
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 2, 387–397
DOI: 10.2478/amcs-2018-0029

CLOSEST PATHS IN GRAPH DRAWINGS UNDER AN ELASTIC METRIC

MATEUSZ BARAN a

aFaculty of Physics, Mathematics and Computer Science
Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

e-mail: mbaran@pk.edu.pl

This work extends the dynamic programming approach to calculation of an elastic metric between two curves to finding
paths in pairs of graph drawings that are closest under this metric. The new algorithm effectively solves this problem when
all paths between two given nodes in one of these graphs have the same length. It is then applied to the problem of pattern
recognition constrained by a superpixel segmentation. Segmentations of test images, obtained without statistical modeling
given two shape endpoints, have good accuracy.

Keywords: elastic shape analysis, pattern recognition, superpixel segmentation.

1. Introduction

Many of the most common approaches to shape
representation in computer vision are based on
landmarks (Dryden and Mardia, 1998; Cootes
et al., 1995). While they are very successful, the
problem of selection and identification of landmarks has
not been satisfactorily solved (Zhang and Golland, 2016).
An alternative shape representation is offered by the
developing area of elastic shape analysis pioneered by
Younes (1998). In this framework shapes are represented
in a parametrization-invariant way, removing the problem
of matching landmarks and providing a continuous
object boundary. Recent developments (Michor and
Mumford, 2006; Mio et al., 2007; Sundaramoorthi
et al., 2011; Younes, 2012; Srivastava et al., 2012; Turaga
and Srivastava, 2016), including the square root velocity
function representation (Joshi et al., 2007), bring a
method for effective computation of elastic distance
between shapes.

In certain fields, e.g., pattern recognition, image
segmentation (Kowal and Filipczuk, 2014), robot path
planning (Švestka and Overmars, 1998) or shape
retrieval (Van and Le, 2016), an efficient method of
finding a closest pair of paths from two collections
described by graphs could expand the applicability of
elastic metrics. The primary motivation behind this paper
is pattern recognition using a superpixel segmentation
of an image (Neubert and Protzel, 2014). Such a

segmentation can be regarded as a constraint to possible
shapes that can be found in an image (Mori et al., 2004).
By regarding such segmentation as a drawing of a graph,
one can find a shape that matches a pattern curve the best
using the algorithm described in this paper.

In this work an extension to the well-known dynamic
programming algorithm for the computing elastic distance
is developed. Instead of comparing two given curves, the
new algorithm can select two curves that are closest under
an elastic metric among drawings of all paths between
selected nodes in planar graphs. The conditions for
the existence of an efficient algorithm are theoretically
analyzed and a positive result is reported for a class of
graphs of practical importance.

Section 2 introduces the translation- and
reparametrization-invariant elastic metric on the space of
curves and a method of its calculation. Section 3 develops
an extension of an elastic curve matching method to
planar graphs. Experiments applying the new algorithm
to pattern recognition are described in Section 4. Finally,
the paper is summarized in Section 5.

2. Elastic shape analysis

2.1. Curve representation. Let f : [0, 1] → R
2 be a

planar curve. The square root velocity (SRV) of this curve
is given by a function q : [0, 1] → R

2 defined by (Joshi
et al., 2007)

q(t) ≡ F (ḟ(t)), (1)

mbaran@pk.edu.pl

388 M. Baran

where F (v) = v/
√‖v‖ if ‖v‖ �= 0 and 0 otherwise.

A function γ : [0, 1] → [0, 1] is a reparametrization
of the curve f when it is a diffeomorphism that preserves
the orientation (γ(0) = 0). The set of all such functions
is called Γ. The SRV of the reparametrized curve f ◦ γ is
equal to

(q · γ)(t) ≡ F

(
d

dt
f(γ(t))

)
= q(γ(t))

√
γ̇(t). (2)

Standard metrics, like the L2([0, 1],R2) metric, are
not reparametrization-invariant, i.e., ‖f1 ◦ γ1 − f2 ◦ γ2‖2,
where f1, f2 ∈ L2([0, 1],R2) are any two given functions
and γ1, γ2 are their respective reparametrizations, depends
on both γ1 and γ2. The SRV representation provides a
simple way to define a partially invariant metric

dcpre(q1, q2) =

√∫ 1

0

‖q1(t)− q2(t)‖22 dt, (3)

where ‖·‖2 is the Euclidean norm in R
2. The partial

invariance can be observed as follows. Let γ be a
reparametrization. Then

(
dcpre(q1 · γ, q2 · γ)

)2

=

∫ 1

0

‖(q1 · γ)(t)− (q2 · γ)(t)‖22 dt

=

∫ 1

0

‖(q1 ◦ γ)(t)− (q2 ◦ γ)(t)‖22γ̇(t) dt

=

∫ 1

0

‖q1(t)− q2(t)‖22 dt =
(
dcpre(q1, q2)

)2
,

(4)

where the next to last step involved integration by
substitution. Now, a fully reparametrization-invariant
metric (an elastic metric) can be defined by minimization
over Γ:

dc(q1, q2) ≡ min
γ∈Γ

dcpre(q1, q2 · γ), (5)

where the conditions quaranteeing metric and
reparametrization-invariance can be proved using
the fact that Γ with function composition is a group.
More details can be found in the work of Srivastava and
Klassen (2016).

2.2. Calculation of a discretized version of dc.
In general, there is no method that allows for exact
determination of the value of the elastic metric dc for a
given pair of curves. The usual approach is to limit the
set Γ of reparametrizations to a certain finite subset and
perform the minimization using a dynamic programming
algorithm (Srivastava et al., 2011; Bernal et al., 2016).
The version described in this work is a minor modification
of Algorithm 58 by Srivastava and Klassen (2016), with
explicit detection of an incorrect discretization and Nij

redefined in terms of a set σ. Algorithm 1 describes
the procedure for two functions with SRV representations
q1, q2 discretized at 0 = t1,0 < t1,1 < · · · <
t1,M1 = 1 and 0 = t2,0 < t2,1 < · · · < t2,M2 =
1. The parameter σ encodes allowed slopes of the
discretized, piecewise-linear reparametrization γ. The
function Q, describing the discretized dcpre distance of two
reparametrized pieces of q̂1 and q̂2, is defined by

Q(i, j, k, l) = I(t1,i−k, t1,i, t2,j−l, t2,j, q̂1, q̂2), (6)

where functions q̂1 and q̂2 are SRV representations of first
order spline interpolants to curves represented by q1, q2
sampled at points {t1,i}M1

i=0 and {t2,i}M2

i=0, respectively.
Some authors (Doğan et al., 2015) use higher-order
interpolation but smoothness cannot be maintained at
nodes of a graph (as described in Section 3.1) in the same
way continuity can. The function I is the trapezoidal
quadrature of dcpre:

I(t1,i−k, t1,i, t2,j−l, t2,j , q̂1, q̂2)

=

∫ t1,i

t1,i−k

‖q̂1(t)− q̂2(γ(t))
√

γ̇(t)‖22 dt,
(7)

where

0 ≤ i− k < i ≤ M1, 0 ≤ j − l < j ≤ M2

and

γ(t) = t2,j−l +
t2,j − t2,j−l

t1,i − t1,i−k
(t− t1,i−k).

3. Methods

The new algorithm presented in this paper extends the
elastic shape analysis framework (Srivastava et al., 2011)

Fig. 1. Pair of graphs G1 (left) and G2 (right) with a pair of
most similar paths between (0,0) and (12,10) drawn in
a solid line. Other edges are drawn as dashed lines and
the corresponding nodes are connected with dotted lines.
Here σ = {(1, 1), (1, 2), (2, 1)}.

Closest paths in graph drawings under an elastic metric 389

Algorithm 1. Dynamic programming calculation of
dc(q1, q2) discretized at arguments {t1,i}M1

i=0, {t2,i}M2

i=0.

Require: {t1,i}M1

i=0, {t2,i}M2

i=0, q̂1, q̂2, σ
1: E(0, 0) := 0
2: P (i, j) := (−1,−1) for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2

3: for i ∈ {0, 1, . . . ,M1} do
4: for j ∈ {0, 1, . . . ,M2} do
5: if (i, j) �= (0, 0) then
6: for (k, l) ∈ σ do
7: if i − k ≥ 0 and j − l ≥ 0 then
8: E(i, j, k, l) := E(k, l) +Q(i, j, k, l)
9: else

10: E(i, j, k, l) := ∞
11: end if
12: end for
13: E(i, j) = min(k,l)∈σ E(i, j, k, l)
14: if E(i, j) < ∞ then
15: (kopt, lopt) = argmin(k,l)∈σ E(i, j, k, l)
16: P (i, j) = (i− kopt, j − lopt)
17: end if
18: end if
19: end for
20: end for
21: (i1, i2) := (M1,M2)
22: γd := {(i1, i2)} {Discrete reparametrization}
23: while (i1, i2) �= (0, 0) do
24: (i1, i2) := P (i1, i2)
25: if (i1, i2) �= (−1,−1) then
26: PREPEND(γd, (i1, i2))
27: else
28: return “ERROR” {There are no

reparametrizations satisfying given constraints.}
29: end if
30: end while
31: return E(M1,M2), γd {Returns cost and a reparam-

etrization that realizes this cost.}

to planar graphs. Figure 1 shows sample input and output
of this algorithm. A pair of most similar paths in graphs
G1, G2 under the discretized elastic metric is found as
well as the correspondence between nodes of these paths.
The set σ constrains how many edges in one path may
correspond to how many edges in the other one. Each pair
(i, j) in σ means that i consecutive edges in a path in G1

may correspond to j consecutive edges in a path in G2.

3.1. Notation. Let two directed graphs G1 =
(V1, E1), G2 = (V2, E2) be given with their planar
drawings defined by vertex position functions φk : Vk →
R

2 and edge functions ξk : Ek → L2([0, 1],R2) for k =
1, 2. It is assumed that the edges cross only at vertices,
that is, ξk(e1)(t1) = ξk(e2)(t2) for e1, e2 ∈ Ek implies
that t1, t2 ∈ {0, 1} and that there is a vertex v ∈ Vk such

that φk(v) = ξk(e1)(t1) for k = 1, 2. It is known that
all planar graphs have such a representation, even limiting
edges to straight lines (Fáry, 1948; Tutte, 1960; 1963).

The new algorithm, described further, reduces the
problem of finding a pair of most similar paths to a
minimum weighted average path problem in a specially
constructed graph, called the σ-product of graphs G1

and G2. This fact is formally stated in Theorem 1.
Definitions 1–3 describe the construction of the σ-product
of two graphs.

Definition 1. (σ-Pair of paths between (vb,1, vb,2) and
(ve,1, ve,2)) Let σ be a set of pairs of positive integers.
Then a pair of paths (sequences of edges) p1 in a digraph
G1 = (V1, E2), p2 in a digraph G2 = (V2, E2) is called a
σ-pair of paths between (vb,1, vb,2) and (ve,1, ve,2) if and
only if

• p1 starts in vb,1 and ends in ve,1,

• p2 starts in vb,2 and ends in ve,2,

• if p1 has l1 edges and p2 has l2 edges, the pair (l1, l2)
belongs to σ.

Definition 2. (Sequence of σ-pairs) If for each i =
1, 2, . . . , N a pair (p1,i, p2,i) is a σ-pair of paths between
(v1,i−1, v2,i−1) and (v1,i, v2,i) in digraphs G1, G2, then
(p1,i, p2,i)

N
i=1 is a sequence of σ-pairs of paths in G1, G2.

Considering path drawings as curves requires a
way to parametrize them. It is facilitated by functions
Δtk : Ek → R for k = 1, 2. They could, for simplicity, be
equal to 1 for each edge. On the other hand, it is natural
to parametrize curves by their arc length. In this case

Δtk(ek) =

∫ 1

0

√√√
√

2∑

d=1

(
dξk,d(ek)

dt
(t)

)2

dt, (8)

where ξk,1(ek)(t) and ξk,2(ek)(t) for t ∈ [0, 1] are the
coordinates of ξk(ek)(t) in the standard basis of R2 and
ek is an edge from the set Ek for k = 1, 2.

Definition 3. (σ-Product) The σ-product of two digraphs
G1 = (V1, E1), G2 = (V2, E2) with drawings φ1, ξ1, φ2,
ξ2 is a weighted digraph G1 ×σ G2 = (V,E,w) such that

• the set of vertices of the product graph is the
Cartesian product of the sets of vertices of graphsG1,
G2, that is V = V1 × V2;

• an edge ((vb,1, vb,2), (ve,1, ve,2)) belongs to the set
E of edges of the product graph if and only if there
is a pair of σ-paths p1, p2 between (vb,1, vb,2) and
(ve,2, ve,2);

390 M. Baran

• assuming that wI(e) corresponding to an edge e =
(vb,1, vb,2), (ve,2, ve,2) is the minimum value of

I
(
0, 1, 0, 1, ηq1(p1), η

q
2(p2)

√√
√
√
√
√
√√

n2,0∑

j=1

Δt2(e2,0,j)

n1,0∑

j=1

Δt1(e1,0,j)

)
,

(9)
where ηq1(p1) and ηq2(p2) are SRV representations
of functions defined by Eqn. (14), over all σ-pairs
(p1, p2) = ((e1,0,j)

n1,0

j=1 , (e2,0,j)
n2,0

j=1) of paths
between (vb,1, vb,2) and (ve,2, ve,2), the weight w(e)
of an edge e is the pair

w(e) =
(
wI(e),

n1,0∑

j=1

Δt1(e1,0,j)
)
, (10)

where ((e1,0,j)
n1,0

j=1 , (e2,0,j)
n2,0

j=1) is the σ-pair of paths
that minimizes the value of (9) for the edge e.

Using functions Δtk it is possible to define drawings
of paths in a σ-product and their SRV representations. For
a sequence of σ-pairs p = ((e1,i,j)

n1,i

j=1, (e2,i,j)
n2,i

j=1)
N
i=1 in

graphs G1 = (V1, E1), G2 = (V2, E2), the considered
functions of p are split at points Tk,i(p) ∈ [0, 1] defined
by

Tk,i(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if i = 0,
i∑

z=1

nk,z∑

j=1

Δtk(ek,z,j)

N∑

z=1

nk,z∑

j=1

Δtk(ek,z,j)

if i > 0
(11)

for k = 1, 2 and i = 0, 1, . . . , N and

Tk,i,j(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if j = 0,
j∑

w=1
Δtk(ek,i,w)

nk,i∑

w=1
Δtk(ek,i,w)

if j > 0
(12)

for k = 1, 2, i = 1, . . . , N and j = 0, 1, 2, . . . , nk,i.

The drawings of a sequence of σ-pairs of paths
p = ((e1,i,j)

n1,i

j=1, (e2,i,j)
n2,i

j=1)
N
i=1 in graph G1 = (V1, E1),

G2 = (V2, E2) in R
2, denoted by ρ1(p) and ρ2(p), are

defined by

ρk(p)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηk((ek,1,j)
nk,1

j=1)
(

t−Tk,0(p)
Tk,1(p)−Tk,0(p)

)

if Tk,0(p) ≤ t < Tk,1(p),

ηk((ek,2,j)
nk,2

j=1)
(

t−Tk,1(p)
Tk,2(p)−Tk,1(p)

)

if Tk,1(p) ≤ t < Tk,2(p),
...

ηk((ek,N,j)
nk,N

j=1)
(

t−Tk,N−1(p)
Tk,N (p)−Tk,N−1(p)

)

if Tk,N−1(p) ≤ t ≤ Tk,N (p)

(13)

for k = 1, 2, where ηk is defined by

ηk((ek,i,j)
nk,i

j=1)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξk(ek,i,1)
(

t−Tk,i,0(p)
Tk,i,1(p)−Tk,i,0(p)

)

if Tk,i,0(p) ≤ t < Tk,i,1(p),

ξk(ek,i,2)
(

t−Tk,i,1(p)
Tk,i,2(p)−Tk,i,1(p)

)

if Tk,i,1(p) ≤ t < Tk,i,2(p),
...

ξk(ek,i,nk,i
)
(

t−Tk,i,nk,i−1(p)

Tk,i,nk,i
(p)−Tk,i,nk,i−1(p)

)

if Tk,i,nk,i−1(p) ≤ t ≤ Tk,i,nk,i
(p),

(14)

for k = 1, 2, i = 1, 2, . . . , N .

The SRV representations of ρk(p), ηk((ek,i,j)
nk,i

j=1)
and ξk(ek,i,nk,i

) for k = 1, 2 and i = 1, 2, . . . , N
together with j = 1, 2, . . . , nk,i are respectively
denoted by ρqk(p), ηqk((ek,i,j)

nk,i

j=1) and ξqk(ek,i,nk,i
).

Additionally, any sequence of σ-pairs of paths p =
((e1,i,j)

n1,i

j=1, (e2,i,j)
n2,i

j=1)
N
i=1 defines a reparametrization

γ(p) : [0, 1] → [0, 1] as follows:

γ(p)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T2,1(p)−T2,0(p)
T1,1(p)−T1,0(p)

(t− T1,0(p)) + T2,0(p)

if T1,0(p) ≤ t < T1,1(p),
T2,2(p)−T2,1(p)
T1,2(p)−T1,1(p)

(t− T1,1(p)) + T2,1(p)

if T1,1(p) ≤ t < T1,2(p),
...

T2,N (p)−T2,N−1(p)
T1,N (p)−T1,N−1(p)

(t− T1,N−1(p)) + T2,N−1(p)

if T1,N−1(p) ≤ t ≤ T1,N(p).

(15)

The elastic distance dcpre between ρq1(p) and ρq2(p) ·

Closest paths in graph drawings under an elastic metric 391

γ(p) is equal to

(
dcpre(ρ

q
1(p), ρ

q
2(p) · γ(p))

)2

=

∫ 1

0

∥
∥ρq1(p)(t) − ρq2(p)(γ(p)(t))

√
˙γ(p)(t)

∥
∥2
2
dt

=

N∑

i=1

(T1,i(p)− T1,i−1(p))

×
∫ 1

0

∥
∥ηq1((e1,i,j)

n1,i

j=1)(τi)− ηq2((e2,i,j)
n2,i

j=1)(τi)

×
√∑n2,i

j=1 Δt2(e2,i,j)
∑n1,i

j=1 Δt1(e1,i,j)

∥
∥2
2
dτi

=

N∑

i=1

(T1,i(p)− T1,i−1(p))I
(
0, 1, 0, 1,

ηq1((e1,i,j)
n1,i

j=1), η
q
2((e2,i,j)

n2,i

j=1)

√√
√√
√
√
√
√

n2,i∑

j=1

Δt2(e2,i,j)

n1,i∑

j=1

Δt1(e1,i,j)

)
,

(16)

where

τi =
t− T1,i−1(p)

T1,i(p)− T1,i−1(p)
.

Each integral is equivalent to the value specified by
Eqn. (7). Note that if p corresponds to a path p̄ in a
σ-product of graphs, the obtained value is a weighted
average of weights of edges in p̄.

The algorithm, given two pairs of vertices vb,1, ve,2 ∈
V1, vb,2, ve,2 ∈ V2, finds a sequence of σ-pairs of paths
p = ((e1,i,j)

n1,i

j=1, (e2,i,j)
n2,i

j=1)
N
i=1 in, respectively, G1 and

G2 such that the distance between their drawings in R
2,

ρ1(p) and ρ2(p), defined by (13), is minimal with respect
to a discretized version of dc.

3.2. Algorithm. Algorithm 2 describes the procedure
of finding a pair of the closest paths in graphs G1,
G2 between (vb,1, vb,2) and (ve,2, ve,2). To remove the
dependence on scale and rotation, it is assumed that
their drawings satisfy the conditions φk(vb,k) = (0, 0)
and φk(ve,k) = (0, 1) for k = 1, 2. Any drawing
can be adjusted by a unique similarity transformation to
satisfy these conditions. The minimum weighted average
path search is performed using the generalized Dijkstra
algorithm for routing algebras (Dijkstra, 1959; Sobrinho,
2002; 2003; 2005). In this work a simplified notion of
a routing algebra is used, as described by Zubor et al.
(2014). A similar technique can be found in the work
of Wang et al. (2005), where a minimum (non-weighted)
average path algorithm is described.

Let A = (W,⊕,�) be a routing algebra. The set
W = {(x, y) : x ∈ R≥0, y ∈ R+}∪{(0, 0), (∞,∞)} is a

Table 1. Table of the binary operation ⊕.
⊕ (0, 0) (a, b) (∞,∞)

(0, 0) (0, 0) (a, b) (∞,∞)

(c, d) (c, d)
(

ab+cd
b+d

, b+ d
)

(∞,∞)

(∞,∞) (∞,∞) (∞,∞) (∞,∞)

set of pairs of numbers where the first one is nonnegative
and the other is strictly positive, together with an identity
element (0, 0) and a zero element (∞,∞). The binary
operation ⊕ is defined by Tab. 1 and the total order � is
the lexicographical order. Elements of the set W are used
as weights in the product graph G1 ×σ G2 = (V,E,w),
according to Eqn. (10). A path e1, e2, . . . , ez in that graph
for some z ≥ 1 is considered more optimal than a path
ê1, ê2, . . . , êẑ for some ẑ ≥ 1 if and only if

w(e1)⊕ w(e2)⊕ · · · ⊕ w(ez)

� w(ê1)⊕ w(ê2)⊕ · · · ⊕ w(êẑ), (17)

where w : E → A is the weight function given by
Eqn. (10). Finding an optimal path with respect to this
weight function corresponds to the optimal path problem
where the path cost is defined by (16). It is worth noting
that the choice of Δt1 over Δt2 follows from the same
choice in (7). This asymmetry has much more profound
consequences in the graphical setting.

The (commutative) routing algebra A is, in general,
neither monotonic nor isotonic.1 It is known that
commonly used optimal path algorithms do not guarantee
optimality for such routing algebras (Yang and Wang,
2008). This problem is not present in Algorithm 1 because
denominators in (11) and (12) are known in advance for
all possible paths from the start node to the end node.
The numerators, on the other hand, can be easily factored
into the edge weight. To see how, observe that in such a
case each element of the sum in (16) depends only on a
single edge of a product graph. Formally, let B = (R≥0 ∪
{∞},+,≤) be the routing algebra of the classical Dijkstra
algorithm and let the homomorphism of monoidal parts
of the routing algebras h : A → B be defined by
h((a, b)) = ab. In general, it is not a homomorphism
of routing algebras since it does not preserve the order.
When the homomorphism h preserves the order for all
paths between two given nodes, by replacing weights
of edges e ∈ E, w(e) ∈ A, by h(w(e)) ∈ B the
problem of finding an optimal path between these nodes
is reduced to the standard shortest path problem solvable
by Dijkstra’s algorithm. Furthermore, the optimal path
problem with the weight of an edge e ∈ E given by
h(w(e)) (without the assumption of order preservation)

1In the work of Zubor et al. (2014) these properties are called, re-
spectively, ‘non-decreasing’ and ‘monotone’. The more common choice
of words is used in the main text of this article.

392 M. Baran

can be interpreted as minimization of the product of the
length of the drawing of a path in G1 and the elastic
distance between its drawing and the drawing of a path
in G2. This interpretation can be potentially applicable to
simultaneous path planning for two robots (Švestka and
Overmars, 1998).

Algorithm 2. Finding the closest sequence of σ-pairs of
paths between (vb,1, vb,2) and (v,2, ve,2) in graphs G1 =
(V1, E1), G2 = (V2, E2).

Require: graphs G1 = (V1, E1), G2 = (V2, E2),
drawings φ1, ξ1, φ2, ξ2, vertices vb,1, ve,1 ∈
V1, vb,2, ve,2 ∈ V2, discretization σ.

1: V := V1 × V2 {Set of vertices V is the Cartesian
product of V1 and V2.}

2: E := {} {List of edges.}
3: w := {} {Weights of edges.}
4: for (u1, u2) ∈ V do
5: for each σ-pair of paths (p1, p2) starting in u1, u2

do

6: s :=

√∑
e2∈p2

Δt2(e2)
∑

e1∈p1
Δt1(e1)

7: W := I (0, 1, 0, 1, ηq1(p1), η
q
2(p2)s)

8: v1 := end of p1
9: v2 := end of p2

10: e := ((u1, u2), (v1, v2))
11: if e not in E or w[e] > W then
12: add e to E
13: w[e] := (W ,

∑
e1∈p1

Δt1(e1))
14: end if
15: end for
16: end for
17: (p1, p2), c := FIND-OPTIMAL-PATH (V,E,w, (vb,1,

vb,2), (ve,1, ve,2)) {Compute optimal path and its
cost.}

18: return p1, p2, c

Algorithm 2 builds the σ-product of input graphs
with weights from the routing algebra A and invokes a
procedure for finding an optimal path. This procedure can
either use a standard algorithm for algebra A and obtain
an approximate solution or, when applicable, employ the
homomorphism h and perform a standard shortest path
search in B. The correctness of Algorithm 2 in the second
case is asserted by Theorem 1. In particular, it follows
from the theorem that when both graphs G1, G2 are paths
algorithms 1 and 2 return the same results.

Theorem 1. If the optimal path finding procedure is
exact, then among all sequences of σ-pairs of paths in
digraphs G1, G2 between (vb,1, vb,2) and (ve,1, ve,2) the
one returned by Alg. 2 has the minimum elastic distance.

The proof is included in Appendix.

3.3. Computational complexity. In this analysis it is
assumed that the optimal path finding is performed using
the (generalized) Dijkstra algorithm. The computational
complexity of Algorithm 2 depends on sizes of graphs G1

and G2 as well as the set σ. Since both graphs are planar,
from the Euler formula the number of edges is linearly
bound by the number of vertices. The time complexity of
step 1 is O(|V1||V2| + k(σ,G1, G2)), where the number
of elements in a set V is denoted by |V | and k(σ,G1, G2)
is the number of σ-pairs of paths in graphs G1, G2. For
certain types of graphs this function grows exponentially
with the values of elements of pairs in σ which strongly
constrains their selection for practical purposes.

Since the digraph G = G1 ×σ G2 = (V,E)
has |V | = |V1||V2| vertices and no more than |E| ≤
min(|V |2, k(σ,G1, G2)) edges, the time complexity of
the second step is O(|E| + |V | log(|V |)) using the
Fibonacci heap-based Dijkstra algorithm (Fredman and
Tarjan, 1987). The total time complexity of Algorithm 2
is therefore O(|V | log(|V |) + k(σ,G1, G2)).

This is a significant improvement over
state-of-the-art approaches, as they would require
separate comparison of each pair of paths in G1, G2.
A well-known result in graph theory states that just
counting the number of paths between two vertices is a
#P-complete problem (Valiant, 1979), which makes the
approach feasible only for very simple graphs.

4. Experiments

One of the most important tasks of image analysis
is recognition of patterns, e.g., shapes, in an image.
While there are many different approaches to this
task, it is sometimes very challenging to achieve
a satisfactory accuracy in localization of the shape
boundary (Wojciechowski et al., 2016). The new
algorithm offers a new, well-motivated solution in
conjunction with a superpixel algorithm (Neubert and
Protzel, 2014).

In this application, the graph G1 is a path extracted
from a segmentation of a reference image whose drawing
describes a representative shape of the object that is to be
found in a given image. G2 is the graph of the superpixel
segmentation applied to the gradient magnitude of the
analysed image. The boundary is required to be an open
curve, so the algorithm is best suited to partially occluded
objects where the occlusion occurs at a known place. The
superpixel segmentation is obtained using the watershed
from markers algorithm (Meyer and Beucher, 1990;
Tabor, 2009). It was selected for its good reproduction
of edges from the original image and the possibility to
constrain the size of a superpixel. Markers are placed at
local minima of the gradient magnitude image in a square
(2nm+1)× (2nm+1) neighborhood centred at the pixel
where nm is a certain constant.

Closest paths in graph drawings under an elastic metric 393

Fig. 2. Fragment of an image where each pixel corresponds to a
square. Squares with vertical gray stripes are the two-
white-neighbors pixels and squares with slanted gray
stripes have at least three white neighbors. The black
lines correspond to the drawing of a superpixel graph
with every second vertically striped pixel removed.

(a) (b)

Fig. 3. Sample image (a) and its superpixel segmentation (b).

To convert such a segmentation to a graph, a mask
is constructed where each pixel of the original image is
marked either white or black, depending on whether or
not it delimits two superpixels. White pixels with at
least three white neighbours in the 8-neighbourhood are
grouped together as nodes of a superpixel graph. White
pixels with two white neighbors are the other nodes of that
graph. Neighboring nodes are connected with edges in
both directions. The drawing of such a graph is naturally
defined by the image. The drawing of each edge is
assumed to be a straight line.

In experiments the following types of images were
used: standing frontal X-ray images of the knee, standing

frontal X-ray images of the hip bone area, images of
distorted 20-corner stars with a single corner removed and
images of a clothes iron. Each image is approximately
1.0 to 1.5 megapixels large. Figure 3 shows a sample
image from the set and its superpixel segmentation with
nm = 7. To reduce resource utilization, every second
pixel was removed from the target pattern and every
second node with two white neighbours was removed
from the superpixel graph (see Fig. 2). The values of
Δt assume a constant-speed parametrization of the target
boundary. Since the graph G1 is a path, the Dijkstra
algorithm returns an exact solution to the optimization
problem. In the experiments the set σ was equal
to {(1, 1), (1, 2), (2, 1), (1, 3), (2, 3), (3, 1), (3, 2), (1, 4),
(3, 4), (4, 1), (4, 3)}. The resulting σ-product graphs have
about 108 nodes and 109 edges.

A few sample results are depicted in Figs. 4 and 5.
High accuracy of detection has been achieved in most
cases. The algorithm needs about 20 to 30 seconds on
an Intel Core i7 CPU and about 7 to 12 GB of RAM
for processing a single image. When part of the object
boundary has poor contrast, as in Fig. 5(a), the most
accurate path in the superpixel graph is noisy. Such noise
significantly increases the elastic distance. This issue can
be significantly reduced by appropriately preprocessing
the input image. In all datasets except the knee dataset
the original image and gradient magnitude image were
smoothed using anisotropic diffusion (Perona and Malik,
1990). Additionally, the proposed algorithm works well
even for objects with complex boundaries (Fig. 5(d)) and
partially occluded objects (Fig. 5(f)). Figure 5(h) shows
a case where the algorithm did not find the correct shape
due to insufficient information contained in the superpixel
graph.

The proposed approach was compared with the active
appearance model (AAM) algorithm (Cootes et al., 2001)
using the set of X-ray knee images. The AAM algorithm
was trained on a subset of 30 images and tested on
20 different images. The described elastic metric-based
algorithm was supplied with a reference knee shape from
the set of training images and tested on the same set
of images as the AAM algorithm. The mean Dice
coefficient (Dice, 1945), used to compare automatic and
reference segmentations, is equal to 0.986 for the AAM
algorithm and 0.881 for the proposed method.

5. Discussion and conclusions

The framework of elastic shape analysis has been
extended to pairs of graph drawings. An algorithm for
finding closest pairs of paths in such graphs has been
developed and theoretically analyzed. It was shown
to be efficient for a broad class of graphs of practical
importance, whereas the state-of-the-art approach of
considering each pair of paths separately is feasible only

394 M. Baran

Fig. 4. Sample results of pattern recognition using the described algorithm. White lines are the superpixel segmentation, light and dark
gray areas represent the reference segmentation, dashed lines are patterns the algorithm matches against, and the dotted line is
the boundary found.

for very simple graphs.

Experimental verification has shown that the new
algorithm is applicable to pattern recognition. The only
information about the image used by the algorithm is
its superpixel segmentation. Good accuracy has been
achieved for images of different types without building
any statistical models of shape. The new algorithm,
though, is not a competitor to existing segmentation
algorithms. It is a new framework for constructing
segmentation algorithms. A competing algorithm would
have to take into account other features of input images
which would be incorporated into a more complex routing
algebra. A statistical model should be used to describe
representative shapes. Additionally, a variant for closed
shapes needs to be developed.

Considering solid theoretical foundations and
encouraging experimental results, the new method is
a good basis for developing new pattern recognition
methods. Due to the generality of the solved problem, the
algorithm may also find applications in other fields. A
possible application to robot path planning is explained
in Section 3.2. In syntactic pattern recognition and
shape retrieval (Mehrotra and Gary, 1995; Tagougui
et al., 2013), a collection of shapes, e.g., described by
a set of chain codes (Freeman, 1961) or a grammar,
can also be represented by a graph whose drawing

represents superimposition of these shapes. As a result,
the presented algorithm extends the applicability of an
elastic metric to new problems.

Acknowledgment

The author wishes to thank his PhD advisor Zbisław Tabor
for continuous help and encouragement.

References
Bernal, J., Doğan, G. and Hagwood, C.R. (2016). Fast

dynamic programming for elastic registration of curves,
2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Las Vegas, NV, USA,
pp. 1066–1073, DOI: 10.1109/CVPRW.2016.137.

Cootes, T.F., Edwards, G.J. and Taylor, C.J. (2001). Active
appearance models, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 23(6): 681–685, DOI:
10.1109/34.927467.

Cootes, T.F., Taylor, C.J., Cooper, D.H. and Graham, J. (1995).
Active shape models—Their training and application,
Computer Vision and Image Understanding 61(1): 38–59,
DOI: 10.1006/cviu.1995.1004.

Dice, L.R. (1945). Measures of the amount of ecologic
association between species, Ecology 26(3): 297–302,
DOI: 10.2307/1932409.

Closest paths in graph drawings under an elastic metric 395

(a) upper extremity of a femur (b) segmentation result

(c) a star-like shape (d) segmentation result

(e) partially occluded clothes iron (f) segmentation result

(g) upper extremity of a femur (h) segmentation result

Fig. 5. Recognition of several types of images. Left-hand side
pictures are parts of input images containing searched
objects. Their segmentations obtained using Algo-
rithm 2 are presented on the right-hand side. The same
symbols as in Fig. 4 are used.

Dijkstra, E.W. (1959). A note on two problems in connexion
with graphs, Numerische Mathematik 1(1): 269–271, DOI:
10.1007/BF01386390.

Doğan, G., Bernal, J. and Hagwood, C.R. (2015). A fast
algorithm for elastic shape distances between closed planar
curves, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Boston, MA, USA,
pp. 4222–4230, DOI: 10.1109/CVPR.2015.7299050.

Dryden, I.L. and Mardia, K.V. (1998). Statistical Shape Analy-
sis, 1st Edn., Wiley, Chichester.

Fáry, I. (1948). On straight line representation of planar
graphs, Acta Scientiarum Mathematicarum (Szeged)
11(4–4): 229–233.

Fredman, M.L. and Tarjan, R.E. (1987). Fibonacci
heaps and their uses in improved network optimization
algorithms, Journal of the ACM 34(3): 596–615, DOI:
10.1145/28869.28874.

Freeman, H. (1961). On the encoding of arbitrary geometric
configurations, IRE Transactions on Electronic Computers
EC-10(2): 260–268, DOI: 10.1109/TEC.1961.5219197.

Joshi, S.H., Klassen, E., Srivastava, A. and Jermyn, I. (2007).
A novel representation for Riemannian analysis of elastic
curves in R

n, IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Minneapolis, MN,
USA, pp. 1–7, DOI: 10.1109/CVPR.2007.383185.

Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for
computer-aided diagnosis of breast cancer, International
Journal of Applied Mathematics and Computer Science
24(1): 19–31, DOI: 10.2478/amcs-2014-0002.

Mehrotra, R. and Gary, J.E. (1995). Similar-shape retrieval in
shape data management, Computer 28(9): 57–62, DOI:
10.1109/2.410154.

Meyer, F. and Beucher, S. (1990). Morphological segmentation,
Journal of Visual Communication and Image Representa-
tion 1(1): 21–46, DOI: 10.1016/1047-3203(90)90014-M.

Michor, P.W. and Mumford, D.B. (2006). Riemannian
geometries on spaces of plane curves, Journal of the
European Mathematical Society 8(1): 1–48, DOI:
10.4171/JEMS/37.

Mio, W., Srivastava, A. and Joshi, S. (2007). On shape of plane
elastic curves, International Journal of Computer Vision
73(3): 307–324, DOI: 10.1007/s11263-006-9968-0.

Mori, G., Ren, X., Efros, A.A. and Malik, J. (2004). Recovering
human body configurations: Combining segmentation
and recognition, Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, CVPR 2004, Washington, DC, USA, Vol. 2,
pp. II-326–II-333, DOI: 10.1109/CVPR.2004.1315182.

Neubert, P. and Protzel, P. (2014). Compact watershed and
preemptive SLIC: On improving trade-offs of superpixel
segmentation algorithms, 22nd International Conference
on Pattern Recognition (ICPR), Stockholm, Sweden,
pp. 996–1001, DOI: 10.1109/ICPR.2014.181.

Perona, P. and Malik, J. (1990). Scale-space and edge detection
using anisotropic diffusion, IEEE Transactions on Pattern
Analysis and Machine Intelligence 12(7): 629–639, DOI:
10.1109/34.56205.

396 M. Baran

Sobrinho, J.a.L. (2003). Network routing with path vector
protocols: Theory and applications, Proceedings of the
2003 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications,
SIGCOMM’03, Karlsruhe, Germany, pp. 49–60, DOI:
10.1145/863955.863963.

Sobrinho, J.L. (2002). Algebra and algorithms for QoS
path computation and hop-by-hop routing in the Internet,
IEEE/ACM Transactions on Networking 10(4): 541–550,
DOI: 10.1109/TNET.2002.801397.

Sobrinho, J.L. (2005). An algebraic theory of dynamic
network routing, IEEE/ACM Transactions on Networking
13(5): 1160–1173, DOI: 10.1109/TNET.2005.857111.

Srivastava, A., Klassen, E., Joshi, S.H. and Jermyn, I.H. (2011).
Shape analysis of elastic curves in Euclidean spaces, IEEE
Transactions on Pattern Analysis and Machine Intelligence
33(7): 1415–1428, DOI: 10.1109/TPAMI.2010.184.

Srivastava, A. and Klassen, E.P. (2016). Functional and Shape
Data Analysis, Springer, New York, NY.

Srivastava, A., Turaga, P. and Kurtek, S. (2012). On
advances in differential-geometric approaches for 2D
and 3D shape analyses and activity recognition, Im-
age and Vision Computing 30(67): 398–416, DOI:
10.1016/j.imavis.2012.03.006.

Sundaramoorthi, G., Mennucci, A., Soatto, S. and Yezzi,
A. (2011). A new geometric metric in the space of
curves, and applications to tracking deforming objects by
prediction and filtering, SIAM Journal on Imaging Sci-
ences 4(1): 109–145, DOI: 10.1137/090781139.

Tabor, Z. (2009). Statistical estimation of the dynamics of
watershed dams, International Journal of Applied Math-
ematics and Computer Science 19(2): 349–360, DOI:
10.2478/v10006-009-0030-6.

Tagougui, N., Kherallah, M. and Alimi, A.M. (2013). Online
Arabic handwriting recognition: A survey, Interna-
tional Journal on Document Analysis and Recognition
16(3): 209–226, DOI: 10.1007/s10032-012-0186-8.

Turaga, P.K. and Srivastava, A. (2016). Riemannian Computing
in Computer Vision, Springer, Cham.

Tutte, W.T. (1960). Convex representations of graphs,
Proceedings of the London Mathematical Society s3-
10(1): 304–320, DOI: 10.1112/plms/s3-10.1.304.

Tutte, W.T. (1963). How to draw a graph, Proceedings of the
London Mathematical Society s3-13(1): 743–767, DOI:
10.1112/plms/s3-13.1.743.

Valiant, L. (1979). The complexity of enumeration
and reliability problems, SIAM Journal on Computing
8(3): 410–421, DOI: 10.1137/0208032.

Van, T.T. and Le, T.M. (2016). Content-based image retrieval
using a signature graph and a self-organizing map, Inter-
national Journal of Applied Mathematics and Computer
Science 26(2): 423–438, DOI: 10.1515/amcs-2016-0030.

Švestka, P. and Overmars, M.H. (1998). Coordinated path
planning for multiple robots, Robotics and Autonomous
Systems 23(3): 125–152, DOI: 10.1016/S0921-8890(97)00
033-X.

Wang, B., Chua, K.C., Wang, W. and Srinivasan, V. (2005).
Worst and best information exposure paths in wireless
sensor networks, in X. Jia et al. (Eds.), Mobile Ad-
hoc and Sensor Networks, Lecture Notes in Computer
Science, Vol. 3794, Springer, Berlin, pp. 52–62, DOI:
10.1007/11599463 6.

Wojciechowski, W., Molka, A. and Tabor, Z. (2016).
Automated measurement of parameters related to the
deformities of lower limbs based on X-rays images,
Computers in Biology and Medicine 70: 1–11, DOI:
10.1016/j.compbiomed.2015.12.027.

Yang, Y. and Wang, J. (2008). Design guidelines for routing
metrics in multihop wireless networks, Proceedings of the
IEEE Annual Conference on Computer Communications
(INFOCOM), Phoenix, AZ, USA, pp. 1615–1623.

Younes, L. (1998). Computable elastic distances between
shapes, SIAM Journal on Applied Mathematics
58(2): 565–586, DOI: 10.1137/S0036139995287685.

Younes, L. (2012). Spaces and manifolds of shapes in
computer vision: An overview, Image and Vision Comput-
ing 30(67): 389–397, DOI: 10.1016/j.imavis.2011.09.009.

Zhang, M. and Golland, P. (2016). Statistical shape analysis:
From landmarks to diffeomorphisms, Medical Image Anal-
ysis 33: 155–158, DOI: 10.1016/j.media.2016.06.025.

Zubor, M., Kőrösi, A., Gulyás, A. and Rétvári, G. (2014).
On the computational complexity of policy routing, in Y.
Kermarrec (Ed.), Advances in Communication Network-
ing, Lecture Notes in Computer Science, Vol. 8846,
Springer, Cham, pp. 202–214, DOI: 10.1007/978-3-319-1
3488-8 19.

Mateusz Baran received a BSc degree in applied computer science
from the AGH University of Science and Technology in Cracow, Poland,
in 2012 and an MSc degree from the same university in 2013. Since
2013 he has been working at the Cracow University of Technology. His
research currently focuses on applying modern mathematical ideas to
pattern recognition.

Appendix

Proof of Theorem 1

Let G1 = (V1, E1), G2 = (V2, E2) be digraphs with
drawings on R

2 defined by φ1, ξ1, φ2, ξ2. The following
lemma is used in the proof of Theorem 1.

Lemma A1. If p = (p1,i, p2,i)
N
i=1 is a sequence

of σ-pairs of paths in G1, G2 between (vb,1, vb,2) and
(ve,1, ve,2), then there is a sequence p̂ = (p̂1,i, p̂2,i)

N
i=1

of σ-pairs of paths in G1, G2 between the same
pairs of nodes such that dcpre(ρ

q
1(p̂), ρ

q
2(p̂) · γ(p̂)) ≤

dcpre(ρ
q
1(p), ρ

q
2(p) · γ(p)) and for each i = 1, 2, . . . , N the

pair (p̂1,i, p̂2,i) minimizes the value of Eqn. (9) for a cer-
tain edge in G1 ×σ G2.

Closest paths in graph drawings under an elastic metric 397

Proof. From the third condition in Definition 3 for each
i = 1, 2, . . . , N either p1,i, p2,i is a σ-pair of paths that
corresponds to an edge in G1 ×σ G2 or there is a σ-pair
of paths p̄1,i, p̄1,i between the same pairs of nodes that
yields a lower value of I . The sequence of σ-pairs p̂ =
(p̂1,i, p̂2,i)

N
i=1 where p̂j,i is pj,i in the first case and p̄j,i

in the second case, for j = 1, 2, is the required sequence.
�

A proof of Theorem 1 is given below.

Proof. From Lemma A1 it is known that the closest
sequence of σ-pairs of paths must correspond to a path
in G1 ×σ G2. On the other hand, since the optimal
path finding procedure is exact, it returns the minimum
weighted average path between a given pair of nodes.
Thus, there can be no sequence of σ-pairs of paths with
a smaller elastic distance. �

Received: 15 May 2017
Revised: 5 October 2017
Accepted: 19 November 2017

	Introduction
	Elastic shape analysis
	Curve representation
	Calculation of a discretized version of dc

	Methods
	Notation
	Algorithm
	Computational complexity

	Experiments
	Discussion and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

