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The main impedance control schemes in the task space require accurate knowledge of the kinematics and dynamics of the
robotic system to be controlled. In order to eliminate this dependence and preserve the structure of this kind of algorithms,
this paper presents an adaptive impedance control approach to robot manipulators with kinematic and dynamic paramet-
ric uncertainty. The proposed scheme is an inverse dynamics control law that leads to the closed-loop system having a
PD structure whose equilibrium point converges asymptotically to zero according to the formal stability analysis in the
Lyapunov sense. In addition, the general structure of the scheme is composed of continuous functions and includes the
modeling of most of the physical phenomena present in the dynamics of the robotic system. The main feature of this
control scheme is that it allows precise path tracking in both free and constrained spaces (if the robot is in contact with
the environment). The proper behavior of the closed-loop system is validated using a two degree-of-freedom robotic arm.
For this benchmark good results were obtained and the control objective was achieved despite neglecting non modeled
dynamics, such as viscous and Coulomb friction.
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1. Introduction

Nowadays, the range of applications for robotic systems
is quite broad and the vast majority are tasks including
the intervention of humans in contact with them (Dulęba
and Opałka, 2013; Yarza et al., 2013; Martínez et al.,
2016; Belter et al., 2016; Rodríguez-Liñán et al., 2017).
Medicine is an area that has benefited from the use
of robots in help and assistance for the elderly people,
rehabilitation therapies, surgeries, etc. (Hagn et al., 2008;
Marchal-Crespo and Reinkensmeyer, 2009; Xu et al.,
2011; Gribovskaya et al., 2011; Sharifi et al., 2012;
Hussain et al., 2013; Pérez-Ibarra et al., 2014; Sharifi
et al., 2014; Song et al., 2015; Li et al., 2017). In this kind
of applications, safety is an important factor due to the
unstructured nature of human–robot interaction tasks, and
then suitable control algorithms are required to regulate a
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compliant and stable behavior of the robot.
Several impedance-control algorithms have been

proposed by various researchers and demonstrated
that can deal with the environmental constraints by
considering the relationship between the robot and the
environment, characterized by the mechanical impedance
and admittance concepts (Hogan, 1985; Anderson and
Spong, 1988; Carelli and Kelly, 1991; Chiaverini et al.,
1999; Kang et al., 2009; Mendoza et al., 2012). The
main limitation of most impedance control schemes is
the need for precise knowledge of the parameters and the
dynamic model of the robotic system to control. That
is why some adaptive/robust impedance controllers have
been developed (Carelli and Kelly, 1991; Lu and Meng,
1991; Chien and Huang, 2004; Jiang, 2005; Jianbin et al.,
2009; Kang et al., 2009; Xu et al., 2011; Gribovskaya et
al., 2011; Sharifi et al., 2012; 2014; Hussain et al., 2013;
Pérez-Ibarra et al., 2014, Li et al., 2017; He et al., 2016).
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The classical approach to impedance control was
proposed by Hogan (1985), and then its adaptive version
was developed for stable execution of contact tasks and
preventing a performance degradation due to parameter
uncertainties (Lu and Meng, 1991). Having the same goal
in mind, a computed torque controller with a parameter
estimator was presented by Carelli and Kelly (1991). It
was based on a singular system model representation
capable of achieving global tracking for constrained
motion control. Another technique used to represent
the uncertainties is function approximation which was
successfully implemented for adaptive impedance control
by Chien and Huang (2004). For flexible robots, an
adaptive impedance controller was designed by Jiang
(2005) based on end-effector trajectory tracking by
achieving convergence to a desired manifold, which
represents a desirable performance for the system during
interaction. In order to restrict contact forces, a
collision detection system with joint torque sensors was
proposed by Jianbin et al. (2009) by generating an
adaptive Cartesian impedance control for flexible joint
manipulators.

In the work of Haninger et al. (2016), a disturbance
observer based robust control architecture is presented,
but only the effect of actuation dynamics is analyzed
on a series-elastic actuated system, and the results are
not extended to the complete dynamics of a robot
manipulator system. The dilemma between impedance
accuracy and robustness against modeling errors was
successfully addressed by Kang et al. (2009), by using
an internal model control approach with time-delay
estimation. Recently, He et al. (2016) developed a
neural-network based adaptive impedance control to solve
the robot–environment interaction problem, which does
not require knowledge of robotic dynamics; however,
only the convergence of the impedance error to a small
neighborhood around zero is ensured and the presented
results are limited to the behavior of the robot in joint
space. In all these works, the proposed schemes have
only attempted to cope with the dynamic uncertainty.
Therefore, in this paper we propose an accurate control
tool for unconstrained and constrained path tracking
under kinematic and dynamic parameter uncertainty.
Our adaptive impedance control approach is a result of
combining the main ideas presented by Mendoza et al.
(2012) as well as Wang and Xie (2009), and it ensures
convergence of the impedance error towards zero.

Teleoperation is one of the most common
applications of impedance control; for example, in
the works of Rahimifard et al. (2016) and Yang et al.
(2016), adaptive schemes are used to cope with uncertain
nonlinearities in the impedance model and the effect of
the unknown payload, respectively. The control scheme
proposed by Rahimifard et al. (2016) considers full
nonlinear dynamics having uncertainties in the model

and the passivity condition is relaxed via a Lyapunov
function to show the stability of the closed-loop system
in constrained motion. On the other hand, in the work of
Yang et al. (2016), a neural learning based compensation
scheme is used to overcome the effect of the unknown
payload as well as uncertainties associated with the robot
model and the environment. However, in both cases, they
only try to guarantee the correct path tracking and do not
address the problem of robot–environment interaction
in detail or the presence of uncertainty in kinematic
parameters that affect the performance of this type of
tasks in the Cartesian space. Therefore, the proposed
control structure will guarantee good results for both free
and restricted movements in the task space.

This kind of adaptive scheme represents a useful
tool for human–robot interaction, in the context of
rehabilitation therapies assisted by robots, a future
application of great interest to all of us. Recently, an
adaptive impedance controller based on an evolutionary
dynamic fuzzy neural network was used to regulate the
desired impedance between a robot (therapist) and an
impaired limb (patient) for physical recovery (Xu et al.,
2011). This adaptive scheme can deal with an uncertain
change in the impaired limb’s physical condition; the main
limitation of this scheme is that it requires an off-line
optimization process, as well as an on-line readjustment
process. In addition, it presents a discontinuous behavior
during force tracking and its theoretical foundation is only
supported by an analysis of the convergence of the control
method that does not take into account the complete
system dynamics.

Alternatively, model reference adaptive controllers
have been implemented on rehabilitation robots to
compensate model uncertainties such as friction
coefficients by improving the tracking performance
(Sharifi et al., 2012; 2014). In order to approximate the
unknown dead-zone effects in the joints and the robot’s
dynamics, for an upper limb robotic exoskeleton, an
adaptive neural network controller was developed by
Li et al. (2017); however, the convergence analysis of
tracking errors only ensures that they remain bounded
and the validation results are limited to show the robot
behavior in joint space. For lower limb rehabilitation,
some adaptive schemes have also been proposed
(Hussain et al., 2013; Pérez-Ibarra et al., 2014). For
example, assist-as-needed gait training is addressed with
adaptive impedance control and it adapts the robotic
assistance according to the disability level and voluntary
participation of the users (Hussain et al., 2013). The
adaptive control approach presented herein could be used
in robotic systems for rehabilitation, because its ability to
precisely track trajectories, in free and restricted space, is
a desirable feature for passive and active therapy sessions.

Note that the proposed control approach allows us
to lead the closed-loop system to an asymptotically-stable



Adaptive impedance control of robot manipulators with parametric uncertainty . . . 365

equilibrium point and the corresponding analysis, by
Lyapunov’s direct method, is presented. In addition,
computer simulations using the model of a direct-drive
robot manipulator of two degrees of freedom, corroborate
the suitable performance of the proposed control scheme
for constrained path tracking.

2. Preliminaries

2.1. Notation. Let A ∈ R
m×n and y ∈ R

n. As
usual, aij represents the element of A in the i-th row
and j-th column, and yi is the ith element of y. 0n

represents the origin of Rn, In denotes the n× n identity
matrix. Throughout this work, ‖·‖ represents the standard
Euclidean norm for vectors, i.e.,

‖y‖ =
√
yTy =

√√√
√

n∑

i=1

y2i ,

and the induced norm for matrices, i.e.,

‖A‖ =

√
λmax{ATA}.

Let Ln
2 be the set of continuous functions l : R+ →

R
n such that

∫ ∞

0

lT (t)l(t) dt =

∫ ∞

0

‖l(t)‖2 dt < ∞.

Then a function l ∈ Ln
2 if its energy is bounded, i.e., l

is square integrable. On the other hand, the Ln
∞ space

consists of the set of continuous functions l : R+ → R
n

such that
sup
t≥0

‖l(t)‖ < ∞,

i.e., their Euclidean norms are bounded, l ∈ Ln
∞.

Therefore, we can conclude that l is bounded and square
integrable if l ∈ Ln

2 .
Consider a locally Lipschitz-continuous scalar

function φ : R �→ R, vanishing at zero, i.e., φ(0) = 0.
D+φ denotes the upper-right derivative of φ, i.e.,

D+φ(ζ) = lim sup
h→0+

φ(ζ + h)− φ(ζ)

h

(cf. Khalil, 1996; Rouche et al., 1977).

2.2. Kinematic modeling. Consider a serial rigid
robot manipulator with n degrees of freedom, whose
direct kinematics mapping K : Rn �→ R

m is given by

x = K(q), (1)

where q ∈ R
n represents the joint-space position vector

and x ∈ R
m is the task-space posture vector. The

derivatives of (1) with respect to time can be represented
as

ẋ = J(q)q̇, (2)

ẍ = J(q)q̈ + J̇(q)q̇, (3)

where q̇, q̈ ∈ R
n represent the vectors of joint velocity

and acceleration, respectively; ẋ, ẍ ∈ R
m are the vectors

of task-space velocity and acceleration, respectively;
J(q) = ∂K/∂q ∈ R

m×n represents the analytical
Jacobian matrix of the robot manipulator (Sciavicco
and Siciliano, 2000), whose time derivative is J̇(q) =
dJ/dt ∈ R

m×n.

Property 1. There exists a set of parameters θk =
[θk1, θk2, . . . , θkr]

T such that the kinematic relationship
in Eqn. (2) can be rewritten as

ẋ = Y k(q, q̇)θk, (4)

where Y k(q, q̇) ∈ R
m×r represents a kinematic

regression matrix (Wang and Xie, 2009). In order to avoid
the need for measuring the Cartesian (task-space) velocity
for parameter-estimation purposes, a low-pass filtering of
the task-space velocity can be used (Wang and Xie, 2009).
Then, with abuse of notation

z � λ

λ+ s
ẋ = W kθk, (5)

where λ > 0 represents the cutoff frequency and z ∈
R

m is the filtered output with initial condition z(0) =
0m; W k � [λ/(λ + s)]Y k(q, q̇) with initial condition
W k(0) = 0m×r. Therefore, in practice, z can be
implemented as [λs/(λ + s)]x by measuring only the
task-space position.

2.3. Dynamic modeling. According to the principle of
virtual work, in the work of Takegaki and Arimoto (1981)
it is stated that

τ = JT (q)f , (6)

where τ ∈ R
n represents the generalized joint torques,

and f ∈ R
m is the vector of task-space force and

torque components operating at the robot’s end-effector.
Therefore, the dynamic model of an n-degree-of-freedom
serial and rigid robot manipulator, interacting (or in
contact) with the environment, can be represented
(Sciavicco and Siciliano, 2000; Canudas et al., 1996) as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − JT (q)f e, (7)

where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇)q̇

∈ R
n is the vector of Coriolis and centrifugal forces,

while g(q) = ∇U(q) ∈ R
n is the vector of gravity forces,

with U(q) representing the gravitational potential energy.
Finally, fe ∈ R

m is the vector of external contact forces.
Some well-known properties characterizing the terms of
such a dynamical model are recalled here (see, e.g., Kelly
et al., 2005).
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Property 2. M(q) is a symmetric, positive definite
bounded matrix, i.e., μmIn ≤ M(q) ≤ μMIn, ∀q ∈
R

n, for some constants 0 < μm ≤ μM . Then for
any position vector q, there exists a symmetric, positive
definite matrix M−1(q) that represents the inverse of
M(q).

Property 3. For all q, q̇, q̈ ∈ R
n we have

M (q)q̈ +C(q, q̇)q̇ + g(q) = Y d(q, q̇, q̈)θd, (8)

where Y d(q, q̇, q̈) ∈ R
n×p is a regression matrix and the

vector θd = [θd1, θd2, . . . , θdp]
T ∈ R

p depends only on
the dynamic parameters of the manipulator. Moreover, if
q, q̇, q̈ ∈ Ln

∞ then Y d(q, q̇, q̈) ∈ Ln×p
∞ .

Additionally, the vector of external contact torques
JT (q)f e depends only on the vector of kinematic
parameters θk. Therefore, by measuring the contact
forces fe the following useful property can be obtained

Property 4. The vector of external contact torques
JT (q)f e can be represented as

JT (q)f e = Y e(q,f e)θk, (9)

where Y e(q,fe) ∈ R
n×r signifies a regression matrix

associated with the robot–environment interaction.

Note that J(q) has to be a full-rank matrix for
all position vectors q in order to have a singularity-free
workspace for the robot manipulator. Thus, the following
assumption turns out to be crucial for the subsequent
derivations.

Assumption 1. rank{J(q)} = n.

3. Adaptive impedance controller

In this paper, the problem of impedance control is
addressed from the point of view formulated by Mendoza
et al. (2012), where the motion control of robot
manipulators in task space is generalized for constrained
path-tracking. The impedance error ξ̃ ∈ R

m is then
defined as (Carelli and Kelly, 1991)

ξ̃ � x̃− xfe , (10)

where x̃ = xd − x represents the unconstrained
path-tracking error, with xd ∈ R

m being a desired
trajectory; and xfe � F(s)f e is the adjustment vector
obtained from the filtered external contact force, with

F(s) � [s2Md + sBd +Kd]
−1 (11)

representing the operator related to a second-order
multi-dimensional filter with Kd, Bd, Md ∈
R

m×m being diagonal, positive definite matrices of
stiffness, damping and inertia, respectively, i.e., Kd =

diag[kd1, . . . , kdm], Bd = diag[bd1, . . . , bdm] and Md =
diag[md1, . . . ,mdm] with kdi > 0, bdi > 0 and mdi > 0
∀i = 1, . . . ,m, such that

bdi ≥
√
4kdimdi. (12)

Then F(s) is a stable, second-order linear filter (Mendoza
et al., 2012).

From the definition of impedance error in Eqn. (10),
with abuse of notation, the vectors

˙̃ξ = ẋd − ẋ− ẋfe , (13)

¨̃
ξ = ẍd − ẍ− ẍfe (14)

represent the time derivatives of the impedance error.
Formally, the main objective of impedance control

consists in selecting τ in such a way that

lim
t→∞ ξ̃(t) = 0m, (15a)

lim
t→∞

˙̃ξ(t) = 0m. (15b)

If there is no robot–environment interaction, i.e., fe ≡
0m, the objective of impedance control is equivalent to
the objective of unconstrained motion control in the task
space.

The proposed adaptive impedance controller, based
on the concept of inverse dynamics (Spong et al., 2005;
Wang and Xie, 2009), is defined as

τ = M̂0(q)Ĵ
−1

(q)[a − ˙̂
J(q)q̇] + Ĉ(q, q̇)q̇

+ ĝ(q) + Ĵ
T
(q)fe + δM ,

(16)

where M̂0(q) is a symmetric, positive definite matrix that
represents the initial estimate of M (q) with θ̂d0 being the
initial estimate of θd; Ĵ(q), Ĉ(q, q̇) and ĝ(q) represent
the estimates of J(q), C(q, q̇) and g(q), respectively,
with θ̂k and θ̂d being the current estimated values of
θk and θd, and coming from the following auxiliary
dynamics

˙̂
θd = ΓdΦ

T
d (q, q̇, q̈)Md[ξ̃ + ζ̂], (17)

˙̂
θk = Γk

[
ΦT

e (q,fe)Md[ξ̃ + ζ̂]

−W T
kΛk(W kθ̂k − z)

]
, (18)

where z = W kθk, Γd ∈ R
p×p, Γk ∈ R

r×r and Λk ∈
R

m×m are diagonal, positive definite matrices of tuning

parameters, Φd(q, q̇, q̈) � Ĵ(q)M̂
−1

0 (q)Y d(q, q̇, q̈)

and Φe(q,fe) � Ĵ(q)M̂
−1

0 (q)Y e(q,f e). The estimate

of ˙̃ξ is represented by ζ̂ � ẋd− ˆ̇x−ẋfe , since ˆ̇x = Ĵ(q)q̇
corresponds to the estimate of ẋ. Meanwhile,

a = ẍd − ẍfe +M−1
d [∇UP (ξ̃) +KDζ̂], (19)
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where KD ∈ R
m×m is a diagonal, definite

positive matrix of derivative gains, i.e., KD =
diag[kD1, . . . , kDm] with kDi > 0 ∀i = 1, . . . ,m, such
that

min
i
{kDi} > max

i
{mdi} (20)

and ∇UP (ξ̃) ∈ R
m represents the gradient of an artificial

potential-energy function UP : Rm �→ R satisfying

UP (ξ̃) > 0, ∀ξ̃ �= 0m, (21)

UP (0m) = 0, (22)

ξ̃
T∇UP (ξ̃) > 0, ∀ξ̃ �= 0m, (23)

∇UP (0m) = 0m. (24)

Finally, as in the work of Wang and Xie (2009), we define

δM � [M̂(q)− M̂0(q)]q̈ (25)

to compensate the differences between M̂0(q) and
M(q).

In order to simplify the notation, in what follows, the
arguments of some functions will be omitted.

4. Stability analysis

Proposition 1. Consider the robots dynamics in (7) by
taking τ as defined in Eqns. (16)–(19) and (25), with
Assumption 1 and the conditions on the function UP (ξ̃)
stated through the expressions (21)–(24). Then for any
positive definite diagonal matrices Γk, Γd, Λk, Kd, Bd,
Md and KD such that inequalities (12) and (20) are sat-
isfied, the convergence of impedance errors is guaranteed,

i.e., ξ̃ → 0m and ˙̃
ξ → 0m as t → ∞.

Proof. Observe that by combining Eqns. (7), (16), (19)
and (25), the following dynamical system is obtained:

[M − M̂ ]q̈ + [C − Ĉ]q̇ + [g − ĝ] + [JT − Ĵ
T
]fe

= M̂ 0Ĵ
−1

[ẍd − ẍfe

+M−1
d [∇UP +KDζ̂]− ˙̂

Jq̇]− M̂0q̈,

Y dθ̃d + Y eθ̃k = M̂0Ĵ
−1

[ẍd − ẍfe

+M−1
d [∇UP +KD ζ̂]− ˙̂

Jq̇ − Ĵ q̈],

Φdθ̃d +Φeθ̃k = ˆ̇ζ +M−1
d [∇UP +KD ζ̂],

where θ̃d = θd − θ̂d, θ̃k = θk − θ̂k and

ˆ̇ζ = ẍd − ˆ̈x− ẍfe (27)

with ˆ̈x = Ĵ(q)q̈ +
˙̂
J(q)q̇ being the estimate of ẍ. Then

the closed-loop dynamics takes the following form:

ˆ̇
ζ = Φdθ̃d +Φeθ̃k −M−1

d [∇UP +KDζ̂], (28a)

˙̃θd = −ΓdΦ
T
dMd[ξ̃ + ζ̂], (28b)

˙̃θk = −Γk

[
ΦT

e Md[ξ̃ + ζ̂] +W T
kΛkW kθ̃k

]
, (28c)

Note that, from Eqns. (28) under stationary

conditions, i.e., for ˆ̇ζ = ζ̂ = 0m, ˙̃θd = 0p and ˙̃
θk = 0r,

we have that

Φdθ̃d +Φeθ̃k −M−1
d ∇UP = 0m, (29a)

ΦT
dMdξ̃ = 0p, (29b)

ΦT
e Mdξ̃ +W T

kΛkW kθ̃k = 0r, (29c)

and, premultiplying (29a) by ξ̃
T
Md,

ξ̃
T
Md[Φdθ̃d +Φeθ̃k] = ξ̃

T∇UP . (30)

Thus, by combining (29b), (29c) and (30), we get

θ̃
T

kΦ
T
e Mdξ̃ = ξ̃

T∇UP ,

ξ̃
T∇UP + θ̃

T

kW
T
kΛkW kθ̃k = 0.

From Assumption 1 and the conditions on the
function UP (ξ̃) stated through the expressions (23)–(24),
ξ̃ = 0m and θ̃k = 0r are the equilibrium conditions,
while the equilibrium condition for the estimation error
θ̃d turns out to be defined by the solutions of the equation
Φdθ̃d = 0m. Consequently, θ̃d ∈ ker(Φd).

Now, in order to proceed with the stability analysis,
the following scalar function is defined:

V (ξ̃, ζ̂, θ̃d, θ̃k) =
1

2

[
εTXε+ θ̃

T

d Γ
−1
d θ̃d

+θ̃
T

kΓ
−1
k θ̃k

]
+ UP (ξ̃),

(31)

where ε =
[
ξ̃
T

ζ̂
T ]T

and

X =

[
KD Md

Md Md

]
.

Observe that by using the Schur complement (Horn and
Johnson, 2012)

X > 0 ⇐⇒Md > 0

and KD −MdM
−1
d Md > 0,

and the positivity of X is equivalent to that of Md and
KD − Md. Since Md and KD are diagonal, positive
definite matrices such that inequality (20) is satisfied, we
have X > 0. Under the conditions on the function UP (ξ̃)
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imposed through (21) and(22), and the quadratic form of
the remaining terms, V (ξ̃, ζ̂, θ̃d, θ̃k) is concluded to be
positive definite. Additionally, notice that εTXε → ∞
as ‖ξ̃‖ → ∞, εTXε → ∞ as ‖ζ̂‖ → ∞, θ̃

T

d Γ
−1
d θ̃d →

∞ as ‖θ̃d‖ → ∞ and θ̃
T

kΓ
−1
k θ̃k → ∞ as ‖θ̃k‖ → ∞,

which proves that V (ξ̃, ζ̂, θ̃d, θ̃k) is radially unbounded
(Khalil, 1996).

Furthermore, the upper-right derivative of
V (ξ̃, ζ̂, θ̃d, θ̃k) along the system trajectories, V̇ = D+V
(Rouche et al., 1977; Michel et al., 2008), is given by

V̇ (ξ̃, ζ̂, θ̃d, θ̃k)

= ξ̃
T
KDζ̂ + ξ̃

T
Md

ˆ̇
ζ + ζ̂

T
Mdζ̂

+ ζ̂
T
Md

ˆ̇ζ + θ̃
T

d Γ
−1
d

˙̃θd

+ θ̃
T

k Γ
−1
k

˙̃θk +∇UT
P (ξ̃)ζ̂

= ξ̃
T
KDζ̂ + ζ̂

T
Mdζ̂

+ [ξ̃ + ζ̂]TMd[Φdθ̃d +Φeθ̃k]

− [ξ̃ + ζ̂]T [∇UP (ξ̃) +KDζ̂]

− [Φdθ̃d +Φeθ̃k]
TMd[ξ̃ + ζ̂]

− θ̃
T

k W
T
kΛkW kθ̃k +∇UT

P (ξ̃)ζ̂

= −ξ̃
T∇UP (ξ̃)− ζ̂

T
[KD −Md]ζ̂

− θ̃
T

k W
T
kΛkW kθ̃k, (32)

where ˆ̇ζ, ˙̃θd and ˙̃θk have been replaced by the
expressions (28a)–(28c) from the closed-loop dynamics.
Therefore, under Assumption 1, the inequality (20)
and the conditions on the function UP (ξ̃) stated
through the expressions (23)–(24), V̇ (ξ̃, ζ̂, θ̃d, θ̃k) ≤
0 ∀(ξ̃, ζ̂, θ̃d, θ̃k) ∈ R

m × R
m × R

p × R
r, with

V̇ (ξ̃, ζ̂, θ̃d, θ̃k) = 0⇔ (ξ̃, ζ̂, θ̃k) = (0m,0m,0r).

Now, the second upper-right derivative of
V (ξ̃, ζ̂, θ̃d, θ̃k) along the system trajectories, i.e.,
V̈ = D+V̇ , is given by

V̈ (ξ̃, ζ̂, θ̃d, θ̃k)

= −ζ̂
T∇UP (ξ̃)− ξ̃

T
HP (ξ̃)ζ̂

− 2ζ̂
T
[KD −Md]

ˆ̇
ζ

− 2θ̃
T

kW
T
k Λk[Ẇ kθ̃k +W k

˙̃
θk]

= −ζ̂
T∇UP (ξ̃)− ξ̃

T
HP (ξ̃)ζ̂

− 2ζ̂
T
[KD −Md]

[
Φdθ̃d +Φeθ̃k

−M−1
d [∇UP (ξ̃) +KD ζ̂]

]

− 2θ̃
T

kW
T
k Λk

[
Ẇ kθ̃k

−W kΓk[Φ
T
e Md[ξ̃ + ζ̂]

+W T
kΛkW kθ̃k]

]
, (33)

where

HP (ξ̃) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2UP

∂ξ̃21

∂2UP

∂ξ̃1∂ξ̃2
· · · ∂2UP

∂ξ̃1∂ξ̃m
∂2UP

∂ξ̃2∂ξ̃1

∂2UP

∂ξ̃22
· · · ∂2UP

∂ξ̃2∂ξ̃m
...

...
. . .

...
∂2UP

∂ξ̃m∂ξ̃1

∂2UP

∂ξ̃m∂ξ̃2
· · · ∂2UP

∂ξ̃2m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

represents the Hessian matrix of UP (ξ̃). Assume
that xd, ẋd, ẍd,f e ∈ Lm

∞. Then, from Eqn. (32)
V̇ (ξ̃, ζ̂, θ̃d, θ̃k) ≤ 0 ⇒ ξ̃, ζ̂ ∈ Lm

2 ∩ Lm
∞, W kθ̃k ∈ Lr

2

and θ̃d ∈ Lp
∞, θ̃k ∈ Lr

∞. Further, from Eqns. (10), (27)
and the features of UP defined in (21)–(24), we have that
ξ̃, ζ̂ ∈ Lm∞ ⇒ x̃, xfe, ẋfe, ∇UP ∈ Lm∞, HP ∈ Lm×m∞
and x, ˆ̇x ∈ Lm

∞. Also, as W k is bounded, θ̃k ∈ Lr
∞

implies θk ∈ Lr∞ so that z, ẋ ∈ Lm∞ in Eqns. (2) and
(5). Thus, q̇ ∈ Ln

∞ and under Assumption 1, J(q) is
a bounded nonsingular matrix, which implies that Y e ∈
Ln×r∞ in Eqn. (9). Then Φe is a bounded matrix, since

M̂
−1

0 is bounded according to Property 2 and ˆ̇x ∈ Lm
∞

implies Ĵ ∈ Lm×n
∞ . On the other hand, from the previous

results and Properties 2 and 3, Φd is a bounded matrix.
Therefore, with bounded gain matrices KD, Md, Λk and
Γk, we have that

ẋd − ẋ− ẋfe =
˙̃
ξ ∈ Lm

∞,

V̈ (ξ̃, ζ̂, θ̃d, θ̃k) ∈ L∞,

and according to the Barbalat lemma (Slotine et al., 1991),

ξ̃ → 0m and ˙̃ξ → 0m as t → ∞, which completes the
proof. �

Remark 1. Let KP ∈ R
m×m be a positive definite

diagonal matrix, i.e., KP = diag[kP1, . . . , kPm] with
kPi > 0 for all i = 1, 2, . . . ,m. An adaptive PD-type
impedance controller is obtained from (19) by selecting

UP (ξ̃) =
1

2
ξ̃
T
KP ξ̃ (34)

such that
∇Up(ξ̃) = KP ξ̃.

Additionally, an adaptive Tanh(P)D-type controller
can be retrieved from (19) by defining

UP (ξ̃) = fP (ξ̃)
TKPfP (ξ̃),

where

fP (ξ̃) =

⎡

⎢
⎢
⎢
⎣

√
ln{cosh (ξ̃1)}

...√
ln{cosh (ξ̃m)}

⎤

⎥
⎥
⎥
⎦
.
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Therefore, UP has a quadratic form to ensure positivity of
the function. The gradient of UP is given by

∇UP (ξ̃) = 2
∂fP (ξ̃)

∂ξ̃
KPfP (ξ̃),

where

∂fP (ξ̃)

∂ξ̃
=

1

2

⎡

⎢
⎢
⎢
⎣

tanh (ξ̃1)√
ln{cosh (ξ̃1)}

0

. . .

0 tanh (ξ̃m)√
ln{cosh (ξ̃m)}

⎤

⎥
⎥
⎥
⎦
.

Then
∇UP (ξ̃) = KP tanh(ξ̃)

with tanh(ξ̃) = [tanh (ξ̃1), . . . , tanh (ξ̃m)]T .

5. Simulation results

The validation of the proposed adaptive impedance
control scheme has been oriented towards verifying
its efficiency for constrained and unconstrained
path tracking. The simulation control tests have
been implemented using the model of a 2-DOF
direct-drive robot manipulator. The system consists
of a 2-revolute-joint robot arm characterized by Reyes
and Kelly (1997). It is composed of two links actuated by
direct-drive brushless servomotors whose torque limits
are T1 = 150 Nm and T2 = 15 Nm, respectively. The
corresponding kinematic and dynamic parameters are
presented in Table 1.

Table 1. Kinematic and dynamic parameters of the robot manip-
ulator.

Parameter Value Units

θk1 0.450 m
θk2 0.450 m
θd1 2.351 Nm s2/rad
θd2 0.084 Nm s2/rad
θd3 0.102 Nm s2/rad
θd4 38.465 Nm
θd5 1.825 Nm

The robot structure and the kinematic data imply the
following Jacobian matrix:

J(q) =

[
θk1c(q1) + θk2c(q1 + q2) θk2c(q1 + q2)
θk1s(q1) + θk2s(q1 + q2) θk2s(q1 + q2)

]
,

where θk1 and θk2 are the lengths of the robot links ( i.e.,
r = 2), c(·) and s(·) denote the cos(·) and sin(·) functions,
respectively, and q = [q1 q2]

T represents the vector of
joint positions. According to Property 1, the kinematic
regression matrix is given by

Y k(q, q̇) =

[
q̇1 cos (q1) [q̇1 + q̇2] cos (q1 + q2)
q̇1 sin (q1) [q̇1 + q̇2] sin (q1 + q2)

]
.

On the other hand, the vector of dynamic parameters
is θd = [θd1 θd2 θd3 θd4 θd5]

T ( i.e., p = 5), where
θd1 = m1l

2
c1 + m2(l

2
1 + l2c2) + I1 + I2, θd2 = m2l1lc2,

θd3 = m2l
2
c2 + I2, θd4 = g[m1lc1 + m2l1] and θd5 =

gm2lc2, with mi representing the mass, li the length, lci
the center of mass, and Ii the moment of inertia for the
i-th link. Here g = 9.81 m/s2 represents the gravitational
acceleration. The dynamic model of the robot manipulator
is composed of

M(q) =

[
θd1 + 2θd2 cos (q2) θd3 + θd2 cos (q2)
θd3 + θd2 cos (q2) θd3

]
,

C(q, q̇) =

[−2θd2 sin (q2)q̇2 −θd2 sin (q2)q̇2
θd2 sin (q2)q̇1 0

]
,

g(q) =

[
θd4 sin (q1) + θd5 sin (q1 + q2)

θd5 sin (q1 + q2)

]

and, according to Property 3,

Y d(q, q̇, q̈)

=

[
q̈1 yd12 q̈2 s(q1) s(q1 + q2)
0 yd22 q̈1 + q̈2 0 s(q1 + q2)

]
,

where

yd12 = [2q̈1 + q̈2] cos (q2)− [2q̇1 + q̇2]q̇2 sin (q2),

yd22 = q̈1 cos (q2) + q̇21 sin (q2).

In turn, the regression matrix for the interaction
torques is given by

Y e(q,fe) =

[
ye11 ye12
0 ye22

]

with

ye11 = fe1 cos (q1) + fe2 sin (q1),

ye12 = fe1 cos (q1 + q2) + fe2 sin (q1 + q2),

ye22 = fe1 cos (q1 + q2) + fe2 sin (q1 + q2),

In order to include non-modeled dynamics, which
allows us to validate the adaptability of the control
scheme, the following frictional forces were considered:

fr1 = 2.288 q̇1 + fc1 sign(q̇1),

fr2 = 0.175 q̇2 + 1.734 sign(q̇2),

where fc1 = 7.17 if q̇1 > 0 and fc1 = 8.049 if q̇1 < 0
(Reyes and Kelly, 1997).

The proposed adaptive impedance control scheme in
Eqns. (16)–(19) and (25) was tested in its PD-type form
for unconstrained and constrained path tracking.
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5.1. Test 1: Unconstrained path tracking. The
following Lissajous curve was selected as the desired
trajectory for the unconstrained test

xd(t) =

[
xo1 + ρ sin (ωat)
xo2 + ρ sin (ωbt)

]
, (39)

where xo = [0.35 − 0.4]T m, ρ = 0.25 m, ωa = 3
rad/s and ωb = 2 rad/s. The initial location of the robot
end-effector was chosen as x(0) = [0.45 −0.45]T m. The
initial values of the dynamic and kinematic parameters
were set as θ̂d(0) = [2.0 0.15 0.15 30.0 1.0]T and
θ̂k(0) = [0.5 0.6]T , respectively. In practice, one of the
limitations of the proposed control scheme is that joint
acceleration measurements are required. Then, in order
to avoid the need for such measurements, accelerations
were estimated by filtering the velocity signals (Wang
and Xie, 2009), such that α � ˆ̈q = [s/(λas + 1)]q̇
with λa = 1/60. Therefore, the vector α replaces q̈ in
the control structure defined in Eqns. (16)–(19) and (25).
Then the closed-loop dynamics is now given by

ˆ̇ζ = Φ̂dθ̃d +Φeθ̃k −M−1
d [∇UP +KDζ̂]

+ λaΦM α̇, (40a)

˙̃
θd = −ΓdΦ̂

T

dMd[ξ̃ + ζ̂], (40b)

˙̃θk = −Γk

[
ΦT

e Md[ξ̃ + ζ̂] +W T
kΛkW kθ̃k

]
, (40c)

where Φ̂d � Ĵ(q)M̂
−1

0 (q)Y d(q, q̇,α), ΦM �
Ĵ(q)M̂

−1

0 (q)M (q). Note that λaΦM α̇ is the additional
term in the closed-loop dynamics of the system; because
it is possible to verify that this term is bounded and
close to zero, a proper tuning of the controller parameters
can counteract this additional dynamic uncertainty by
preserving (in practice) the stability properties of the
proposed scheme.

The parameters of the proposed controller were
selected as KP = 15000Im, KD = 2000Im, Md =
2Im, Γd = diag{2000, 0.007, 0.8, 200, 1.5}, Γk =
1.2Ir, Λk = 50Ir, λ = 10. Note that Kd and Bd are
not required for unconstrained path-tracking tasks.

To illustrate the performance of the adaptive
controller, the time evolution of the impedance error
was recorded. The components of the impedance error
are shown in Fig. 1. It is to be noted that the error
components tend to a neighborhood of zero as a result
of the estimation of accelerations; however, by retuning
the control gains the steady-state error can be reduced and
so the impedance-control objective is properly fulfilled by
ensuring the convergence of the impedance error towards
zero as time evolves. It is important to note that in this test
there is no interaction or contact with the environment,
and hence the impedance error is equal to the tracking
error in the Cartesian space.

Fig. 1. Test 1: components of the impedance error.

Figure 2 shows the desired and actual end-effector
paths. It is possible to observe that the desired trajectory
is accurately followed by the robot end-effector, after a
short transient period.

Fig. 2. Test 1: trajectory of the robot end-effector on x-y plane.

Figures 3 and 4 show that, as time evolves, the
estimates of kinematic and dynamic parameters remain
bounded as expected, based on the stability analysis of
the proposed controller. Therefore, it can be concluded
that the control scheme works properly when tracking
unconstrained trajectories. The initial values θ̂d(0) and
θ̂k(0) were selected close to the values identified by Reyes
and Kelly (1997), therefore, the procedure to be followed
would be to perform a process of prior identification of
the robotic system parameters and then use the results
as initial values. According to the stability analysis
presented, it is expected that the kinematic parameters
θ̂k converge to values close to the real ones, regardless
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of the initial conditions θ̂k(0). However, the dynamic
parameters θ̂d will only have a bounded behavior and they
will converge to different values that depend on the initial
conditions. This expected behavior is validated by the
results obtained and presented in the Figs. 3 and 4.

Fig. 3. Test 1: time evolution of the estimates of kinematic and
dynamic parameters, respectively.

Fig. 4. Test 1: time evolution of the estimates of dynamic pa-
rameters.

5.2. Test 2: Constrained path tracking. In order
to test the performance of the impedance controller
regarding the tracking of constrained paths during the
robot–environment interaction, a rigid ring corresponding
to the following path was considered:

xd(t) =

[
xo1 + ρ cos (ωt)
xo2 − ρ sin (ωt)

]
, (41)

where xo = [0.5 − 0.4]T m, ρ = 0.25 m and ω = π/4
rad/s. The interaction with the ring was modeled as

fe = ke[‖x− xo‖ − ρe], (42)

where ke = 5000 N/m is the stiffness of the surface and
ρe = 0.24 m is the location of the ring surface measured
from xo. Then the components of the contact force fe

were computed as

f e =

[
fe cos (φ)
fe sin (φ)

]
(43)

with

φ = tan−1

(
x2 − xo2

x1 − xo1

)
.

The initial values of the dynamic and kinematic
parameters and the controller gains KP , KD, Md, Λk

and λ were the same used in the unconstrained-motion
test. The initial location of the robot end-effector was
x(0) = [0.5 − 0.64]T m, and the rest of controller
parameters were selected as Bd = 50Im, Kd = 150Im,
Γk = 5Ir and Γd = diag{30000, 0.1, 5, 500, 2.5}.

First, the errors obtained for the tracking of the
desired trajectory and the interaction with the surface
(impedance error) are presented. In Fig. 5, it can be
observed that the tracking error x̃ is different from zero
because the interaction of the robot end effector with the
surface prevents it from reaching the desired trajectory.
However, the dynamic behavior of the system is correctly
regulated to successfully interact with the environment.
It is to be noted that the impedance-control objective is
properly achieved and the convergence of the impedance
error ξ̃ to zero as time evolves is ensured.

Fig. 5. Test 2: components of the impedance and tracking er-
rors, respectively.

The correct performance of the controller can be
verified in Fig. 6, which displays the desired trajectory
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Fig. 6. Test 2: trajectory of the robot end-effector on the x-y
plane.

Fig. 7. Test 2: time evolution of the estimates of kinematic and
dynamic parameters, respectively.

that was pre-planned in accordance with (41) for a radius
of ρ = 0.25 m, and the trajectory followed by the robot,
for a radius of ρe = 0.24 m, corresponding to the path
imposed by the surface of the environment.

In the same way as in Test 1, the time evolution of
the kinematic and dynamic parameters remains bounded
as shown in Fig. 7 and 8. Finally, in Fig. 9, the
components of the interaction force are presented, which
are continuous signals and in this way it can be verified
that the robot end effector remains in contact with the
surface during the whole movement.

6. Conclusions

In this paper, an adaptive impedance control scheme
for robot manipulators with parametric uncertainty has
been presented. The suitable performance of the
control scheme is supported by the stability analysis
in the Lyapunov sense and its efficiency was verified
through implementations on a 2-DOF robot manipulator.

Fig. 8. Test 2: time evolution of the estimates of dynamic pa-
rameters.

Fig. 9. Test 2: components of the interaction force.

The control scheme has a PD-like structure, where
the generalized form of the proportional term gives
rise to multiple particular controllers, permitting further
innovation in their design and a wide range of possibilities
for performance improvement.

By means of the two types of tests carried out, it is
possible to verify the utility of the adaptive controller for
trajectory tracking in both free and constrained spaces.
Therefore, this control scheme can be used in applications
such as robot assisted rehabilitation, where both passive
(without the patient exerting force) and active (when the
patient exerts force) movements are required during the
development of therapy sessions.

One of the aspects to be improved, in future work, is
the dependence of measurements of joint acceleration. In
practice, this problem is solved by making use of filters
that have as input the joint velocity. It is important to
perform an experimental validation of the control scheme,
as well as to improve the mathematical structure of the
controller so that this practical solution be supported by a
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formal analysis of stability or robustness of the scheme.
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