|μ̇h(t)|2H ≤ c4(h+ α)

+ c6hα
−2(h2 +

t∫

0

|μ̇h(τ)|2Hdτ)
(40)
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is valid. Taking into account the Gronwall lemma, we
have, for t ∈ T ,

|μ̇h(t)|2H
≤ (c4(h+ α) + c6h

3α−2) exp c6thα
−2. (41)

Due to the condition of the theorem, for h ∈ (0, 1),
we get

hα−2(h) ≤ C. (42)

Then, using (41) and (42), we have

|μ̇h(t)|2H ≤ c7(h+ α(h)), t ∈ T. (43)

In this case, (39) and (43) imply the inequality

V (t) ≤ c8(h+ α), t ∈ T.

The inequality (29) follows from this estimate. Then
taking into account the Lipschitz property of the function
g(·), from (26) we obtain the estimate

V (t)− α

t∫

0

|u∗(τ)|2U dτ

≤ V (0) + L2h2ϑμ−1

+ (2Lϑ+ μ)

t∫

0

|μ̇h(τ)|2H dτ + c9h

+ c10h

t∫

0

|uh(τ)|2H dτ,

(44)

where the number μ > 0 is such that

2γ > 2Lϑ+ μ.

In this case, using (44), we obtain

(α− c10h)

t∫

0

|uh(τ)|2U dτ

≤ α

t∫

0

|u∗(τ)|2U dτ + c11h, t ∈ T.

(45)

The validity of the inequality (30) follows from (45) and
the convergence hα−1(h) → 0 (as h → 0). In this
situation,

r1(h) = α(h){α(h) − c10h}−1,

r2(h) = c11h{α(h)− c10h}−1.

The lemma is proved. �

From Theorem 2, it follows that Eqn. (28) is a diffe-
rential equation of reconstruction in the case of inaccurate
measurements of the solution.

Under some additional conditions, one can rewrite
the estimate of the convergence rate (see Theorem 3
below). To derive this estimate, we need the following
result.

Lemma 5. (Maksimov, 2002, p. 47) Let u(·) ∈
L∞(T ;V ∗), v(·) ∈ WV (T ),

∣∣∣
t∫

0

u(τ) dτ
∣∣∣
V ∗

≤ ε, |v(t)|V ≤ K ∀ t ∈ T.

Then for all t ∈ T , the inequality

∣∣∣
t∫

0

〈u(τ), v(τ)〉dτ
∣∣∣ ≤ ε(K + var(T ; v(·)))

is valid.

Here the symbol var(T ; v(·)) means the variation of
the function v(·) over the interval T , the symbol WV (T )
means the set of functions y(·) : T → V of bounded
variation, and the symbol 〈·, ·〉 means the duality between
the spaces V ∗ and V .

Theorem 3. Let the conditions of Theorem 2 hold. Let
also U = V , and let B be the operator of canonical em-
bedding of space V into space H , and u∗(·) ∈ WV (T ).
Then the inequality

|u∗(·)− uh(·)|2L2(T ;H)

≤ K{h1/4 + α1/4 + |r1(h)− 1|+ r2(h)}

is valid. HereK is some constant independent of t, α, and
h; the symbol |·| means the absolute value of its argument.

Proof. Taking into account equality (33) and multiplying
its right-and left-hand sides by μ̇h(t), then integrating, we
see that

|μ̇h(t)|2H + |μh(t)|2V +m|μh(t)|2H + 2γ

t∫

0

|μ̇h(τ)|2H dτ

≤ |μ̇h(0)|2H + |μh(0)|2V +m|μh(0)|2H

+ 2L

t∫

0

|μh(τ)|H |μ̇h(τ)|H dτ

+K1

t∫

0

|u∗(τ) − uh(τ)|V |μ̇h(τ)|V ∗ dτ.

(46)
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By the Cauchy–Bunyakovsky inequality and
Lemma 4 (see (29)), the last term on the right-hand side
of (46) is estimated from above by the value

K2(h
1/2 + α1/2). (47)

Using (6), (46), and (47), we conclude that the estimate

|μ̇h(t)|2H + |μh(t)|2V ≤ K3(h
1/2 + α1/2) (48)

is valid. Note that, for any t ∈ T , the inequality

∣∣∣
t∫

0

B(u∗(τ)− uh(τ)) dτ
∣∣∣
V ∗

= sup
|v|V ≤1

∣∣∣
〈 t∫

0

{
μ̈h(τ) −Δμh(τ) +mμh(τ)

+ γμ̇h(τ) − g(xh(τ)) + g(y(τ))
}
dτ, v

〉∣∣∣
≤ K4

{
|μ̇h(t)− μ̇h(0)|H + |μh(t)− μh(0)|V

+

t∫

0

|μh(τ)|V dτ
}

(49)

is fulfilled. Then, by using (48) and (6), we conclude that

∣∣∣
t∫

0

B(u∗(τ)− uh(τ)) dτ
∣∣∣
V ∗

≤ K5(h
1/4 +α1/4). (50)

By virtue of Lemma 5 and the relations (30) and (50), we
obtain

|u∗(·) − uh(·)|2L2(T ;H)

≤ (1 + r1(h))|u∗(·)|2L2(T ;H)

− 2

ϑ∫

0

(Bu∗(τ), uh(τ))H dτ + r2(h)

= 2

ϑ∫

0

(
B(u∗(τ) − uh(τ)), u∗(τ)

)
H

dτ

+ |r1(h)− 1|
ϑ∫

0

|Bu∗(τ)|2H dτ + r2(h)

≤ K{h1/4 + α1/4 + |r1(h)− 1|+ r2(h).

The proof of the theorem is complete. �

4. Numerical example

In this section, we present a numerical example. The
problem described in Section 3 is solved. It is assumed
that the parameters of Eqn. (1) are as follows:

Ω = [0, 1], ϑ = 2, m = 2, γ = 1, U = R,

f(t, η) = 0, g(x) = sinx,

(Bv)(η) = ω(η)v, ω(η) = 1 for a.e. η ∈ Ω.

As the initial state of (1), we take the functions y0(η) =
η(1 − η), y10(η) = η for a.e. η ∈ Ω. The control on the
right-hand side of Eqn. (1) is v(t) = t2 and the control
on the right-hand side of Eqn. (3) is calculated by (27).
Equations (1) and (3) are solved by the grid method with
the step Δω in the domain Ω and the step δ in the time
interval T .

The results of computer modelling are presented in
Figs. 1–6 for the following case: Δω = 1/15, δ = 2/150,
τi = τi−1 + δ, τ0 = 0. In the experiment, we assume
ξh(τi, νj) = ẏ(τi, νj) + h, ψh(τi, νj) = ẋ(τi, νj) + h,
where νj = jΔω, j = 0, . . . , 1/Δω. Figures 1 and 2
correspond to the case of h = 0, Figs. 3 and 4 to the case
of h = 0.01, and Figs. 5 and 6 to the case h = 0.1. In
Figs. 1, 3, and 5, the solid line represents the section of
the function ẏ(t, η) by the hyperplane η = 0.5; the dashed
line—a similar section of the function ẋ(t, η). By analogy,
in Figs. 2, 4 and 6, the solid line corresponds to the control
v(t) and the dashed line to the control uh(t). As can
be seen from Fig. 1, the corresponding curves actually
coincide.
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0 2

ẏ(ẋ)

t

Fig. 1. h = 0.
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1
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3

4

1 2

v(uh)

t

Fig. 2. h = 0.
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Fig. 3. h = 0.01.
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Fig. 4. h = 0.01.
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ẏ(ẋ)
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Fig. 5. h = 0.1.
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Fig. 6. h = 0.1.

5. Conclusions

For a second-order partial differential equation, an
algorithm for constructing a differential equation of
reconstruction has been suggested. The problem consists
in the design of a reconstruction equation with a feedback
control providing the closeness of solutions (and controls)
of two equations: the given one (with an unknown control
and a solution measured inaccurately) and the sought one
(with a control formed by an appropriate way). The
performance of the algorithm has been tested on a model
example.
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