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New finite element methods are proposed for elliptic interface problems in one and two dimensions. The main motivation
is to get not only an accurate solution, but also an accurate first order derivative at the interface (from each side). The
key in 1D is to use the idea of Wheeler (1974). For 2D interface problems, the point is to introduce a small tube near
the interface and propose the gradient as part of unknowns, which is similar to a mixed finite element method, but only at
the interface. Thus the computational cost is just slightly higher than in the standard finite element method. We present a
rigorous one dimensional analysis, which shows a second order convergence order for both the solution and the gradient in
1D. For two dimensional problems, we present numerical results and observe second order convergence for the solution,
and super-convergence for the gradient at the interface.
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1. Introduction

In this paper, we consider the following interface
problems:

−∇· (β(x)∇u(x))+ q(x)u(x) = f(x), x ∈ Ω\Γ,
(1)

in one and two dimensions. We assume that there is a
closed interface Γ in the solution domain across which the
coefficient β has a finite jump (discontinuity),

β(x) =

{
β1 if x ∈ Ω1,

β2 if x ∈ Ω2.
(2)

Because of the discontinuity, the natural jump condition
should be satisfied, that is, both the solution and the flux
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should be continuous across the interface Γ,

[u]Γ = 0,

[
β
∂u

∂n

]
Γ

= 0, (3)

where the jump at a point X = (X,Y ) on the interface Γ
is defined as[

β
∂u

∂n

]
X

= lim
x→X,x∈Ω2

β(x)
∂u(x)

∂n

− lim
x→X,x∈Ω1

β(x)
∂u(x)

∂n
,

and

un = n · ∇u =
∂u

∂n

is the normal derivative of solution u(X), and n is the
unit normal direction pointing to Ω2 side; see Fig. 1 for
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an illustration. Since a finite element discretization is
used, we assume that f(x) ∈ L2(Ωi), q(x) ∈ L∞(Ωi)
excluding Γ. For regularity we also assume that β(x) ≥
β0 > 0 and q(x) ≥ 0; Γ ∈ C1. From these assumptions,
we know that the solution u(x) ∈ H2(Ωi) for i = 1, 2.

Ω
1

Ω
2

Γ

∂Ω

Fig. 1. Diagram of domains Ω1 and Ω2, an interface Γ, and the
boundary ∂Ω.

There are many applications of such an interface
problem; see, e.g., the works of Sutton and Balluffi
(1995), Zienkiewicz and Taylor (2000), Li and Ito (2006)
or Kwak and Chang (2010) and the references therein.
Many numerical methods have been developed for solving
such an important problem. For the elliptic interface
problem (1)–(3), the solution has a low global regularity.
Thus, a direct conforming finite element method based
on polynomial basis functions over a mesh likely works
poorly if the mesh is not aligned along the interface,
since the FE solution is a smooth piece in an element
and cannot capture the discontinuity in the direction at
the interface. Nevertheless, it is reasonable to assume that
the solution is piecewise smooth excluding the interface.
For example, if the coefficient is a piecewise constant in
each sub-domain, then the solution in each sub-domain is
an analytic function in the interior, but has a jump in the
normal derivative of the solution across the interface from
PDE limiting theory (Kevorkian, 1990). The gradient used
in this paper is defined as the limiting gradient from each
side of the interface.

Naturally, finite element methods can be and have
been applied to solve interface problems. It is well known
that a second order accurate approximation to the solution
of an interface problem can be generated by the Galerkin
finite element method with the standard linear basis
functions if the triangulation is aligned with the interface,
that is, a body fitted mesh is used (see, e.g., Babuška,
1970; Bramble and King, 1996; Chen and Zou, 1998; Xu,
1982; Karczewska and Boguniewicz, 2016). Other state
of art methods include the IGA-FEM, an open source 3D

Matlab Isogeometric Analysis package (Anitescu, 2017),
or DPG, a discontinuous Petrov–Galerkin finite element
method (Carstensen and Weggler, 2014).

Some kind of posterior techniques or at least
quadratic elements is needed in order to get a second
order accurate gradient from each side of the interface.
The cost in mesh generation coupled with an unstructured
linear solver makes the body-fitted mesh approach less
competitive.

Alternatively, we can use a structured mesh
(non-body fitted) to solve such an interface problem.
There are also quite a few finite element methods using
Cartesian meshes. The immersed finite element method
(IFEM) was developed for 1D and 2D interface problems
by Li (1998) as well as Li and Wu (2003), respectively.
Since then, many IFEMs and related analysis have
appeared in the literature (see, e.g., Chou and Wee,
2010; He and Lin, 2011; Ji and Li, 2016), along with
applications (An and Chen, 2014; Lin and Zhang, 2012;
2015, Yang, 2002). Often they provide a second order
accurate solution in the L2 norm but only a first order
accurate flux.

Nevertheless, in many applications the primary
interest is focused on flux values at interfaces in addition
to solutions of the governing differential equations (see,
e.g., Chou, 2012; Douglas Jr and Wheeler, 1974; Wheeler,
1974). Most numerical methods for interface problems
based on structure meshes are between first and second
order accurate for the solution, but the accuracy for the
gradient is usually one order lower. Note that the gradient
recovering techniques (e.g., Wahlbin, 1995; Zhang and
Naga, 2005) hardly work for structured meshes because
of the arbitrariness of the interface and the underlying
mesh. The mixed finite element approach and a few other
methods that can find accurate solutions and gradients
simultaneously in the entire domain often lead to saddle
problems and are computationally expensive, and so are
not ideal choices if we are only interested in an accurate
gradient near an interface or a boundary. We note that,
very recently, superconvergence of the IFEM has been
studied for 1D interface problems (Cao and Zhang, 2017).
In this paper, we develop two new finite element methods;
one is in 1D, the other one is 2D, for obtaining accurate
approximations of the flux values at interfaces.

The rest of the paper is organized as follows. In
Section 2, we explain the one dimensional algorithm
and provide its theoretical analysis. We explain how to
construct approximations to the flux values at the left
and right of the interface, and approximations to the flux
values at the boundary of the domain. We also provide
a numerical example. The numerical algorithm for two
dimensional problems is explained in Section 3 along with
some numerical experiments. We conclude the paper in
Section 4.
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2. One-dimensional algorithm and analysis

The one dimensional model problem has the following
form:

− (β (x) u′(x))′ + q (x)u (x) = f (x) ,

u (0) = 0, u (1) = 0,
(4)

where 0 < x < 1, β is a piecewise constant and has a
finite jump at an interface 0 < α < 1, and a homogenous
boundary condition for simplicity of the discussion.
Across the interface, the natural jump conditions are

[u]α = 0, [βu′(x)]α = 0. (5)

We define the standard bilinear form,

a (u, v)

=

∫ 1

0

(β (x) u′ (x) v′ (x) + q (x)u (x) v (x)) dx,

∀ u (x) , v (x) ∈ H1
0 (0, 1) ,

where H1
0 (0, 1) is the Sobolev space (Brenner and Scott,

2007; Adams and Fournier, 2003; Tartar, 2007):

H1
0 (0, 1)

= {v (x) ∈ H1 (0, 1) and v(0) = v(1) = 0}.
The solution of the differential equation u (x) ∈ H1

0 (0, 1)
is also the solution of the following variational problem:

a (u, v) = (f, v) =

∫ 1

0

f (x) v (x) dx,

∀ v (x) ∈ H1
0 (0, 1) .

(6)

Integration by parts over the disjoint intervals (0, α)
and (α, 1) yields

0 =

∫ α

0

{
− (βu′)′ + qu− f

}
v dx+ β1u

−
x v

−

+

∫ 1

α

{
− (βu′)′ + qu− f

}
v dx− β2u

+
x v

+.

The superscripts − and + indicate the limiting value as
x approaches α from the left and right, respectively, and
ux = u′. Recall that v− = v+ for any v in H1

0 . It follows
that the differential equation holds in each interval and that

[u] = u+ − u− = 0, [βux] = β+u+
x − β−u−

x = 0,

where we have drop the subscript α in the jumps for
simplicity. These relations are the same as in (4), which
indicates that the discontinuity in the coefficient β (x)
does not cause any additional difficulty for the theoretical
analysis of the finite element method. The weak solution
will satisfy the jump conditions (5).

2.1. Immersed finite element method in 1D. Now
we briefly explain the immersed finite element method
(IFEM) in 1D introduced by Li (1998). As in the IFEM,
we use a uniform grid, i.e., xi = ih, i = 0, 1, . . . , n, and
assume that α ∈ (xj , xj+1). Since it is a one dimensional
problem, we use β+ for β2, β− for β1, and so on.

If the interface does not cut an interval (xi, xi+1),
then we use the standard piecewise linear basis function,
i.e., the hat function φi(x), i = 1, 2, . . . , if i �= j and
i �= j+1. For xj and xj+1, the associated piecewise linear
basis functions φj(x) and φj+1(x) are modified. For
example, φj(x) is defined as a piecewise linear function
that satisfies

ϕj(xj) = 1, ϕj(xi) = 0, [ϕj ] = 0,
[
βϕ′

j

]
= 0.

It has been derived by Li and Ito (2006) that

ϕj (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x < xj−1,
x− xj−1

h
, xj−1 ≤ x < xj ,

xj − x

D
+ 1, xj ≤ x < α,

ρ (xj+1 − x)

D
, α ≤ x < xj+1,

0, xj+1 ≤ x ≤ 1,

where

ρ =
β1

β2
, D = h− β2 − β1

β2
(xj+1 − α) ,

and

ϕj+1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x < xj ,
x− xj

D
, xj ≤ x < α,

ρ (x− xj+1)

D
+ 1, α ≤ x < xj+1,

xj+2 − x

h
, xj+1 ≤ x < xj+2,

0, xj+2 ≤ x ≤ 1.

Let Vh,(0,1) � Span {ϕi}n−1
i=1 be the immersed finite

element space for approximating u. We propose the
following bilinear form for the problem (4): find uh ∈
Vh,(0,1) ⊂ H1

0 (0, 1) such that

a (uh, vh) = (f, vh) , ∀ vh ∈ Vh,(0,1). (7)

In Fig. 2, we plot several regular finite element basis
functions and two modified basis functions with different
coefficients.

2.2. Error analysis for the 1D IFEM. Some error
analysis of the 1D IFEM has been given by Li (1998) or
Li and Ito (2006). Here we provide a somewhat different
and more traditional analysis. As usual, we study the
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Fig. 2. Plots of some basis function near the interface with dif-
ferent β− = β1 and β+ = β2. The interface isα = 2/3.
Top left: β− = 1, β+ = 5, top right: β− = 5,
β+ = 1, bottom left: β− = 1, β+ = 100, bottom
right: β− = 100, β+ = 1.

approximation property of the IFE space Vh,(0,1) so that
we can bound the error of the finite element solution using
that of the interpolation function.

Assuming that xj ≤ α < xj+1, we define the
interpolation operator πh : H1

0 (0, 1) −→ Vh,(0,1) as
follows:

πhu (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi+1 − x

h
u (xi) +

x− xi

h
u (xi+1) ,

xi < x < xi+1, i �= j,

κ (x− xj) + u (xj) , xj < x ≤ α,

κ
β1

β2
(x− xj+1) + u (xj+1) ,

α ≤ x < xj+1,
(8)

where

κ =
β2 (u (xj+1)− u (xj))

β2 (α− xj)− β1 (α− xj+1)
.

It is easy to check that πhu (xi) = u (xi) , i = 0, . . . , n,
[πhu] = 0, and [βπhu

′] = 0.

Now we pay attention to the estimation
of ‖u (x)− πhu (x)‖0. Here, we define Ei =
[xi, xi+1] , i �= j and I = [xj , xj+1]. For a regular
element, we use the classical finite element method to
estimate the error:

‖u− πhu‖1,Ei
≤ ch ‖u‖2,Ei

, (9)

We are going to focus on the error analysis for the element

which contains the interface. We first define

H̃2 (0, 1)

=
{
v ∈ H1

0 (0, 1) , v ∈ H2 (0, α) , v ∈ H2 (α, 1)
}
.

equipped with the norm and the semi-norm

‖u‖2
˜H2(0,1)

� ‖u‖2H2(0,α) + ‖u‖2H2(α,1)

and
|u|2

˜H2(0,1)
� |u|2H2(0,α) + |u|2H2(α,1).

Then we have the following error estimate for the
derivative approximation, κ ∼ u−

x from the left.

Lemma 1. If u (x) is the solution of (4), then∣∣u−
x (α)− κ

∣∣ ≤ ch
1
2 ‖u‖2,I ,∣∣u+

x (α)− κρ
∣∣ ≤ ch

1
2 ‖u‖2,I .

(10)

Proof. Using the Taylor expansion at α and the jump
conditions (i.e., (5)), we have∣∣u−

x (α)− κ
∣∣

=

∣∣∣∣u−
x (α) − β2 (u (xj+1)− u (xj))

β2 (α− xj)− β1 (α− xj+1)

∣∣∣∣
=

∣∣∣∣u−
x (α) − β2 {u+ (α) + u+

x (α) (xj+1 − α)}
β2 (α− xj)− β1 (α− xj+1)

− β2

∫ xj+1

α
u′′ (t) (xj+1 − t) dt

β2 (α− xj)− β1 (α− xj+1)

− β2
u− (α) + u−

x (α) (xj − α)

β2 (α− xj)− β1 (α− xj+1)

− β2

∫ xj

α
u′′ (t) (xj − t) dt

β2 (α− xj)− β1 (α− xj+1)

∣∣∣∣
≤
∣∣∣∣∣β2

∫ xj+1

α u′′ (t) (xj+1 − t) dt

β2 (α− xj)− β1 (α− xj+1)

∣∣∣∣∣
+

∣∣∣∣∣ β2

∫ xj

α u′′ (t) (xj − t) dt

β2 (α− xj)− β1 (α− xj+1)

∣∣∣∣∣
≤ βmax

βmin

h3/2

h
‖u‖2,(α,xj+1) +

βmax

βmin

h3/2

h
‖u‖2,(xj,α)

≤ ch
1
2 ‖u‖2,I ,

where c = 2βmax/βmin is a positive constant independent
of the interface location, ‖u‖2,I is the standard notation
for H2 norm of u on an interval without the interface, and
‖u‖22,I = ‖u‖2H2(xj,α)

+ ‖u‖2H2(α,xj+1)
on the interface

element (xj , xj+1). This completes the proof of the
lemma. �

The lemma gives rough estimates of the first order
derivative of the interpolation function from each side of
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the interface with an O(
√
h) convergence order compared

with O(h) in H1(0, 1) of the interpolation function. Later
on, we will explain our method to get a second order
accurate derivative from each side of the interface.

In a similar way, we can prove that

∣∣u+
x (α) − κρ

∣∣ ≤ ch
1
2 ‖u‖2,I .

2.3. Convergence analysis of the 1D IFEM.
Although some error analysis is given by Li (1998), below
we provide a different, more traditional finite element
analysis with some results that are useful for accurate
gradient computations at the interface. First we prove
the following theorem on the accuracy of the interpolating
function πhu.

Theorem 1. If u (x) is the solution of (4) and πhu (x) is
the interpolation function defined in (8), then

‖u− πhu‖1,I ≤ ch ‖u‖2,I , (11)

where c is a positive constant independent of the interface
location.

Proof. If xj ≤ x ≤ α, then using the Taylor expansion
we have

u(x) = u (xj) + u′ (xj) (x− xj)

+

∫ x

xj

u′′ (t) (x− t) dt

= u (xj) +

(
u−
x (α) +

∫ xj

α

u′′ (x) dx
)
(x− xj)

+

∫ x

xj

u′′ (t) (x− t) dt

= u (xj) + u−
x (α) (x− xj)

+

(∫ xj

α

u′′ (x) dx
)
(x− xj)

+

∫ x

xj

u′′ (t) (x− t) dt.

By (10) and the Cauchy–Schwartz inequality, we get

∣∣u(x)− πhu (x)
∣∣

=
∣∣ (u−

x (α)− k
)
(x− xj)

+

(∫ xj

α

u′′ (x) dx
)
(x− xj)

∣∣
+
∣∣ ∫ x

xj

u′′ (t) (x− t) dt
∣∣

≤ ch
3
2 ‖u‖2,I ,

where c is a generic constant (different from previous

ones), and∣∣(u (x)− πhu (x))
′∣∣

=
∣∣u−

x (α)− k +

∫ xj

α

u′′ (x) dx+

∫ x

xj

u′′ (t) dt
∣∣

≤ ch
1
2 ‖u‖2,I ,

where ‖u‖2,I is the standard notation for H2 norm of u
on an element.

If α ≤ x ≤ xj+1, the proof is similar. Thus, we also
have

|u(x)− πhu (x)| ≤ ch
3
2 ‖u‖2,I ,∣∣ (u (x)− πhu (x))

′ ∣∣ ≤ ch
1
2 ‖u‖2,I .

We proceed with the remainder of the proof as
follows:

‖u (x)− πhu (x)‖0,I

=

(∫ α

xj

(u (x)− πhu (x))
2 dx

+

∫ xj+1

α

(u (x)− πhu (x))
2
dx

) 1
2

≤ c

(∫ α

xj

h3 ‖u‖22,I dx+

∫ xj+1

α

h3 ‖u‖22,I dx

) 1
2

≤ ch3/2 ‖u‖22,I
(∫ α

xj

dx+

∫ xj+1

α

dx

) 1
2

≤ ch2 ‖u‖2,I ,

in L2, and we continue to H1,

|u (x)− πhu (x)|1,I

=

(∫ α

xj

(
(u (x)− πhu (x))

′)2
dx

+

∫ xj+1

α

(
(u(x)− πhu(x))

′)2
dx

) 1
2

≤ c

(∫ α

xj

h ‖u‖22,I dx+

∫ xj+1

α

h ‖u‖22,I dx

) 1
2

≤ ch ‖u‖2,I .
Combining all of the above, we get

‖u− πhu‖1,I =
( ‖u− πhu‖20,I + |u− πhu|21,I

) 1
2

≤ ch ‖u‖2,I ,
which completes the proof. �

The following theorem states that the IFEM in 1D
provides optimal convergence like the FEM for regular
problems.
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Theorem 2. If u (x) is the solution of (4), and πhu (x) is
the interpolating function defined in (8), then

‖u− πhu‖1 ≤ ch ‖u‖2 , (12)

Proof. We use (9) and (11) to get

‖u− πhu‖1
=

(∫ 1

0

(u (x)− πhu (x))
2 dx

+

∫ 1

0

((u (x) − πhu (x))
′)2 dx

) 1
2

=

(∑
Ei

‖u− πhu‖21,Ei
+ ‖u− πhu‖21,I

) 1
2

≤
(∑

Ei

ch2 ‖u‖22,Ei
+ ch2 ‖u‖22,I

) 1
2

≤ ch

(∑
Ei

‖u‖22,Ei
+ ‖u‖22,I

) 1
2

≤ ch ‖u‖2 .

This completes the proof of the theorem. �

2.4. Accurate flux computation at the left of the in-
terface. In this sub-section, we explain how to get an
accurate flux or the first order derivative of the solution
at the interface from the left side of the interface. The
method is based on the approach proposed by Wheeler
(1974) for flux computations at boundaries. It uses the
Galerkin solution of the problem and it is different from
other posterior error analysis.

We define

Γ−
α � 1

α
{(βu′

h, 1)(0,α) + (quh − f, x)(0,α)} (13)

as an approximation to the exact flux β1u
−
x (α). Below

we show that this is a second order approximation, which
improves the accuracy of the flux by one order compared
with the estimate in (12).

Theorem 3. If u (x) is the solution of (4), uh (x) is the
Galerkin approximation of the solution of u (x), Γ−

α is as
defined above, then∣∣Γ−

α − β1u
−
x (α)

∣∣ ≤ ch2 ‖u‖2 . (14)

Proof. We define Y ∈ Vh as a function that satisfies
Y (0) = 0 and

(βY ′, v′h)(0,α) + (qY − f, vh)(0,α) = β1u
−
x (α) vh (α) ,

∀vh ∈ Vh, and vh (0) = 0.

(15)

Subtracting (13) with vh = x/α from (15), we have∣∣Γ−
α − β1u

−
x (α)

∣∣
=

1

α

∣∣∣(β (uh − Y )′ , 1
)
(0,α)

+ (q (uh − Y ) , x)(0,α)

∣∣∣
≤ c {‖uh − Y ‖0 + |(uh − Y ) (α)|} .

From (7) and (15) we can see that(
β (uh − Y )

′
, v′h
)
(0,α)

+ (q (uh − Y ) , vh)(0,α) = 0,

∀vh ∈ Vh,(0,α).

Set w = uh − Y and vh = w − xw(α); we then get the
following equation:

(βw′, w′)(0,α) + (qw,w)(0,α)

= (βw′, w (α))(0,α) + (qw, xw (α))(0,α) ,

and thus we have

‖w‖1 ≤ c {‖w‖0 + |w (α)|} . (16)

Next we construct the following auxiliary problem.
Let ϕ ∈ H2(0, α) ∩ H̃1 (0, α) be the solution of{

L∗ϕ = −w, w ∈ (0, α) ,

ϕ (0) = ϕ (α) = 0,

where L∗ϕ = −(βϕ′)′ + qϕ. We also assume that

‖ϕ‖2 ≤ c ‖w‖0 .
Then, for an appropriately chosen πϕ ∈ Vh,(0,α), we
proceed to get the following:

(w,w)(0,α) =
∣∣∣− (w,L∗ϕ)(0,α)

∣∣∣
=

∣∣∣∣(w, (βϕ′)′ − qϕ
)
(0,α)

∣∣∣∣
≤
∣∣∣(βw′, ϕ′ − (πϕ)

′)
(0,α)

∣∣∣
+
∣∣∣(qw, ϕ− x)(0,α)

∣∣∣+ |(βϕ′w) (α)|
≤ c {‖w‖1 ‖ϕ− πϕ‖1 + |ϕ′ (α)| |w (α)|}
≤ c {h ‖w‖1 ‖ϕ‖2 + ‖w‖0 |w (α)|}
≤ c ‖w‖0 {h ‖w‖1 + |w (α)|} .

The above yields

‖w‖0 ≤ c {h ‖w‖1 + |w (α)|} . (17)

For h sufficiently small, (16) and (17) imply that

‖w‖0 ≤ c |w (α)| , (18)

where c is a positive constant independent of the
interface α.
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We now derive an estimate of |w (α)|, using the new
auxiliary problem{

L∗ξ = 0, ξ ∈ (0, α) ,

ξ (0) = 0, β1 (α) ξ
′
(α) = 1.

Let η = u− Y ; then we can get

(βη′, vh)(0,α) + (qη, vh)(0,α) = 0,

∀vh ∈ Vh such that vh (0) = 0. (19)

Furthermore, using

0 = − (η, L∗ξ)(0,α)

= −
(
η,− (βξ′)′ + qξ

)
(0,α)

=
(
η, (βξ′)′ − qξ

)
(0,α)

= (−βη′, ξ′)(0,α) + (−qη, ξ)(0,α) + η (α) ,

we have

|η (α)| =
∣∣∣(βη′, ξ′)(0,α) + (qη, ξ)(0,α)

∣∣∣
≤ c ‖η‖1 ‖ξ − x‖1
≤ ch ‖η‖1
≤ ch2 ‖u‖2 .

Finally, we get∣∣Γ−
α − β1u

−
x (α)

∣∣ ≤ c |(uh − Y ) (α)|
≤ c {|(u− uh) (α)|+ |(u− Y ) (α)|}
≤ ch2 ‖u‖2 .

This completes the proof of the theorem. �

Approximation of the flux from the right side of the
interface. In a similar way, we can get the second order
accurate flux, −β+u+

x , from the right side of the interface

Γ+
α � 1

1− α
{(βu′

h,−1)(α,1) + (quh − f, 1− x)(α,1)}.

We also have the following error bound:∣∣Γ+
α + β+u+

x (α)
∣∣ ≤ ch2 ‖u‖2 .

Approximation of fluxes at the boundary. The
approach for accurate flux computations at the interface
can be applied to flux computation from the left
and right boundaries as expressed below. We define
approximations Γ0 and Γ1 to the fluxes, β1u

′ (0) and
β2u

′ (1), respectively:

Γ0 � (βu′
h,−1) + (quh − f, 1− x) ,

Γ1 � (βu′
h, 1) + (quh − f, x) .

Then Γ0 and Γ1 are second order approximations to the
flux from the left and right boundaries as stated in the
following theorem. We skip the proof since it is similar
to that for the flux from the left side of the interface.

Theorem 4. If u (x) is the solution of (4), uh (x) is the
Galerkin approximation of the solution of u (x) while Γ0

and Γ1 are as defined above, then

|Γ0 + β1u
′ (0)|+ |Γ1 − β2u

′ (1)| ≤ ch2 ‖u‖2 .

2.5. Numerical experiments in 1D. We present one
example below that is taken from the work of Li and Ito
(2006). The exact solution is

u(x) =

⎧⎨
⎩
x4/β−, if 0 < x < α,

x4/β+ + (1/β− − 1/β+)α4, if α < x < 1,

where 0 < α < 1 is an interface. The solution satisfies
the ODE −(βu′)′ = f(x), where f(x) = −12x2. In
this example, q(x) = 0 and [u] = 0 and [βu′] = 0, but
[u′] �= 0.

In Table 1, we show a grid refinement analysis for the
proposed method with α = 1/3, β− = 2, β+ = 10. Thus,
the interface α is not a nodal point. We measure the error
for the solution u(x) in the entire domain (0, 1) in the
second column using the strongest L∞ norm. We estimate
the convergence order using p = log(En/E2N )/ log 2 in
the third column. As usual, since the relative location
between the underlying grid and the interface α is not
fixed, the convergence order fluctuates. The average
convergence order is 1.983. In the third column, we list
the grid refinement analysis for

u−
x = lim

x→α,x<α
u′(x),

that is, the first order derivative from the left side of the
interface, and we observe clear second order convergence
as shown in the fifth column.

Table 1. Grid refinement analysis of the proposed method with
α = 1/3, β− = 2, β+ = 10. The second column is
the L∞ error of the solution in the entire domain (0, 1).

N ‖u− uh‖L∞ Order Eux Order

16 3.395E-05 3.870E-03
32 1.547E-05 1.134 7.980E-04 2.278
64 2.191E-06 2.820 1.562E-04 2.353

128 9.732E-07 1.171 3.892E-05 2.005
256 1.413E-07 2.784 8.475E-06 2.199
512 6.088E-08 1.215 2.263E-06 1.905
1024 8.900E-09 2.774 5.098E-07 2.150

The fourth column is the error in the first order
derivative u−

x , that is, from the left side of the interface,
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defined as Eux = max |u′(α±) − u′
h(α

±)|. The average
convergence order for the solution and u−

x is 1.983 and
2.148, respectively.

3. Numerical method and experiments for
the 2D interface problem

The results in the previous section are optimal since both
the solution and the flux (at the interface or boundaries)
use piecewise linear finite element space. However, it
is still an open question how to apply the approach to
2D problems with a curved interface. In this section, we
provide an alternative approach that is similar to a mixed
finite element method but only in a small tube around the
interface.

In this section, the elliptic interface problem is

−∇ · (β∇u(x)) + q(x)u(x) = f(x),

x ∈ Ωi, i = 1, 2, (20)

where q(x) ∈ L∞(Ω) ≥ 0, Ω = Ω− ∪ Ω+, β(x) is
a piecewise positive constant as in (2) and has a finite
jump discontinuity across a closed interface Γ ∈ C1 in
the solution domain.

In our new method, we introduce a tube that contains
the interface with a diameter 2ε as

Ωε = {x ∈ Ω1 ∪ Ω2, d(x,Γ) ≤ ε} ,
where d(x,Γ) is the distance between x and the
interface Γ. In the tube Ωε, we introduce the flux as
a separate variable vector v that can be considered an
augmented variable. Thus, in addition to the PDE (20) in
the entire domain, we also have the following equations:

−β∇u = v,

∇ · v + qu = f,
x ∈ Ωε.

Next we define the following functional spaces:

H1
0 =

{
φ ∈ H1(Ω), φ = 0 on ∂Ω

}
,

W =
{
w ∈ L2(Ωε)

}
,

Lg =
{
g ∈ (L2(Ωε))

2
}
,

assuming a homogenous boundary condition along ∂Ω2.
We can easily get the following weak form for u (in

the entire domain) and g (in Ωε):

(βi∇u, ∇φ) + (qu, φ) = (f, φ) in Ωi, i = 1, 2, (21)

− (βi∇u, g) = (v,g) in Ωε ∩ Ωi, i = 1, 2, (22)

(∇ · v, w) + (qu, w) = (f, w) in Ωε, (23)

where the inner product is in the regular L2 sense and the
quantities φ, g, and w are from the spaces defined above.

There are two directions of intuitive reasoning behind
the new algorithm. We know that the mixed formulation

would improve the gradient computation. If we are only
interested in the gradient from each side of the interface,
then we just need to use a small tube for the computation.
The second consideration is that if we set the flux v =
β∇u along the interface as an unknown in addition to
the solution u, and then discretize the whole system with
high order discretization (second order in the manuscript),
then we would expect the error for the unknown flux v to
have the same order of accuracy as for the discretization.
In discretization, we use piecewise linear functions for φ
and g as usual, and piecewise constant functions for w.
The new augmented method enlarged the system by (22)
and (23). In terms of the stiffness matrix, an additional
nv number of columns are added to the stiffness matrix,
where nv is the number of extra unknowns v in the tube
Ωε. As a result, the stiffness matrix becomes rectangular
instead of square. We used singular value decomposition
(SVD) to solve the resultant rectangular system. Since
v has co-dimension one compared with that of u, the
additional extra cost is negligible compared with that of
the elliptic solver on the entire domain.

3.1. Numerical experiments in 2D. Let Ω2 be a unit
circle centered at (0, 0) with radius R = 1. In our
numerical test, we take q = 0. Let Γ be an interface inside
the unit circle with radius R = 0.9. The tube width is
taken as ε = 3h, that is, three layers from each side of the
interface. The exact solution is

u(x, y) = sinx cos y (24)

in the entire domain so that the solution is continuous,
but the flux β∇u is discontinuous for the test problem.
The coefficient is taken as β1 = 100 and β2 = 1. The
source terms and the boundary condition are determined
accordingly. In Table 2, the L2 norm errors of u, v and
the H1 norm error of u are reported. L2(Ω), H1(Ω)
are used for the solution u, that is, in the entire domain,
while L2(Γ) is used for the flux v along the interface.
The first column N is the number of mesh lines in the
coordinate directions. The results indicate that the new
augmented method worked as expected. The convergence
rate is shown in Table 3.

In Table 3, a comparison of the convergence order
between the standard finite element method and the new
augmented approach is presented. We observe that the
new approach provides much better accuracy for the
flux (gradient). Now we have super-convergence for
the gradient. Super-convergence here is the result of
the convergence that is faster than the original method.
For the finite element method with the piecewise linear
function space, it is well known that the flux is first order
accurate in the L2 norm. In our manuscript, we proposed a
method to reconstruct the flux at the interface and showed
that the reconstructed flux has second order convergence
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Table 2. Grid refinement analysis of the proposed method. The
H1 norm of u is the same as the L2 error of v because
the error in the gradient is dominated compared with
that of u.

N L2 error of u H1 error of u L2 error of v

8 9.96e-3 5.67e-1 5.67e-1
16 2.48e-3 1.75e-1 1.75e-1
32 7.77e-4 4.14e-2 4.14e-2
64 1.81e-4 1.04e-2 1.04e-2
128 4.71e-5 5.95e-3 5.95e-3
256 1.15e-5 1.54e-3 1.54e-3
512 2.92e-6 3.80e-4 3.80e-4

in 1D. For 2D problems, the computed fluxes at the
interface have been observed with super-convergence with
order 1.5 ∼ 1.7.

Table 3. Comparison of the convergence order between the
standard FEM and the new augmented approach.

Quantity u u v

Norm L2 H1 L2

Order (standard FEM) 1.98 1.03 1.03
Order (new method) 1.94 1.72 1.72

Next, in Table 4 we present the results with different
interface locations including the case that covers the entire
domain (ri = 0) so that we get the gradient in the entire
domain as well, where ri is the radius of the interface.
Of course, the computational cost also increased. As we
expected, we have second order convergence in the L2

norm for the solution, and roughly a 1.70 order for the
flux (gradient). In this case, the accuracy of the gradient
is improved by about 70 percent.

Table 4. Comparison of the convergence order for various lo-
cations of the interface, where ri is the radius of the
interface.

ri Order in L2 of u Order in H1

0.9 1.94 1.72
0.99 1.94 1.70

0 1.93 1.70

Now we show the result with a non-zero q(x, y). We
use the same solution above with q(x, y) = 1. The source
term is modified accordingly. In Table 5, we show the
grid refinement analysis of the error in L2 and H1 norm.
We observe the same behavior with similar convergence
orders. The average convergence orders are 1.92 for the
L2 norm and 1.71 for the H1 norm. Note that, the L2

norm of the error in v is the same as the H1 norm, as
explained earlier.

Table 5. Grid refinement analysis of the proposed method when
q(x, y) = 1. The average convergence orders are 1.92
for the L2 norm and 1.71 for the H1 norm.

N L2 error of u H1 error of u

8 9.96e-3 5.67e-1
16 3.51e-3 2.61e-1
32 1.17e-4 6.54e-2
64 2.81e-4 1.66e-2

128 7.24e-5 9.13e-3
256 1.85e-5 2.31e-3
512 4.62e-6 5.79e-4

In the previous example, the solution is the same
in the entire domain although the flux is discontinuous.
Below we present another example in which the solution
is different in a different domain. The outer boundary is
R = 2:

u(x, y) =

{
(x2 + y2)2 if r > 1,

(x2 + y2) if r ≤ 1,
(25)

where r =
√
x2 + y2. The source term f(x, y), and the

Dirichlet boundary condition are determined from the true
solution. In this example, the solution is continuous, that
is, [u] = 0, but the flux jump is non-homogenous.

We tested our new method with large jump ratios,
β2 : β1 = 1000 : 1 and β2 : β1 = 1 : 1000. In Table 6,
we present the results with different widths of the tube
including the case that covers the entire domain so that
we get the gradient in the entire domain as well. As we
expected, we have second order convergence in the L2

norm for the solution, and roughly a 1.54 order for the
flux (gradient), as in the thin tube case. Compared with
the standard finite element method, the accuracy of the
computed gradient is improved by more than 50 percent.
Note that the results are almost the same as for the new
gradient recovery technique using a posterior approach
(Guo and Yang, 2017), in which the rate of the recovered
gradient is around 1.5. Note that, the convergence order
for the gradient is about 1.54, which is lower than the
previous case, possibly due to the non-homogenous flux
jump.

Table 6. Comparison of the convergence order for various
widths of the tube.
Width (ε) Order in L2 of u Order in H1

3h 1.96 1.53
10h 1.96 1.56

2 (entire domain) 1.96 1.56

4. Conclusions

In this paper, we discussed two methods to enhance the
accuracy of the computed flux at the interface for the
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elliptic interface problem. One is for one-dimensional
problems in which we use a simple weak form to
get second order accurate fluxes at the interface from
each side. We also have a rigorous analysis for the
approach. The other one is an augmented method for
two dimensional interface problems. Numerical examples
show that we get better than super-convergence (about a
1.50 ∼ 1.70 order) for the computed fluxes at the interface
from each side. For the two dimensional algorithm, the
theoretical analysis is still an open challenge.
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