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This paper investigates an N-policy GI/M/1 queue in a multi-phase service environment with disasters, where the system
tends to suffer from disastrous failures while it is in operative service environments, making all present customers leave the
system simultaneously and the server stop working completely. As soon as the number of customers in the queue reaches a
threshold value, the server resumes its service and moves to the appropriate operative service environment immediately with
some probability. We derive the stationary queue length distribution, which is then used for the computation of the Laplace–
Stieltjes transform of the sojourn time of an arbitrary customer and the server’s working time in a cycle. In addition, some
numerical examples are provided to illustrate the impact of several model parameters on the performance measures.
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1. Introduction

Recently, queueing systems with disasters/catastrophes
have often been encountered in practice, and they
have proved widely useful in analyzing communication
systems and computer networks. In the classical queueing
models with disasters, the occurrence of disasters made
the server inoperative and forced all customers to abandon
the system simultaneously.

During the past two decades, the topic of disasters
has been studied extensively by many researchers; the
interested readers are referred to the works of Towsley
and Tripathi (1991), Artalejo and Gómez-Corral (1998),
Krishna Kumar and Arivudainambi (2000), Economou
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and Fakinos (2003), Gani and Swift (2007), Yechiali
(2007), and others. Recently, Dimou and Economou
(2013) studied a single server queue with catastrophes
and geometric abandonments, in which customers may
become impatient and leave the system according to
a geometric distribution when the system resides in
repair period. Mytalas and Zazanis (2015) considered a
queueing system with batch Poisson arrivals subject to
disasters and repairs under a multiple adapted vacation
policy, and gave an explicit analysis of the queue
length distribution and important performance measures.
Kim and Lee (2014) discussed an M/G/1 queue with
disasters and working breakdown. Jiang and Liu (2017)
investigated a GI/M/1 queue in a multi-phase service
environment with disasters by a matrix analytic approach.
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Sudhesh et al. (2016) analyzed an N-policy M/M/1 queue
with disastrous breakdown, and derived the closed-form
expressions of system size probabilities in transient state
and in steady state. For the discrete-time queueing
models, there also exist a large volume of references
(see, e.g., Atencia and Moreno, 2004; Park et al., 2009;
2010; Atencia, 2014; 2016). There are also a number of
recent publications closely related to queueing systems
with disasters. However, in these papers, the authors
studied the queueing systems from an economic viewpoint
(see, e.g., Boudali and Economou, 2012; 2013; Economou
and Manou, 2013).

The N-policy was first considered by Yadin and
Naor (1963), who analyzed an N-policy with a removable
service station. Since the introduction of the N-policy,
there has been considerable attention on this topic.
For more literature on N-policy queues, we may refer
interested readers to the works of Moreno (2007), Ke
(2003), Ke and Wang (2002), Zhang and Tian (2004), Lim
et al. (2013), Lee and Yang (2013), and others.

In fact, the queueing model in consideration is
practical and reasonable, and it can be applied to a power
saving scheme in wireless sensor networks (WSNs) under
unreliable network connections. Specifically, WSNs are
allocated in various areas, especially for environmental
sensing and forest fire monitoring, etc. However, they are
mainly allocated in some extreme or hostile environments.
Facing the not-easily-accessible environments, it may be
difficult to replace their batteries. Therefore, a threshold
control policy is a relative important power saving scheme
in prolonging the usage period of WSNs. Compared with
the T-policy, the N-policy may also hold more effective
for a power saving scheme because it can reduce the
setup power consumption required to switch between a
busy mode and an idle mode, and we can find an optimal
N-policy to minimize the power consumption. (For more
details, see the work of Lee and Yang (2013).)

Hence, motivated by the applications of the queueing
model, in this paper, we further develop the excellent
work presented by Jiang and Liu (2017), who studied
a GI/M/1 queue in a multi-phase service environment
with disasters. It is different from Jiang and Liu (2017)
in that, in the present paper, the server resumes its
service as soon as the number of customers in the queue
reaches a threshold value N , rather than experiencing
an exponential repair time. Meanwhile, the system may
suffer from disasters while the server is idle. Following
the idea presented by Lim et al. (2013), who used a trial
solution approach in dealing with the N-policy queue, we
derive the stationary queue length distribution at arrival
epochs. Furthermore, we give the stationary queue length
distribution at arbitrary epochs by using the method of the
semi-Markov process. Moreover, we present an elaborate
analysis on the sojourn time of an arbitrary customer and
the server’s working time in a cycle.

The rest of this paper is organized as follows.
In Section 2, we provide the model formulation. In
Section 3, by investigating an embedded Markov chain
and using a trial solution approach, we give the stationary
queue length distribution at arrival epochs. By means
of the semi-Markov process, we further derive the
stationary queue length distribution at arbitrary epochs
in Section 4. Sections 5 and 6 are devoted to deriving
the Laplace–Stieltjes transform (LST) of the sojourn time
of an arbitrary customers and the server’s working time
in a cycle. Some numerical examples are presented in
Section 7. We conclude the paper and give some future
research directions in Section 8.

2. Preliminaries

In this paper, we consider an N-policy GI/M/1 queue in
a multi-phase service environment with disasters. The
queuing model is described in detail below:

• Interarrival times {Ak, k ≥ 1} of customers are
independent and identically distributed (iid) with a
general distribution function, denoted by A(ν) with
mean 1/λ and an LST, denoted by A∗(s).

• Under operative service environment i, the service
times Si are exponentially distributed with parameter
μi, and LST B∗

i (s) = μi/(s+ μi), i = 1, 2, . . . , n.

• Di is the duration of times that the system resides in
operative service environment i, i.e., the interarrival
times of disasters in service environment i also
follow an exponential distribution with parameter
ηi > 0, i = 1, 2, . . . , n.

• Whenever a disaster occurs while the system is in
operative service environment (no matter the sever is
idle or busy), all customers are forced to be removed
from the system simultaneously, and the server is
rendered inoperative. As soon as the number of
customers in the queue reaches the threshold N , the
system resumes its service and jumps to the operative
service environment i with probability qi, where∑n

i=1 qi = 1.

Actually, in the present queueing model, there are no
direct jumps among the operative service environments.
Once a disaster occurs, the system must undergo a period
depending on the total interarrival times of N customers,
and then moves to the operative service environment i
with probability qi, i = 1, 2, . . . , n.

3. Stationary queue length distribution at
arrival epochs

In this section, we construct an embedded Markov chain
to obtain the stationary queue length distribution at arrival



Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters 377

epochs. Whenever a disaster occurs while the system is
in operative service environment, all customers are forced
to leave the system, which means that the system will be
empty and the number of customers never goes to infinity.
Therefore, the system can be analyzed in steady state.

We suppose that τk is the k-th customer arriving
instant with τ0 = 0. Let L(t) denote the number of
customers in the system at time t, and Lk = L(τk − 0)
denote the number of customers seen by the k-th arrival
instant. Define

Jk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if the k-th arrival occurs while the server is

inoperative,

i if the k-th arrival occurs during

operative service environment i,

i = 1, 2, . . . , n,

Then the system can be described by the process
{(Lk, Jk), k ≥ 1}, which is an embedded Markov chain
with the state space

Ω ={(m, 0), m = 0, 1, . . . , N − 1}
∪ {(h, i), h ≥ 0, i = 1, 2, . . . , n}.

Next, in order to form the transition matrix of
{(Lk, Jk), k ≥ 1}, we give the form of transition
probabilities as follows:

P(h,l),(m,j) =P (Lk+1 = m,Jk+1 = j|Lk = h, Jk = l),

0 ≤ m ≤ h+ 1, l, j = 0, 1, 2, . . . , n.

First, consider transitions when the server is in operative
service environment i, i = 1, 2, . . . , n.

Case 1: Consider the transition from (h, i) to (m, i). The
transition occurs if the next customer arrives earlier than a
disaster arrives and h+1−m customers are served during
the arrival of the next customer. Then we have

P(h,i),(m,i) =

∫ ∞

0

e−ηit
(μit)

h+1−m

(h+ 1−m)!
e−μit dA(t)

= bi,h+1−m, 1 ≤ m ≤ h+ 1.

Case 2: Consider the transition from (h, i) to (0, i). The
transition occurs if the next customer arrives earlier than a
disaster arrives and all present customers are served before
the arrival of the next customer. Then we have

P(h,i),(0,i) =

∫ ∞

0

e−ηit

∫ t

0

μi(μix)
h

h!
e−μix dxdA(t)

=

∫ ∞

0

e−ηit dA(t) −
h∑

m=0

bi,m

= ci,h+1, h ≥ 0.

Case 3: Consider the transition from (h, i) to (0, 0). The
transition occurs if the next customer arrives later than a
disaster arrives. Then for h ≥ 0 we obtain

P(h,i),(0,0) =

∫ ∞

0

(1− e−ηit) dA(t) = di.

Next, consider transitions when the server is not
available.

Case 4: Consider the transition from (h, 0) to (h + 1, 0).
In this case, only an arrival can occur. Therefore, the
transition occurs with probability 1. Then we have

P(h,0),(h+1,0) = 1, 0 ≤ h ≤ N − 2.

Case 5: Consider the transition from (N − 1, 0) to (m, i).
Then, we have

P(N−1,0),(m,i) = qiP(N−1,i),(m,i)

= qibi,N−m, m ≥ 0.

Case 6: Consider the transition from (N − 1, 0) to (0, i).
Then we derive

P(N−1,0),(0,i) = qiP(N−1,i),(0,i) = qici,N .

Case 7: Consider the transition from (N − 1, 0) to (0, 0).
Then we obtain

P(N−1,0),(0,0) =

n∑

i=1

qiP(N−1,i),(0,0) =

n∑

i=1

qidi.

Once these transition probabilities are given, we can
obtain the stationary queue length distribution at arrival
epochs. Let

πm,j = lim
k→∞

P{(Lk, Jk) = (m, j)},

i.e., πm,j is the stationary probability that a new
arrival finds m customers in the system and the server
is in phase j, where (m, j) ∈ Ω. According to
the aforementioned transition probabilities, πm,j should
satisfy the following balance equations:

π0,0 = π1,0 = · · · = πN−1,0, (1a)

πm,i = πN−1,0qibi,N−m +

∞∑

h=0

πh+m−1,ibi,h,

1 ≤ m ≤ N, i = 1, 2, . . . , n, (1b)

πm,i =

∞∑

h=0

πh+m−1,ibi,h, m ≥ N + 1, (1c)

π0,i = πN−1,0qici,N +

∞∑

h=0

πh,ici,h+1, (1d)

π0,0 = πN−1,0

n∑

i=1

qidi +

n∑

i=1

∞∑

h=0

πh,idi. (1e)
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Using a trial solution approach and referring to Lim et al.
(2013), we proceed to solve these balance equations.

First, we assume the trial solution is of the form

πm,i = π0,0KN,iα
m
i , m ≥ N, 0 < αi < 1, (2)

where KN,i is a constant which can be determined later.
Substituting (2) into (1c), we have

αi =

∞∑

h=0

αh
i bi,h

= A∗(μi + ηi − μiαi), i = 1, 2, . . . , n.

Since ηi > 0, αi is the unique root of the equation

z = A∗(μi + ηi − μiz), i = 1, 2, . . . , n

in |z| < 1. The proof is similar to that in Jiang et al.
(2015).

To solve πh,i, h = 0, 1, 2, . . . , N − 1, we must
deal with N equations of (1b) and (1d), and derive the
results by these recursive relations. For example, in (1b),
consider m = N ; applying (2) and (1a), we have

πN−1,ibi,0 = π0,0KN,iαi
N−1bi,0 − π0,0qibi,0,

i.e.,

πN−1,i = π0,0(KN,iα
N−1
i − qi)

= π0,0(KN,iα
N−1
i −K0,i).

Then, consider m = N − 1. We have

πN−2,ibi,0 = πN−1,i(1− bi,1)− π0,0qibi,1

−
∞∑

k=2

πk+N−2,ibi,k.
(3)

Substituting πN−1,i and πm,i,m ≥ N into (3), we
obtain

πN−2,i = π0,0

(
KN,iα

N−2
i − qi

bi,0

)

= π0,0

(
KN,iα

N−2
i −K1,i

)
.

Similarly, the remaining πm,i, 0 ≤ m ≤ N − 3 can be
obtained by the same method.

Then, the results are summarized as

πm,i = π0,0(KN,iα
m
i −KN−m−1,i),

0 ≤ m ≤ N − 1, i = 1, 2, . . . , n,

where
K0,i = qi, bi,0K1,i = K0,i,

and

bi,0Km,i = Km−1,i −
m−1∑

h=1

bi,m−hKh,i,

2 ≤ m ≤ N − 1.

Finally, substituting πm,i,m ≥ 0 into (1d) and using
the normalization condition

π0,0 + · · ·+ πN−1,0 +

n∑

i=1

∞∑

m=0

πm,i = 1,

we obtain

KN,i =

KN−1,i −
N−2∑

h=0

KN−h−1,ici,h+1

1−
∞∑

h=0

αh
i ci,h+1

,

π0,0

=

(

N +

n∑

i=1

KN,i − (1− αi)
N−1∑

m=0
KN−m−1,i

1− αi

)−1

.

For all aforementioned results, the stationary queue length
distribution at arrival epochs can be summarized in the
following theorem.

Theorem 1. The stationary queue length distribution at
arrival epochs is given as follows:

πm,0

=

(

N +
n∑

i=1

KN,i − (1− αi)
N−1∑

k=0

KN−k−1,i

1− αi

)−1

,

0 ≤ m ≤ N − 1, (4a)

πm,i = π0,0(KN,iα
m
i −KN−m−1,i),

0 ≤ m ≤ N − 1, (4b)

πm,i = π0,0KN,iα
m
i , m ≥ N, (4c)

where αi is the unique root of the equation

z = A∗(μi + ηi − μiz), i = 1, 2, . . . , n

in the range 0 < z < 1, and

K0,i = qi, (5a)

bi,0K1,i = K0,i, (5b)

bi,0Km,i = Km−1,i −
m−1∑

h=1

bi,m−hKh,i,

N − 1 ≥ m ≥ 2, (5c)

KN,i =

KN−1,i −
N−2∑

h=0

KN−h−1,ici,h+1

1−
∞∑

h=0

αh
i ci,h+1

. (5d)



Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters 379

4. Stationary queue length distribution at
arbitrary epochs

In this section, by using the method of the semi-Markov
process, we will derive the limit distribution of L(t).

Let L denote the number of customers in the system
at an arbitrary epoch. Define

Pm = P{L = m} = lim
t→∞P{L(t) = m}.

Next, we will construct a semi-Markov process to
find Pm. We define a new process {(Z(t),K(t)), t ≥ 0},
where Z(t) = Lk, τk ≤ t < τk +1, and K(t) = Jk, τk ≤
t < τk + 1. Obviously, {(Z(t),K(t)), t ≥ 0} should be
a semi-Markov process having {(Lk, Jk), k ≥ 1} for its
embedded Markov chain. Let wm,i be the expected time
that the semi-Markov process is in state (m, i). Then, we
have wm,i = 1/λ for all (m, i) ∈ Ω. Let

fm,i = lim
t→∞P{(Z(t),K(t)) = (m, i)},

that is, fm,i denotes the limiting probability that the
semi-Markov process is in state (m, i). From the theory
of semi-Markov processes (see Gross et al., 2008, p. 298),
we have

fm,i =
πm,iwm,i

n∑

j=1

∞∑

h=0

πh,jwh,j +
N−1∑

h=0

πh,0wh,0

.

Substitutingwm,i = 1/λ into the above equation, we have

fm,i =
πm,i

n∑

j=1

∞∑

h=0

πh,j +
N−1∑

h=0

πh,0

= πm,i.

Define AE as the elapsed interarrival time of
customers at an arbitrary epoch in steady state. Then, the
density function of AE is λ(1−A(t)). Let δi,h denote the
probability that h customers are served and no disasters
occur during AE .

According to Gross et al. (2008, p. 292), the limiting
distribution of L(t) has the following expressions:

Pk

=
∑

(j,i)∈Ω

fj,i

n∑

m=0

∫ ∞

0

P (required changes in t

to bring state from (j, i) to (k,m) )λ(1 −A(t)) dt

for k > 0. For m ≥ N , using the relationship between

{L(t), t ≥ 0} and {(Z(t),K(t)), t ≥ 0}, we have

Pm+1 =

n∑

i=1

∞∑

h=m

fh,iδh−m

=

n∑

i=1

∞∑

h=m

π0,0KN,iα
h
i

∫ ∞

0

(μit)
h−m

(h−m)!
e−μite−ηitλP (A > t) dt

=

n∑

i=1

π0,0KN,iα
m
i

∫ ∞

0

e−(μi+ηi−αiμi)tλ(1 − P (A < t)) dt

=

n∑

i=1

π0,0KN,iα
m
i λ

1−A∗(μi + ηi − αiμi)

μi + ηi − αiμi

=

n∑

i=1

π0,0KN,iα
m
i λ

1− αi

μi + ηi − αiμi
.

(6)

For 1 ≤ m ≤ N , let

εm,N =

{
0, m = N,

1, 1 ≤ m < N.

We obtain

Pm =fm−1,0εm,N +

n∑

i=1

fN−1,0qiδi,N−m

+
n∑

i=1

∞∑

h=m−1

fh,iδi,h+1−m

=πm−1,0εm,N +

n∑

i=1

πN−1,0qiδi,N−m

+

n∑

i=1

( ∞∑

h=m−1

π0,0KN,iα
h
i δi,h+1−m

−
N−1∑

h=m−1

π0,0KN−h−1,iδi,h+1−m

)

=πm−1,0εm,N

+

n∑

i=1

( ∞∑

h=m−1

π0,0KN,iα
h
i δi,h+1−m

−
N−2∑

h=m−1

π0,0KN−h−1,iδi,h+1−m

)

=π0,0εm,N −
n∑

i=1

N−2∑

h=m−1

π0,0KN−h−1,iδi,h+1−m

+

n∑

i=1

π0,0KN,iα
m−1
i λ

1−A∗(μi + ηi − αiμi)

μi + ηi − αiμi
.

(7)
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In order to simplify (7), we first give the following
lemma.

Lemma 1. The relationships between bi,h and δi,h are
given by

bi,0 = 1− μi + ηi
λ

δi,0,

bi,h =
μi

λ
δi,h−1 − μi + ηi

λ
δi,h, h ≥ 1.

Proof. We use integration by parts to yield the following
relationships between bi,h and δi,h:

bi,0 =

∫ ∞

0

e−(ηi+μi)t dA(t)

= 1− μi + ηi
λ

δi,0,

bi,h =

∫ ∞

0

e−ηit
(μit)

h

h!
e−μit dA(t)

=
μi

λ
δi,h−1 − μi + ηi

λ
δi,h, h ≥ 1.

�
Let

Ei =
μi

λ
, Fi =

μi + ηi
λ

.

By Lemma 1, Eqns. (5b) and (5c) can be rewritten as
follows:

KN−m−1,i

= bi,0KN−m,i +

N−m−1∑

h=1

bi,N−m−hKh,i

= bi,0KN−m,i + bi,1KN−m−1,i + · · ·
+ bi,N−m−1K1,i

= KN−m,i − Fi(δi,0KN−m,i + · · ·
+ δi,N−m−1K1,i)

+ Ei(δi,0KN−m−1,i + · · ·
+ δi,N−m−2K1,i),

(8)

where 1 ≤ m ≤ N − 1.
Further, using a recursion method similar to that by

Lim et al. (2013), Eqn. (8) can be recursively calculated
starting from m = N − 1, which yields

N−2∑

h=m−1

KN−h−1,iδi,h+1−m

=
N−m−1∑

k=0

Ek
i

F k+1
i

(KN−m−k,i −KN−m−k−1,i).

(9)

Substituting (9) into (7), we can obtain the expression of
Pm for 1 ≤ m ≤ N ,

Pm

= π0,0εm,N +

n∑

i=1

π0,0KN,iα
m−1
i λ

1− αi

μi + ηi − αiμi

−
n∑

i=1

N−m−1∑

k=0

Ek
i

F k+1
i

(KN−m−k,i −KN−m−k−1,i).

(10)

Finally,

P0 = 1−
∞∑

m=1

Pm.

Next, we summarize the stationary queue length
distribution at arbitrary epochs in the following theorem.

Theorem 2. The stationary queue length distribution at
arbitrary epochs is given as follows:

Pm+1 =

n∑

i=1

π0,0KN,iα
m
i λ

1− αi

μi + ηi − αiμi
, m ≥ N,

Pm =

n∑

i=1

π0,0KN,iα
m−1
i λ

1− αi

μi + ηi − αiμi

−
n∑

i=1

N−m−1∑

k=0

Ek
i (KN−m−k,i −KN−m−k−1,i)

F k+1
i

+ π0,0εm,N , 1 ≤ m ≤ N,

P0 =1−
∞∑

m=1

Pm.

where αi is the unique root of the equation

z = A∗(μi + ηi − μiz), i = 1, 2, . . . , n

in the range 0 < z < 1,

Ei =
μi

λ
, Fi =

μi + ηi
λ

.

5. Stationary sojourn time distribution

By introducing a tagged customer, we will obtain the LST
of the stationary sojourn time of an arbitrary customer
under the first-come-first-served (FCFS) discipline, where
the sojourn time is defined as the period from the time it
enters into the system until departure, either by occurrence
of a disaster or by its service completion. Let W and
W ∗(s) denote the stationary sojourn time of an arbitrary
customer and its LST, Di denote the random variable of
the duration of time during which the system resides in
service phase i, i = 1, 2, . . . , n, Bi,h denote the total
service times of h customers in service environment i. In
order to obtain the LST of the sojourn time of an arbitrary
customer W ∗(s), we consider two cases:

Case 1: The tagged customer arrives in state (h, 0), 0 ≤
h ≤ N−1. Then the sojourn time of this tagged customer
consists of the time taken for N − h − 1 customers to
arrive and either the inter-arrival of a disaster or the total
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service time of h + 1 customers in operative phase i, i =
1, 2, . . . , n, i.e., W1,i = (N−h−1)A+min(Bi,h+1, Di).

Case 2: The tagged customer arrives in state (h, i), h ≥
0, i = 1, 2, . . . , n. Then the sojourn time of this tagged
customer is the time taken as either the inter-arrival of
a disaster or the total service time of h + 1 customers
in operative phase i, i = 1, 2, . . . , n, i.e., W2 =
min(Bi,h+1, Di).

Combining the two cases, we have

W ∗(s) =
N−1∑

h=0

n∑

i=1

πh,0qiW
∗
1,i(s)

+

n∑

i=1

∞∑

h=0

πh,iW
∗
2 (s)

=

N−1∑

h=0

πh,0[A
∗(s)]N−h−1

×
n∑

i=1

qiE
[
e−smin{Bi,h+1,Di}

]

+

n∑

i=1

∞∑

h=0

πh,iE
[
e−smin{Bi,h+1,Di}

]
,

(11)

where

N−1∑

h=0

πh,0[A
∗(s)]N−h−1

n∑

i=1

qiE
[
e−smin{Bi,h+1,Di}

]

= π0,0

n∑

i=1

N−1∑

h=0

[A∗(s)]N−h−1
qi

× ηi + s[B∗
i (s+ ηi)]

h+1

s+ ηi

= π0,0

( n∑

i=1

qiηi
s+ ηi

1− [A∗(s)]N

1−A∗(s)

+

n∑

i=1

qis

s+ ηi

× B∗
i (s+ ηi)[[A

∗(s)]N − [B∗
i (s+ ηi)]

N
]

[A∗(s)−B∗
i (s+ ηi)]

)
,

n∑

i=1

∞∑

h=0

πh,iE
[
e−smin{Bi,h+1,Di}

]

=

n∑

i=1

∞∑

h=0

ηi
s+ ηi

πh,i

+
n∑

i=1

sB∗
i (s+ ηi)

s+ ηi
πi(B

∗
i (s+ ηi)),

with
B∗

i (s+ ηi) =
μi

s+ ηi + μi
,

πi(B
∗
i (s+ ηi)) =

∞∑

k=0

πk,i[B
∗
i (s+ ηi)]

k
.

The expected sojourn time of an arbitrary customer
is

E[W ] = −dW ∗(s)
ds

|s=0

= π0,0

n∑

i=1

[

N
qi
ηi

+
qiN(N − 1)

2λ

]

− π0,0

n∑

i=1

qi
ηi

B∗
i (ηi)[1 − [B∗

i (ηi)]
N
]

1−B∗
i (ηi)

+ π0,0

n∑

i=1

(
KN,i

1− αi
−

N−1∑

h=0

KN−h−1,i

)
1

ηi

−
n∑

i=1

B∗
i (ηi)

ηi
π0,0

[

KN,i
1

1− αiB∗
i (ηi)

−
N−1∑

k=0

KN−k−1,i[B
∗
i (ηi)]

k

]

.

(12)

6. Length of working time in a cycle

In this section, we mainly focus on the LST of the
length of the server’s working time in a cycle. To avoid
terminological confusion, we define a cycle as the time
between two consecutive instants at which the inoperative
environment commences, and the working time is the time
interval during which the server is busy in an operative
service environment (it does not contain the time that the
server is idle). Let C denote the length of a cycle, U
denote the working time in a cycle, Ui denote the working
time of the server in operative service environment i,
Hi,h, h ≥ 1, i = 1, 2, . . . , n denote the length of
busy period caused by h customers in operative service
environment i. Since the interarrival times of customers
follow a general distribution, the memoryless property is
no longer satisfied. We further define AR as the residual
lifetime of an interarrival time.

From the work of Haviv (2013, p. 24) or Cohen
(1982), we know that AE and AR have the same limiting
distribution, so the density function of AR is also equal to
λ(1 − A(t)). Similarly to the analysis by Jiang and Liu
(2017), according to our assumptions and the ordering of
various times (time to a disaster, residual lifetime of next
interarrival time, overall time of busy period), Ui can be
obtained as follows:

Ui =

{
V1, Hi,N > Di,

V2 + Ui,0, Hi,N < Di,

where V1 = (Di|Hi,N > Di) and V2 = (Hi,N |Hi,N <
Di),
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Ui,0 =

{
0, AR > Di,

T, AR < Di,

T =

{
T1, Hi,1 > Di,

T2 + Ui,0, Hi,1 < Di,

T1 = (Di|Hi,1 > Di), T2 = (Hi,1|Hi,1 < Di).

First, the LST of T1 and T2 can be obtained by

T ∗
1 (s) = E[e−sDi |Hi,1 > Di]

=
ηi

s+ ηi

1−H∗
i,1(s+ ηi)

P (Hi,1 > Di)
,

T ∗
2 (s) = E[e−sHi,1 |Hi,1 < Di]

=
H∗

i,1(s+ ηi)

P (Hi,1 < Di)
.

Then, substituting T ∗
1 (s) and T ∗

2 (s) into

T ∗(s) = P (Hi,1 > Di)T
∗
1 (s)

+ P (Hi,1 < Di)T
∗
2 (s)U

∗
i,0(s),

we have

T ∗(s) =
ηi

s+ ηi
(1−H∗

i,1(s+ ηi))

+H∗
i,1(s+ ηi)U

∗
i,0(s).

Further, substituting T ∗(s) into

U∗
i,0(s) = P (AR > Di)E[e−s0] + P (AR < Di)T

∗(s),

we have

U∗
i,0(s) = P (AR > Di)E[e−s0]

+ P (AR < Di)T
∗(s)

= P (AR < Di)
[ ηi
s+ ηi

(1−H∗
i,1(s+ ηi))

+H∗
i,1(s+ ηi)U

∗
i,0(s)

]
+ P (AR > Di)

i.e.,

U∗
i,0(s) =

(s+ ηi)P (AR > Di)

(s+ ηi)[1− P (AR < Di)H∗
i,1(s+ ηi)]

+
+ηiP (AR < Di)[1−H∗

i,1(s+ ηi)]

(s+ ηi)[1− P (AR < Di)H∗
i,1(s+ ηi)]

,

where

P (AR < Di) =
λ

ηi
[1−A∗(ηi)],

P (AR > Di) =
ηi − λ[1−A∗(ηi)]

ηi
.

After some calculations, we can derive the result for
U∗
i,0(s).

Finally, with the same method

V ∗
1 (s) = E[e−sDi |Hi,N > Di]

=
ηi

s+ ηi

1−H∗
i,N (s+ ηi)

P (Hi,N > Di)
,

V ∗
2 (s) = E[e−sHi,N |Hi,N < Di]

=
H∗

i,N (s+ ηi)

P (Hi,N < Di)
.

Substituting V ∗
1 (s) and V ∗

2 (s) into U∗
i (s) =

P (Hi,N > Di)V
∗
1 (s) +P (Hi,N < Di)V

∗
2 (s)U

∗
i,0(s), we

have

U∗
i (s) =

ηi
s+ ηi

(1 −H∗
i,N (s+ ηi))

+H∗
i,N (s+ ηi)U

∗
i,0(s).

In fact, H∗
i,1(s) and H∗

i,N (s) have very complex
expressions, and the results can be seen in Cohen (1982)
(see page 227).

Once U∗
i (s) is derived, the LST of U can be obtained

by

U∗(s) =
n∑

i=1

qiU
∗
i (s).

7. Numerical examples

In this section, we show some numerical examples for
the present queueing model. We first assume that the
interarrival times of customers follow an exponential
distribution with parameter λ. Then, the system translates
into an M/M/1 queue in a multi-phase service environment
with disasters and an N-policy. Accordingly, αi is the
unique root of μi(1− z)z + (λ+ ηi)z − λ = 0 in (0, 1),
and an immediate result is

αi =
(λ+ μi + ηi)−

√

(λ+ μi + ηi)
2 − 4λμi

2μi
,

i = 1, 2, . . . , n.

Using (5a)–(5d) and the transition probabilities, we
can derive the constant values of Km,i, for m =
0, 1, . . . , N and i = 1, 2, . . . , n. In succession, the
stationary queue length distribution at arbitrary epochs
and the sojourn time distribution of an arbitrary customer
can be respectively obtained by Theorem 2 and Eqn.
(12). Similarly, when the interarrival time distribution is
2-Erlangian or deterministic, αi is the unique root of

z =
λ2

[λ+ ηi + μi(1− z)]
2

or
z = e−

ηi+μi(1−z)

λ
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in (0, 1). The stationary queue length distribution at
arbitrary epochs and the sojourn time distribution can be
obtained by the same method.

From a practical perspective, a very useful measure
is the sojourn time of an arbitrary customer. Hence, in
the following content, we will present some figures to
show the impact of parameters on the expected sojourn
time E[W ] for an N-policy M/M/1 queue in a multi-phase
service environment with disasters. With no loss of
generality, we assume n = 2, N = 3, and the system
parameters μ1 = 1.5, η1 = 0.6. Figure 1 shows the
impact of arrival rate λ on the expected sojourn time
E[W ] for different values of η2. From Fig. 1, we can
easily find that the expected sojourn time of an arbitrary
customer E[W ] decreases with an increase in λ for any
given values of η2. It is obvious that, if λ is fixed, the
bigger η2 is, the larger E[W ] becomes.

Next, in Fig. 2, we pay attention to the curves of
the expected sojourn time E[W ] with a change in the
probability q1 for different values of η2. From Fig. 2,
we find that the expected sojourn time of an arbitrary
customer E[W ] increases with an increase in q1 for any
given value of η2. Obviously, we also see that as q1
approaches 1, E[W ] tends to a fixed value irrespective of
the value of η2. It is reasonable that when q1 reaches 1,
the queue reduces to a classic N-policy M/M/1 queue in
a 2-phase service environment, and η2 has no impact on
E[W ].

In Fig. 3, we plot the trend of the change in E[W ]
as μ2 increases from 1.2 to 2.5. From Fig. 3, we find
that the expected sojourn time of an arbitrary customer
E[W ] decreases with an increase in μ2 for any given
value of η2, which is identical to the intuitive expectations.
Although we only concentrate on showing the impact of
the parameters on the mean sojourn time, we believe that
similar results may exist for other performance measures.
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Fig. 1. Expected sojourn time of an arbitrary customer E[W ]
vs. λ (q1 = 0.6, μ2 = 2).

In order to find the optimal value of N , we finally
investigate the following cost structure by considering
holding cost for each customer per unit time ch as well
as a setup cost per cycle cs. Then the objective function
for minimizing the total cost per unit time can be obtained
as follows:

min
N≥1

TC(N) = min
N≥1

(

chE[L] + cs
1

E[C]

)

,

where E[L] denotes the expected number of customers in
the system, E[C] denotes the expected duration of a cycle.
According to Lim et al. (2013), 1/E[C] can be expressed
by λπ0,0. Then the expression of the total cost per unit
time can be rewritten as

min
N≥1

TC(N) = min
N≥1

(chE[L] + csλπ0,0).

Next, we examine the impact of N on the total cost
per unit time. With no loss of generality, we assume that
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Fig. 2. Expected sojourn time of an arbitrary customer E[W ]
vs. q1 (λ = 1, μ2 = 2).
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Fig. 3. Expected sojourn time of an arbitrary customer E[W ]
vs. μ2 (λ = 1, q1 = 0.6).
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q1 = 0.6, λ = 1, μ1 = 1.5, μ2 = 2, η1 = 0.6, cs =
3, ch = 0.1 and pay attention to the curves of the total
cost per unit time with the change in N from 3 to 12
for different values of η2. From Fig. 4, we find that the
total cost per unit time is a convex function of N , which
is expected.

A smaller N can be effective to reduce the cost since
E[L] is an increasing function of N and bigger N can
be effective to save the cost since 1/E[C] is a decreasing
function of N . Then there exists a trade-off which leads to
finding an optimal value of N to minimize the total cost,
i.e., as N is smaller, the part csλπ0,0 may play a dominant
role in increasing the cost, and as N becomes bigger, the
part chE[L] may play a dominant role in increasing the
cost. Furthermore, we can obtain an optimal value of N
to minimize the total cost, i.e., for η2 = 0.4, as N = 5,
the total cost has minimum value 0.6674 and for η2 =
0.6, 0.8, as N = 6, the total cost has minimum values
0.6949 and 0.7050.
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Fig. 4. Total cost in per unit time over N for different values of
η2.

8. Conclusion and future research
directions

In this paper, a single server N-policy GI/M/1 queue
in a multi-phase service environment with disasters has
been considered in terms of the embedded Markov
chain method and a trial solution approach following
the idea presented by Lim et al. (2013). We have
focused our analysis on the stationary queue length
distribution at arrival epochs, which is an important aspect
in dealing with the GI/M/1 models. Furthermore, by using
the preceding results and considering the semi-Markov
process, we have obtained the stationary queue length
distribution at arbitrary epochs. In addition, the LST
of the stationary sojourn time of an arbitrary customer
and the working time in a cycle have also been obtained.
Finally, we have given some numerical examples for the

considered queueing model. We expect that the results
and the method can be applied to more queueing systems.

Apart from the results obtained by the present
queueing model, many interesting and important topics
on this queueing model have not yet been fully explored.
It would be interesting to consider further extensions of
the present queueing model. One direction is to consider
the case that service times or time till disaster occurrence
(or both) have a phase-type distribution. Despite the
structure of the transition matrix will be retained, however,
the scalars will become matrices, so we need to find
some algorithmic solution for computing the various
distributions of interest.

Another interesting direction for future research is
to take a non-zero repair time into consideration. At
the end of the repair time, the server starts working if
there are at least N jobs in the system, or, if less than
N customers arrived during the repair time, the server
stays dormant until the N -th arrival occurs. Only then the
server will start working again. A detailed analysis of this
case requires a separate discussion and is left for future
research.
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