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This paper deals with the fault diagnosis of wind turbines and investigates viable solutions to the problem of earlier fault
detection and isolation. The design of the fault indicator, i.e., the fault estimate, involves data-driven approaches, as they
can represent effective tools for coping with poor analytical knowledge of the system dynamics, together with noise and
disturbances. In particular, the proposed data-driven solutions rely on fuzzy systems and neural networks that are used to
describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear
autoregressive models with exogenous input, as they can represent the dynamic evolution of the system along time. The
developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and
the faulty behaviour of a wind turbine. The achieved performances are also compared with those of other model-based
strategies from the related literature. Finally, a Monte-Carlo analysis validates the robustness and the reliability of the
proposed solutions against typical parameter uncertainties and disturbances.
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1. Introduction

The increased level of wind-generated energy in power
grids worldwide raises the levels of reliability and
sustainability required of wind turbines. Wind farms
should have the capability to generate the desired value
of electrical power continuously, depending on the actual
wind speed level and on the grid’s demand.

As a consequence, the possible faults affecting
the system have to be properly identified and treated
before they endanger the correct functioning of the
turbines or become critical faults. Megawatt-class wind
turbines are extremely expensive systems. Therefore,
their availability and reliability must be high, in order
to assure the maximisation of the generated power while
minimising the operation and maintenance (O & M)
services. Alongside the fixed costs of the produced
energy, mainly due to the installation and the foundation

∗Corresponding author

of the wind turbine, the O & M costs could increase the
total energy cost up to about 30%, particularly considering
the offshore installation (Odgaard, 2012).

These considerations motivate the introduction of
a fault diagnosis system coupled with fault tolerant
controllers. Currently, most of the turbines feature
a simply conservative approach against faults that
consists in the shutdown of the system to wait for
maintenance service. Hence, effective strategies coping
with faults have to be studied and developed for
improving the turbine performance, particularly in faulty
working conditions. Their benefits would concern the
prevention of critical failures that jeopardise wind turbine
components, thus avoiding an unplanned replacement of
functional parts, as well as reduction in the O & M
costs and an increase in the energy production. The
advent of computerised control, communication networks
and information techniques brings interesting challenges
concerning the development of novel real-time monitoring
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and fault tolerant control design strategies for industrial
processes.

Indeed, in recent years, many contributions have
been proposed related to the topics of fault diagnosis of
wind turbines (see, e.g., Chen et al., 2011; Gong and Qiao,
2013). Some of them highlight the difficulties to achieve
the diagnosis of particular faults, e.g., those affecting the
drive train, at the wind turbine level. However, these faults
are better dealt with at the wind farm level, when the
wind turbine is considered in comparison to another wind
turbine of the wind farm (Odgaard and Stoustrup, 2013).
Moreover, fault tolerant control of wind turbines has been
investigated, e.g., by Odgaard and Stoustrup (2015) or
Parker et al. (2011), and international competitions on
these issues have been organised (Odgaard and Stoustrup,
2012; Odgaaard and Shafiei, 2015).

Hence, the fault diagnosis in connection with the sus-
tainable control of dynamic processes has been proven to
be a challenging task (see, e.g., Hassanabadi et al., 2016;
Byrski and Byrski, 2016; Xu et al., 2017), especially for
energy conversion systems, such as wind turbines, and has
thus motivated the research activities carried out through
this paper.

In recent years, the increasing demand for energy
generation from renewable sources has led to close
attention on wind turbines. Indeed, they represent very
complex systems which require reliability, availability,
maintainability, safety and, above all, efficiency on the
generation of electrical power. Thus, new research
challenges arise, in particular in the context of modelling
and control. Advanced sustainable control systems
can provide the optimisation of energy conversion and
guarantee the desired performances even in the presence
of possible anomalous working conditions caused by
unexpected faults and disturbances.

This work deals with the fault diagnosis for wind
turbine systems, and it proposes the application of
viable and reliable solutions to the problem of earlier
fault detection and isolation (FDI). Further fault tolerant
controllers, which are not considered in this work, can
be based on the fault diagnosis module developed in
this paper, which provides the on-line information on
the faulty or fault-free status of the system, so that the
controller action can be compensated. The design of
the fault estimators (or reconstructors) that are used for
the FDI task involves data-driven approaches, as they
offer an effective tool for coping with a poor analytical
knowledge of the system dynamics, together with noise
and disturbances.

The first data-driven proposed solution relies
on fuzzy Takagi–Sugeno models that are derived
from a clustering c-means algorithm, followed by
an identification procedure solving the noise-rejection
problem. Then, a second solution makes use of neural
networks to describe the strongly nonlinear relationships

between measurement and faults. The chosen network
architecture belongs to the nonlinear autoregressive with
exogenous (NARX) input topology, as it can represent a
dynamic evolution of the system along time. The training
of the neural network fault estimators exploits the classical
back-propagation Levenberg–Marquardt algorithm that
processes a set of acquired target data.

A purely nonlinear model-based scheme for fault
tolerant control was also proposed by the same authors,
which is based on differential algebraic tools relying on
a nonlinear geometric approach. Already suggested in
the aerospace framework, it was extended by the same
authors to the active fault tolerant control for the same
wind turbine benchmark and a wind farm (Simani and
Castaldi, 2014). Other important contributions by the
same authors are, e.g., those by Simani and Turhan (2017),
Castaldi et al. (2017) or Simani and Castaldi (2018).

The developed fault diagnosis schemes are tested by
means of a high-fidelity benchmark model that simulates
the normal and the faulty behaviour of a single wind
turbine. The achieved performances are compared with
those of other solutions from the related literature.
Moreover, a Monte-Carlo (MC) analysis validates the
robustness of the proposed systems against the typical
parameter uncertainties and disturbances. Finally, the
hardware-in-the-loop test is carried out in order to assess
the performance in a more realistic real-time framework.
The effectiveness shown by the achieved results suggests
further investigations on the industrial application of the
proposed systems.

The work is organised as follows. Section 2
recalls the wind turbine benchmark simulator. Section 3
describes the fault diagnosis scheme relying on fuzzy
systems and neural network structures. The achieved
results are reported in Section 4. Comparisons with
various FDI strategies are also reported. Finally,
Section 5 concludes the paper by summarising the
main achievements of the work, and providing some
suggestions for further research topics.

2. Wind turbine benchmark

The wind turbine benchmark model adopted in this
study was proposed by Odgaard et al. (2013). It
provides a simulator of a three-blade horizontal-axis
variable-speed pitch-controlled turbine with a full
converter generator. The overall model consists of four
interconnected submodels, namely the wind, the turbine,
the measurement and the controller modules. The turbine
model is composed of three further submodels: the blade
and the pitch, the drive train and the generator. The
relations among these submodels are depicted in the block
diagram of Fig. 1. Moreover, several fault scenarios can
be simulated (Odgaard et al., 2013).

The following sections address the description of the
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Fig. 1. Block diagram of wind turbine benchmark subsystems.

four interconnected submodels.

2.1. Wind model. Wind is considered as a stochastic
process driven by a mean speed sequence coming from
real on-the-field acquisitions. In addition, the wind model
includes the effects of wind shear and tower shadow
(Dolan and Lehn, 2006). Therefore, the actual wind speed
vw is the sum of four terms:

vw(t) = vm(t) + vs(t) + vws(t) + wts(s), (1)

where vm is the mean speed, vs is the stochastic
component, described as a Gaussian white noise, vws

takes into account the wind shear effect due to the distance
from the earth surface and wts represents the tower
shadow effect, i.e., the wind speed reduction when a blade
passes in front of the tower. Wind shear variations and the
tower shadow effect are not measured by the anemometer,
because it is supposed to be placed on top of the nacelle.

2.2. Turbine model. As already remarked, the turbine
system can be further subdivided into three submodels
focused on the power transmission. Firstly, the blade and
pitch models describe how the blades capture wind energy.
This phenomenon is based on the aerodynamic law

τr(t) =
1

2
ρπR3Cq(λ(t), β(t))v

2
w(t), (2)

For each blade, the relation (2) provides the torque acting
on the rotor τr, as a function of the squared wind speed
v2w, the air density ρ and the rotor radius R. The torque
coefficient Cq is represented by a two-dimensional map
depending on the blade pitch angle β and the tip-speed
ratio λ, i.e., the ratio between the linear velocity of the
blade tip and the wind speed. This map is defined by
means of a look-up table. The blade-and-pitch submodel
includes the dynamics introduced by the pitch angle
hydraulic piston servo system that can be approximated

a second order transfer function

β(s)

βref(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

, (3)

where βref is the pitch angle target value elaborated by
the turbine controller, ζ and ωn are the transfer function
parameters.

The second submodel represents the drive train,
i.e., the power flow through the gear-box from the rotor
toward the generator, whose dynamics can be described
as follows:

Jrω̇r = τr −KdtθΔ − (Bdt +Br)ωr

+
Bdt

Ng
ωg,

Jgω̇g =
ηdtKdt

Ng
θΔ +

ηdtBdt

Ng
ωr

−
(ηdtBdt

N2
g

+Bg

)
ωg − τg,

θ̇Δ = ωr − ωg

Ng
,

(4)

where Jr and Jg are the inertia moments of the rotor and
generator shafts, respectively, Kdt is the torsion stiffness,
Bdt is the torsion damping factor, Bg is the viscous
friction of the generator shaft, Br is the viscous friction
of the low-speed shaft, Ng is the gear ratio, ηdt is the
efficiency and θΔ is the torsion angle.

Finally, the third submodel provides the generator
and the converter dynamics by means of the following
first-order transfer function:

τg(s)

τg,ref(s)
=

αg

s+ αg
, (5)

where τg,ref is the target torque coming from the controller
and αg is the transfer function parameter.

The final generated power Pg can be computed as
the product of the generator torque and speed, decreased
by the efficiency coefficient ηg

Pg = ηg ωg τg. (6)

The signals that are assumed to be acquired from
the wind turbine simulator for monitoring are processed
through the measurement model whose objective is to
simulate real sensor and actuator behaviours. Therefore,
the measured signals are the sum of their actual value
and white Gaussian noise terms. The list of the available
sensors is summarised in Table 1. Note that some of these
measured signals are redundant, as for the case of the
sensors measuring the pitch angles of the blades.

2.3. Controller. The model of the wind turbine
compensator implemented in the benchmark model
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Table 1. List of available sensors in the wind turbine simulator.
Measurements Description

β1,m1 Blade 1 pitch angle
β1,m2 Blade 1 pitch angle
β2,m1 Blade 2 pitch angle
β2,m2 Blade 2 pitch angle
β3,m1 Blade 3 pitch angle
β3,m2 Blade 3 pitch angle
ωr,m1 Rotor shaft speed
ωr,m2 Rotor shaft speed
ωg,m1 Generator shaft speed
ωg,m2 Generator shaft speed
τg,m Generator shaft torque
Pg,m Generated power
vw,m Wind speed at hub height
τr,m Aerodynamic rotor torque

describes the behaviour of the baseline wind turbine
controller that regulates the generated power on the basis
of the actual wind speed (Odgaard et al., 2013; Odgaard
and Stoustrup, 2015). In more detail, the reference
signal for generated power as a function of the wind
speed is depicted in Fig. 2, where four different regions
corresponding to the different operating points of a real
wind turbine can be identified:

• vw < vin: the turbine is in idle state because of the
low value of wind speed;

• vin < vw < vnom, partial load region: for a
given wind speed value the controller acts on the
generator torque so that the maximum available
power is tracked; pitch angles are kept to their
optimal value (β = 0) in order to capture the
maximum aerodynamic power from the wind;

• vnom < vw < vout, full load region: after reaching
the nominal generated power, corresponding to the
nominal wind speed, the controller regulates the
blade pitch angles to limit the generated power to
its nominal value despite of the increasing of wind
speed;

• vw > vout: turbine is turned off to prevent critical
damages.

2.4. Fault scenarios. Three different groups of typical
faults that affect a wind turbine can be simulated, i.e.,
sensor, actuator and system faults (Odgaard et al., 2013;
Odgaard and Stoustrup, 2015).

Sensor faults are modelled as additive signals on
the affected measurements. For example, a faulty pitch
angle sensor provides wrong measurements of the blade
orientation. Thus, if not handled, the controller cannot
fully track the power reference signal.

v
in

Power
reference

vnom vout

[kW]

Wind speed [m/s]

Fig. 2. Controller reference curve. The default values are cut-
in speed vin = 3 m/s, nominal speed vnom = 12.5 m/s,
cut-out speed vout = 25 m/s, nominal power Pnom = 4.8
MW.

Actuator faults involve modifications of the pitch
angle or generator torque transfer functions of Eqns. (3)
and (5) in the form of changed dynamics. They represent,
e.g., a pressure drop in the hydraulic pitch actuator or an
electronic break-down in the converter equipment.

Finally, the system fault can affect the drive-train of
the turbine. It is modelled as a slow time variation in
the friction coefficient. This corresponds to the effect of
wear and tear along time. These nine fault cases included
in the wind turbine benchmark model are summarised in
Table 2, together with the affected measured signals.

Table 2. Fault scenario of the wind turbine simulator.
Fault case Type Description

1 Sensor Faulty β1,m1 sensor
2 Sensor Faulty β2,m2 sensor
3 Sensor Faulty β3,m1 sensor
4 Sensor Faulty ωr,m1 sensor
5 Sensor Faulty ωr,m2 and ωg,m2 sensors
6 Actuator Air content in oil, faulty response

of Blade 2 pitch system
7 Actuator Low pressure, faulty response

of Blade 3 pitch system
8 Actuator Fault on converter, faulty response

of the generator torque
9 System Drive train wear and tear,

slow friction variations

With these assumptions, the complete model of the
system under analysis (Odgaard and Stoustrup, 2015) can
be represented by means of a non-linear continuous-time
function fwt that describes the evolution of the turbine
state vector xwt excited by the input vector u:

{
ẋwt(t) = fwt(xwt,u(t)),

y(t) = xwt(t),
(7)

where the state of the system is assumed to be equal to
the monitored system output, i.e., the rotor speed, the
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generator speed and the generated power:

xwt(t) = y(t)

= [ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m].

On the other hand, the input vector

u(t) = [β1,m1, β1,m2, β2,m1, β2,m2,

β3,m1, β3,m2, τg,m]

contains the measurements of the pitch angles from the
three sensor couples as well as the measured torque.
These vectors are sampled for obtaining N input-output
data u(k), y(k) with k = 1, . . . , N , in order to
implement the data-driven estimators at the sampling
time T .

3. Fault diagnosis techniques and design

This work exploits two data-driven approaches based on
fuzzy systems and neural networks to implement the fault
diagnosis block. In this section, after a brief introduction
on the general structure of a fault diagnosis system,
recalled in Section 3.1, the properties and the structure
of fuzzy systems and neural networks are addressed
in Sections 3.2 and 3.4, respectively. In particular,
their architectures of the NARX systems are reported,
since they represent, in combination with proper training
algorithms, the exploited solutions for the implementation
of the fault estimators used as residual signals for fault
detection and isolation.

3.1. Fault diagnosis scheme. In the following the
monitored system, i.e., the wind turbine under diagnosis,
is assumed to be affected by additive faults on the input
(actuator) and output (sensor) measurements, as well as
measurement noise, as represented in Fig. 3, in the form

{
u(k) = u∗(k) + ũ(k) + fu(k),

y(k) = y∗(k) + ỹ(k) + fy(k),
(8)

where u∗(k) and y∗(k) are the actual unmeasurable
variables, u(k) and y(k) represent the acquired sensor
measurements affected by the measurement noise signals
ũ(k) and ỹ(k). According to (8), also the faults fu(k) and
fy(k) have additive effects, and they are different from
zero only in the presence of faults. In general, the vector
u(k) has r components, i.e. the number of the process
inputs, while y(k) has m elements, i.e., the number of
process outputs.

Figure 3 shows the general scheme with faults fu(k)
and fy(k) affecting the system under diagnosis, i.e., the
wind turbine simulator, as equivalent additive signals on
the input and output measured signals. The same effect
is assumed for the measurement noise ũ(k) and ỹ(k), as

Input faults Output faults

Input sensors Output sensors

Wind turbine
systems

y*(k)

y(k)

u(k)u*(k)

f (k) f (k)

u(k)

u y

Fig. 3. Measurement process in the system under diagnosis.

described in Section 2.2. It is worth noting that, according
to (8), as shown also in Fig. 3, it is assumed that the
equivalent effect of the considered faults is additive on
both the input and output measurements. This represent
the key point for the fault sensitivity analysis reported in
Section 3.6 and the fault estimator design addressed in the
sequel. In general, the number of the process inputs is r,
while the number of outputs is m.

Note that the equivalent and additive representation
proposed in Eqn. (8) represents one of the key points
of the paper. Moreover, some of the considered faults
considered in Table 2 are not modelled in an additive
way. However, as described in this section, this work
assumes that the effects of the considered fault cases
are described by considering the equivalent effects of
additive signals fu(k) and fy(k) in (8) on the input and
output measurements. This assumption is also consistent
with the modelling framework considered in this paper
that relies on the Frisch scheme (Beghelli et al., 1990)
usually exploited in connection with the identification of
errors-in-variables (EIV) models (Fantuzzi et al., 2002),
as remarked in Section 3.2.

Among the different approaches to generate the
residual signals recalled in Section 1, the solution adopted
in this work exploits both the fuzzy system and neural
network models, which provide an on-line estimate f̂(k)
of the faulty signals fu(k) and fy(k). Hence, as shown
in Fig. 4, the residuals r are assumed to be equal to the
estimated fault signals, f̂(k), which are generated by the
generic fault estimator, as

r(k) = f̂(k), (9)

f̂(k) being the generic fault vector, i.e.,

f̂ (k) =
{
f̂1(k), . . . , f̂r+m(k)

}
.

Therefore, the generic fault estimate f̂i(k) can be equal
to one of the i-th component of the fault vectors fu(k) or
fy(k) in (8), with i = 1, . . . , r+m. The general residual
generation scheme that exploits the fault estimation as the
residual generator is sketched in Fig. 4. Note that this
approach is able to provide both the fault detection and
isolation tasks, as addressed in the following.

Figure 4 sketches the residual generation scheme
that is achieved via the fault estimator system, by using
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Fig. 4. General residual generation scheme relying on the fault
estimation strategy.

the acquired input and output measurements u(k) and
y(k). The fault diagnosis process requires, as the first
step, the fault detection task. As the residual is equal
to the estimated fault signal, it is easily performed here
by using a proper thresholding logic directly operating on
the residuals, without requiring their elaboration with a
proper evaluation function, as addressed, e.g., by Chen
and Patton (1999).

Therefore, the occurrence of the i-th fault can be
simply detected via the following threshold logic applied
to the i-th residual ri(k):
{
r̄i − δσri ≤ ri ≤ r̄i + δσi, fault-free case,

ri < r̄i − δσri or ri > r̄i + δσri , faulty case,
(10)

where the i-th component ri(k) of the residual vector r(k)
is considered a random variable whose unknown mean r̄i
and varianceσ2

ri can be estimated in a fault-free condition,
after the acquisition of N samples, as

⎧
⎪⎪⎨
⎪⎪⎩

r̄i =
1

N

N∑
k=1

ri(k),

σ2
ri =

1

N

N∑
k=1

(ri(k)− r̄i)
2.

(11)

The tolerance parameter δ ≥ 2 has to be properly tuned in
order to separate the fault-free and faulty conditions. The
value δ determines the trade-off between the false alarm
rate and the fault detection probability. A common choice
of δ can rely on the three-sigma rule, otherwise extensive
simulations can be performed to optimise δ.

After fault detection, the fault isolation task is easily
accomplished by means of a bank of estimators. As
described by (8), the faults are considered as equivalent
signals that affect the input measurements, i.e., fu, or the
output measurements, i.e., fy .

Under this assumption, by following the scheme of
the generalised estimator configuration of Fig. 5, in order
to uniquely isolate one of the input or output faults,
by considering that multiple faults cannot occur, a bank
of multi-input single-output (MISO) fault estimators is

used. In general, the number of these estimators is equal
to the number of faults that have to be diagnosed, i.e.,
equal to the number of input and output measurements,
r + m. Therefore, in general, the i-th fault estimator
that reconstructs the fault f̂(k) = ri(k) is driven by the
components of the input and output signals u(k) and y(k)
that are sensitive to the specific fault fi(t). Therefore, it
should be clear that the design of these fault estimators is
enhanced by the so-called failure mode & effect analysis
(FMEA) described in Section 3.6. For each fault case,
the failure modes and their resulting effects on the rest
of the system are analyzed and, in particular, the most
sensitive input and output measurements to that specific
fault situation are identified. In this way, by means of
the fuzzy system and neural network tools, it will be
possible to derive the dynamic relationships between the
input-output measurements and the faults, as represented
by the estimator bank of Fig. 5.
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Fig. 5. General estimator scheme for the reconstruction of the
equivalent input or output fault.

Figure 5 shows this generalised fault estimator
scheme, where the fault estimators are driven only by the
input-output signals selected via the FMEA tool, so that
the relative residual ri(k) = f̂i(k) is insensitive only to
the fault affecting those inputs and outputs defined by the
selector blocks. It is worth noting that multiple faults
occurring at the same time cannot be correctly isolated,
using this configuration.

As for the structure of the residual generators, in
general, the number of these fault estimation filters is
equal to the number of faults that have to be diagnosed,
i.e., m + r. In fact, the residual generator functions
are MISO discrete-time models fed by the measurements
selected by the fault sensitivity analysis. Moreover, their
outputs provide the estimated faults, which are equal to
the number of input and output measurements, i.e., m+r.
Moreover, the number of inputs that feed the residual
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generators is equal to the number of input and output
measurements selected from the fault sensitivity analysis
that will be described in Section 3.6. Moreover, the
number of parameters of each MISO residual generator
(used for fault estimation) in general is equal to the
number of inputs + 1 multiplied by the number of delays
(n) selected for each residual generator input. On the
other hand, the complexity of the neural networks used
for residual generation depends on the number of neurons
for each layer of the neural network. Moreover, also in
this case, the number of neural networks is equal to the
number of faults that have to be diagnosed, i.e., m+ r.

As already remarked, the FMEA tool (Stamatis,
2003), which has to be executed before the design
of the fault estimators, suggests how to select the
input-output configuration for the fault estimator blocks.
This input-output selection procedure, which is briefly
remarked here, will be addressed in more detail in Section
3.6. Then, the design of the fuzzy or neural network
models can be performed, as recalled in Sections 3.2 and
3.4, respectively. Finally, the threshold test logic of (10)
allows the achievement of the fault diagnosis tasks.

Finally, with reference to the FDI approach
considered in this work, it is worth noting that model
uncertainty is not only related to the effects of noise and
disturbance, but also to the so-called model-mismatches.
The use of fixed thresholds as proposed in this paper
may lead to conservative results. However, as will be
presented in Section 4, the robustness of the proposed
solutions have been analysed both in simulations and by
means of hardware-in-the-loop (HIL) tests. Moreover,
the fixed thresholds considered in the logic of (10) have
been settled by means of a procedure using again the
Monte-Carlo tool, which will lead to the optimisation of
the performance indices discussed in Section 4.4. This
procedure was already proposed by the same authors with
application to the aerospace framework. It was shown that
this optimisation strategy exploiting the Monte-Carlo tool
itself was able to outperform more conservative results
achieved for example via H∞ robust methodologies
(Patton et al., 2008; 2010). Moreover, an example with
the comparison of variable thresholds will be shown in
Section 4. However, as was remarked, e.g., by Chen
and Patton (1999), when the residual signals are the
estimated faults themselves, the threshold settlement issue
does not represent the point of the discussion, since the
fault sensitivity is maximised via the FMEA procedure
proposed in the paper, which inherently takes into account
modelling and measurement errors.

3.2. Fuzzy system modelling. This section describes
the design of the dynamic estimators by means of the
Takagi–Sugeno (TS) prototypes. Indeed, the unknown
relationships between noisy measurements and faults are
provided by fuzzy models, which consist of a number

of rules connecting the measured signals acquired from
the system under investigation to its faults, on the basis
of knowledge of the system dynamics, in the form of
IF-THEN relations, processed by a fuzzy inference system
(FIS) (Babuška, 1998).

3.3. Takagi–Sugeno fuzzy prototypes. Approxima-
tion of nonlinear MISO systems (but also extension to
MIMO systems can be considered) can be achieved by the
Takagi–Sugeno (TS) fuzzy reasoning, as reported, e.g., by
Fantuzzi and Rovatti (1996) or Rovatti (1996). According
to the TS modelling approach (Takagi and Sugeno, 1985),
the consequents become crisp functions of the input, while
the antecedents remain fuzzy propositions. Therefore the
fuzzy rule takes the form

Ri : IF (fuzzy combination of inputs)
THEN output = gi(inputs),

(12)

where i indicates the number of rules. The antecedent
does not differ from the Mamdani rules, with a combined
membership function λi(x) that takes into account the
logical connectives expressed by linguistic propositions.
The rule consequent function gi(·) has a defined structure:
it is an instance of a parametrised function in the affine
form

gi(x) = aTi x+ bi, (13)

where ai is a parameter vector and bi is a scalar offset,
while gi(x) is the output of the i-th rule. The number of
rules is supposed equal to the number of clusters nC used
for partitioning the data into regions where local linear
relations can be assumed (Babuška, 1998). Furthermore,
the antecedent of each rule defines the degree of fulfilment
for the corresponding consequent model, so that the rule
global model can be seen as a fuzzy composition of linear
local models.

Thus, the TS inference takes the form of the simple
algebraic expression

f̂ =

nC∑
i=1

λi(x) gi(x)

nC∑
i=1

λi(x)

(14)

The estimated fault f̂ is the weighted average of affine
functions of the input-output measurements, where the
weights are the combined degree of fulfilment of the
system input.

It is worth noting that the nonlinear system under
investigation described in Section 2 has a dynamic
behaviour. Therefore, the considered input vector x of the
model can contain the current as well as previous samples
of the system input and output signals.

Indeed, in order to introduce the time dependence
into the model (12), the consequents are considered
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as discrete-time linear autoregressive models with
exogenous input (ARX) of order o, in which the regressor
vector takes the form

x(k) =
[
. . . , yi(k − 1), . . . , yi(k − o), . . .

. . . , uj(k), . . . , uj(k − o), . . .
]T (15)

where ui(·) and yj(·) are the components of the actual
system input and output vectors u(k) and y(k) selected
via the FMEA procedure of Section 3.6, and k is the time
step, with k = 1, 2, . . . , N . The affine parameters of (13)
can be grouped into

ai =
[
α
(i)
1 , . . . , α(i)

o , δ
(i)
1 , . . . , δ(i)o

]T
, (16)

where the coefficients a(i) are associated with the output
samples, and the δ(i) are associated to the input ones.

Note that the representation (14) does not contain
algebraic loops in the system, even if the input u is
a premise variable. This is prevented in practice by
introducing at least a unit delay in the time-discrete
model of (13). This is achieved during the design of
the identification experiment, and the possible presence
of algebraic loops is thus avoided by a proper selection of
the time dependence in the dynamic model (14) and (15),
where the consequents are considered as discrete-time
linear autoregressive models with exogenous input (ARX)
of order o, in which the regressor vector takes the form
of the relation (15). Therefore, a proper estimation of
the delays of the samples of the input-output signals
allows us to overcome this problem. An example of an
identified residual generator highlighting this feature will
be provided in Section 4.

An effective approach to the design of an FIS as
an approximator of a complex nonlinear system begins
with the partitioning of the available data into subsets
characterised by a simpler (affine) behaviour. A cluster
can be defined as a group of data that are more similar to
each other, rather than to the members of another cluster.
The similarity among data can be expressed in terms of
their distance from a particular item, exploited as the
cluster prototype. Fuzzy clustering provides an effective
tool to obtain a partitioning of data in which the transitions
among subsets are smooth, rather than abrupt.

Indeed, fuzzy clustering allows an item to belong to
several cluster simultaneously, with different degrees of
fulfilment, whereas the classical various crisp clustering
relies on mutually exclusive subsets. Various clustering
methods have been proposed in the literature; see, e.g.,
the review by Jain and Dubes (1988), or the more
recent works by Jun et al. (2011) as well as Graaff and
Engelbrecht (2012).

Typically, the available data consist of noisy
measurements acquired from the system. They are

grouped into the data matrix Z whose columns are
the vectors z containing the measurements of a single
observation of the system under analysis:

Z =

⎡
⎢⎣

z11 . . . z1N
...

. . .
...

zn1 . . . znN

⎤
⎥⎦ , (17)

where n is the data dimension, N is the number of
available observations.

Most fuzzy clustering algorithms are based on the
optimisation of the c-means goal function J (Z, U, V)
performed as follows:

• The data matrix Z is defined.

• The so-called fuzzy partition matrix U = [μik]
is defined, which contains the values of the
membership function μik for the couple i-th
measurement/k-th cluster.

• The vector V = [v1, . . . , vnC ] containing the
cluster prototypes is defined. It has to be determined
since it consists of the centres from which the
distance of each measurement can be calculated.

The widespread c-means goal function adopted in
this work was formulated by Bezdek (1981) in the form

J (Z, U, V) =

nC∑
i=1

N∑
k=1

(μik)
m D2

ikA, (18)

m > 1 being the weighting exponent, and

D2
ikA = ‖zk − vi‖2A = (zk − vi)

TA(zk − vi) (19)

is a squared inner product distance norm, with i =
1, . . . , nC and k = 1, . . . , N . The matrix A determines
the cluster shape.

The minimisation algorithm exploits a series of
Picard iterations consisting in the updating of the cluster
prototypes and of the partition matrix, until the stopping
criterion is met, as addressed, e.g., by Babuška (1998).

A key aspect concerns the determination of the
optimal number of clusters nC , as the clustering algorithm
assumes that a proper number of clusters nC has been
fixed, regardless of whether or not they are really present
in the data. Once the partition matrix has been estimated,
the antecedent degrees of fulfilment μik are easily derived
by interpolation or curve fitting methods (Babuška, 1998).

Then, the design of the FIS assumes the form of
a system identification problem from noisy data, as it
requires the estimation of the consequent parameters
ai and bi of (13) using the input-output data. The
identification scheme adopted in this work was proposed
by the same authors (Rovatti et al., 2000) and successfully
exploited for the approximation of nonlinear functions
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through piecewise affine models (Fantuzzi et al., 2002).
This approach is based on the minimisation of the
prediction errors of the individual TS local affine models
considered as nC independent estimation problems. Their
solutions rely on the so-called Frisch scheme (Beghelli
et al., 1990) that is usually exploited in connection with
the identification of errors-in-variables models (Fantuzzi
et al., 2002).

In fact, by considering a discrete-time MISO system,
as already described by the relations (8), the noise is
supposed to affect the input u as well as the output y
measurements in the form of the additive signals ũ and
ỹ on the noise-free unmeasurable quantities u∗ and y∗ in
the form of

{
u(k) = u∗(k) + ũ(k),

y(k) = y∗(k) + ỹ(k).
(20)

Thus, considering the i-th TS consequent of the type of
(14) and the associated dynamic local ARX model of
order o with the regressors grouped into the vector x as
in (15), the acquisition of Ni noisy measurement of input
and output samples permits the construction of the i-th
data matrix

X(i) =

⎡
⎢⎢⎢⎣

fj(k) xT (k) 1
fj(k + 1) xT (k + 1) 1

...
...

...
fj(k +Ni − 1) xT (k +Ni − 1) 1

⎤
⎥⎥⎥⎦ .

(21)
Note that the matrix X(i) contains the delayed

samples of the j-th fault signal to be reconstructed,
which is related with the choice of the input-output
measurements in the vector x(k) depending on the FMEA
selection procedure. The i-th covariance matrix from the
acquired data can be computed as

Σ(i) = X(i)TX(i) ≥ 0, (22)

which is a positive-definite matrix consisting of two terms

Σ(i) = Σ(i)∗ + ¯̃Σ(i), (23)

where Σ(i)∗ refers to the noise-free signals, while ¯̃Σ(i)

is the noise covariance matrix, which depends on the
unknown noise variances ¯̃σf ,¯̃σx through

¯̃Σ(i) = diag [¯̃σf I, ¯̃σx I, 0] . (24)

The solution of the identification problem mentioned
above requires estimation of ¯̃σf and ¯̃σx, which can be
performed by solving

Σ(i)∗ = Σ(i) − Σ̃
(i)

(25)

with
Σ̃

(i)
= diag [σ̃f I, σ̃x I, 0] (26)

in the variables σ̃x and σ̃f . Note that these terms represent
the uncertainty affecting the input-output measurements
u(k) and y(k) and the fault signal fj(k).

In case all the assumption regarding the Frisch
scheme (Rovatti et al., 2000) are satisfied, there exists
one common point belonging to all the surfaces Γ(i) = 0
determined as the root locus of (25), which represents
the actual noise variance values (¯̃σx, ¯̃σf ). However, in
real cases, the Frisch assumptions are commonly violated,
so that a unique solution cannot be obtained. In these
situations the identification aims at finding the nearest
point of all the surfaces.

After the computation of the variances, the
covariance noise matrix can be built as in (24), and the
linear parameters in each cluster (therefore in each TS
consequent) can be finally determined as the consistent
solution of the following expression (Rovatti et al., 2000):

(
Σ(i) − ¯̃Σ(i)

)
ai = 0, (27)

i = 1, . . . , nC .
Note finally that due to both the structure of the fuzzy

fault estimators and the fault models, their effect does not
vanish in the fuzzy ARX filters, since no integral action
is present. In general, the fuzzy ARX filters perform
a processing of the input and output measurements in
order to reconstruct the fault functions. Moreover, their
parameters are estimated off-line and they are not adapted
during the on-line fault estimation task. However, due
to the ARX structure of the fuzzy models, delays can be
present, as analysed in Section 4, even if they satisfy the
application requirements.

3.4. Neural network modelling. Alongside the fuzzy
models, a different data-driven approach, based on neural
networks, has been proposed in order to implement the
fault diagnosis block. In this section, after a brief
introduction on the general structure, the properties and
the functioning of a neural network, as well as the
architecture, are recalled. They will be exploited for
implementing the neural network fault estimators.

In this work, a set of neural network estimators is
designed and trained in order to reproduce the behaviour
of the systems under investigation, thus accomplishing
the modelling and identification task. The structure of
the i-th single neuron (Haykin, 2001) is also called per-
ceptron. It features a MISO system where the output yi
is computed as a function f of the weighted sum vi of
all ni neuron inputs ui,1, . . . , ui,ni with the associated
weights wi,1, . . . , wi,ni . The function f , called the ac-
tivation function, represents the engine of the neuron, as
shown in Fig. 6.

A structural categorisation of neural networks
concerns the way in which their elements are connected
with each other (Xu et al., 1994). In a feed-forward net-
work, also called the multilayer perceptron, neurons are
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Fig. 6. i-th neuron model.

grouped into unidirectional layers. The first of them,
namely the input layer, is fed directly by the network
inputs, then each successive hidden layer takes the inputs
from the neurons of the previous layer and transmits the
output to the neurons of the next layer, up to the last out-
put layer, in which the final network outputs are produced.
Therefore, neurons are connected from one layer to the
next, but not within the same layer. The only constraint
is the number of neurons in the output layer, which has
to be equal to the number of actual network outputs. On
the other hand, recurrent networks (Hunt et al., 1992)
are multilayer networks in which the output of some
neurons is fed back to neurons belonging to previous
layers. Thus the information flows in forward as well as
in backward directions allowing a dynamic memory inside
the network.

A noteworthy intermediate solution is provided by
the multilayer perceptron with a tapped delay line, which
is a feed-forward network whose inputs come from a delay
line. This kind of network represents a suitable tool to
predict the dynamic relationship between the input-output
measurements and the considered fault functions. In
particular, the proposed NARX network is fed by the
delayed samples of the system inputs and outputs selected
by the FMEA tool. Indeed, if properly trained, the
NARX network can estimate the current (and the next)
fault samples fj(k) on the basis of the acquired past
measurements of system inputs and outputs u(k) and
y(k), respectively, in the same way as in fuzzy systems.

Generally speaking, considering a MIMO system,
the elaborations of the open-loop NARX network follow
the law

f̂i(k) = fnet
(
. . . , uj(k), . . . , uj(k − du), . . .

. . . , yl(k − 1), . . . , yl(k − dy), . . .
) (28)

where f̂i(k) is the estimate of the generic i-th fault, while
uj(·) and yl(·) are the generic j-th and l-th components
of the measured inputs and outputs u and y, respectively,
that are selected via the FMEA tool. Here k is the time
step, du and dy are the numbers of delay of inputs and
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Fig. 7. NARX network used as a residual generator, i.e., the
fault estimation.

outputs, respectively, that have to be properly estimated.
Moreover, fnet is the function realised by the network,
which depends on the layer architecture, the number of
neurons, their weights and their activation functions. The
behaviour of the NARX network used as the estimator of
the generic fault fi(k) is depicted in Fig. 7.

The parameters on which the designer can act
concerns the overall architecture (the number of neurons,
connections between layers), while the values of the
weights inside each neuron are derived from the network
training.

3.5. Neural network training. A neural network is a
learning system requiring an initial training procedure that
adjusts the weights to improve the network performance.
When the network task is the estimation of a nonlinear
function, the training is performed by presenting to the
network a set of examples of proper behaviour, consisting
in the selected system inputs and outputs, u(k) and y(k),
as well as the desired targets, i.e., the fault functions f(k).
The training can be implemented in two different ways:

• incremental mode: each input-target pair generates
an update of the network weights;

• batch mode: all inputs and targets are applied to the
network before the weights are updated.

Although the latter kind of training requires more
storage, it is characterised by faster convergence and
produces smaller errors. That is why it will be considered
in the following.

The training objective is the minimisation of a
performance function E, which depends on the weight
vector w.

Generally speaking, for P available example patterns
consisting in the input-target pairs (up, tp), defining the
output ŷp generated by the network fed by up, the p-th
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error vector can be expressed as

ep = [tp − ŷp] = [ep,1, . . . , ep,M ]T (29)

with p = 1, . . . , P and M the number of outputs.
Furthermore, the global error vector ē collects each ep:

ē = [e1,1, . . . , e1,M , . . . , eP,1, . . . , eP,M ]T . (30)

Consequently, the performance function becomes

E(w) =
1

P

P∑
p=1

(ti − ŷi)
2 =

1

P

P∑
p=1

M∑
m=1

e2p,m, (31)

where the dependence of E on the N parameters grouped
in the vector w = [w1, . . . , wN ]T is implicit in the
generated output ŷ = ŷ(w).

Any standard numerical optimisation algorithm can
be used to update the parameters in order to minimise
E. Among these, the most commons are iterative, and
make use of characteristic matrices, such as the gradient
g (or the Hessian H) of the performance function, or the
Jacobian J of the estimation error, defined as

g =
∂E(w)

∂w
=

[
∂E

∂w1
, . . . ,

∂E

∂wN

]T

, (32)

H =

⎡
⎢⎢⎢⎢⎢⎣

∂2E

∂w2
1

. . .
∂2E

∂w1∂wN
...

. . .
...

∂2E

∂wN∂w1
. . .

∂2E

∂w2
N

⎤
⎥⎥⎥⎥⎥⎦
, (33)

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1,1
∂w1

. . .
∂e1,1
∂wN

∂e1,2
∂w1

. . .
∂e1,2
∂wN

...
. . .

...
∂eP,M

∂w1
. . .

∂eP,M

∂wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

The successive iterations of these algorithms consist
in updating the parameters and the calculation of the
new value of the performance function, until a stop
criterion is met. The updating rules of the most common
optimisation algorithms (i.e., the gradient descent,
Newton, Gauss–Newton and Levenberg–Marquardt
algorithms) are reported in Table 3.

Table 3 summarises the parameters of the updating
rules of the most common optimisation algorithms, aimed
at the minimisation of the performance function E. Here
k is the iteration index, α is the learning rate and μ the
combination coefficient.

It can be demonstrated that the gradient descent
algorithm, for a sufficiently small learning rate α value,

Table 3. Updating rule parameters.
Algorithm Updating rule

Gradient descent wk+1 = wk − αgk

Newton wk+1 = wk −H−1
k gk

Gauss–Newton wk+1 = wk − (
JT
k Jk

)−1
Jkēk

Levenberg–Marquardt wk+1=wk−
(
JT
k Jk+μI

)−1
Jkēk

is asymptotically convergent: around the solution g, the
gradient is close to zero and the weights practically do not
change. Otherwise, the Newton and the Gauss–Newton
algorithms provide faster convergence, but they both
involve the computation of the inverse of a matrix which
may not be invertible, causing instability in the procedure.
Moreover, the Hessian matrix entails a burdensome
computational effort, as it contains the second order
derivative terms.

The Levenberg–Marquardt algorithm, originally
proposed by Hunt et al. (1992), introduces an
approximation of the Hessian matrix as H ≈ JTJ + μI,
where the first term of the sum is the Jacobian
approximation (also exploited in Gauss–Newton) and
the second term, driven by the combination coefficient
μ > 0, ensures the invertibility of the resulting matrix.
Therefore, the Levenberg–Marquardt algorithm provides
both fast and stable convergence and it represents a
suitable tool to train a neural network. Indeed, as shown
in Section 4, the neural network fault estimator blocks
have been trained exploiting this method.

The training of a neural network based on the
Levenberg–Marquardt algorithm, as explained by Hunt
et al. (1992), uses a technique called back-propagation
training, in order to compute the Jacobian matrix for the
updating rule. Its name refers to the backward processing
that starts from the output layer of the network towards the
first layer, after a previous forward computation of neuron
outputs.

3.6. Failure mode and effect analysis. The FDI
schemes adopted in the simulations reported in Section 4
were already discussed in Section 3.1. However, the
so-called failure mode and effect analysis (FMEA) is
exploited here, as it leads to an effective design of the fault
estimators, as shown below.

Following the guidelines reported by Stamatis
(2003), an FMEA strategy has been performed on the
wind turbine system. The FMEA is a sensitivity analysis
aimed at estimating the most sensitive measurements
uj(k) and yl(k) with respect to the simulated fault
conditions fi(k). In practice, the monitored fault
signals have been injected into the benchmark simulator,
assuming that only a single fault may occur in the
considered plant. Then, the relative mean square errors
(RMSEs) between the fault-free and faulty measured
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signals are computed, so that, for each fault, the most
sensitive signal can be selected. The results of the FMEA
are shown in Table 4 for the wind turbine benchmark.

In particular, the FMEA can be conducted on
the basis of a selection algorithm that is achieved by
introducing the normalised sensitivity function

Nx =
Sx

S∗
x

,

where

Sx =
‖xf (k)− xn(k)‖2

‖xn(k)‖2
, (35)

S∗
x = max

k

‖xf (k)− xn(k)‖2
‖xn(k)‖2

. (36)

Its value represents the effect of the considered fault
case with respect to a certain measure signal x(k), with
k = 1, 2, . . . , N . The subscripts ‘f ’ and ‘n’ indicate
the faulty and fault-free cases, respectively. Therefore the
measurements most affected by the considered fault imply
a value of Nx equal to 1. Otherwise, a small value of Nx,
i.e., close to zero, denotes a signal x not affected by the
fault. The signals characterised by high values of Nx can
be selected as the most sensitive measurements and they
will be considered in the design of the FDI blocks. The
results of the FMEA sensitivity are reported in Table 5.
The selected signals for each fault included in the wind
turbine benchmark are divided as inputs and outputs.

As a result, the fault diagnosis blocks that have
to be designed can implement the reduced fault models
instead of the overall system model (7) with a noteworthy
simplification of the inner structure, thus providing a
decrease in the computational effort.

Note that the fault sensitivity analysis proposed
in this section does not need to check all possible
combinations among the input-output measurements,
since the fault sensitivity indices represented by the
relations (35) and (36) are performed once on a single
input or output measurement. The complexity is thus
simply O(r +m), where r is the number of inputs and m
the number of outputs. This procedure can be considered
logically equivalent but less complex than a structural
analysis, for example, as proposed by Blanke et al.
(2003), which may require the definition of structural
residuals and the derivation of relationships based on
the physical model. In fact, the model of the wind
turbine considered in this work contains a relation that
is expressed in the form of two-dimensional map (or a
Simulink look-up table), as described by (2). In contrast,
the sensitivity analysis proposed in this work is easier and
straightforward, since it requires only the simulation of
the considered benchmark (already available as Simulink
model) where the faults are directly injected into the
dynamic process. Moreover, since the benchmark is
directly available as a functional scheme, it provides also

a viable and direct way for the generation of the required
fault sensitivity signals required by the analysis proposed
in this section. In order to highlight the features of
the proposed tool, an alternative approach based on a
correlation analysis is outlined in the following.

In more detail, the correlation analysis is based on
the following formula:

RN (τ) =
1

N − 1

N+τ−1∑
k=τ

(xf (k)− xn(k))

× (xf (k + τ) − xn(k + τ)) ,

(37)

with τ > 1 representing the correlation window. If
the signal xf (k) − xn(k) has correlation properties, it
means that the generic measurement x(k) is affected by
the considered fault. In fault-free conditions, the variable
RN (τ) is modelled by a Gaussian distribution for a fixed
confidence interval (Ljung, 1999).

The rationale of using this correlation approach is
highlighted in the following by analysing its efficacy in the
achieved results. As an example, Fig. 8 reports the results
of the correlation analysis on 4 measurements acquired
from the wind turbine simulator. In fact, in fault-free
conditions, the residuals xf (k)− xn(k) should be ideally
uncorrelated, and independent of the other measurements
x(k). This situation guarantees that the considered
measurement x(k) is not affected by the considered fault.

Fig. 8. Examples of auto- (top) and cross-correlation (bottom)
for four measurements x(k) in fault sensitivity analysis.

Figure 8 shows the example of residuals xf (k) −
xn(k) in fault-free conditions when 4 measurements
are checked, thus highlighting their uncorrelation. In
particular, (a) the auto-correlation function of xf (k) −
xn(k) and (b) the cross-correlation function between
xf (k) − xn(k) and u(k) are displayed for 20 lags. For
these variables, the 99% confidence intervals are also
depicted in dotted lines, thus showing that xf (k) −
xn(k) is also independent of x(k) for each of the four
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Table 4. RMSE values of the most sensitive measurements uj(k) and yl(k) with respect to the faults fi(k).
Fault fi 1 2 3 4 5
Measurements uj β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1

or yl RMSE 11.29 0.98 2.48 1.44 1.45

Fault fi 6 7 8 9
Measurements uj β2,m1 β3,m2 τg,m ωg,m1

or yl RMSE 0.80 0.73 0.84 0.77

Table 5. FMEA and the most sensitive measurements with respect to the fault cases.
Fault fi Most sensitive inputs uj Most sensitive outputs yl

1 β1,m1, β1,m2 ωg,m2

2 β1,m2, β2,m2 ωg,m2

3 β1,m2, β3,m1 ωg,m2

4 β1,m2 ωg,m2, ωr,m1

5 β1,m2 ωg,m2, ωr,m2

6 β1,m2, β2,m1 ωg,m2

7 β1,m2, β3,m2 ωg,m2

8 β1,m2, τg,m ωg,m2

9 β1,m2 ωg,m1, ωg,m2

measurements. These results prove in simulation the
validity of the alternative sensitivity analysis considered
in this study, which leads to the same results of Table 5.

Finally, another important issue concerns the
capabilities of the proposed solutions when other faults
not included in the benchmarks are considered. In general,
when new faults that were not previously included in the
benchmark are considered, both the FMEA analysis and
the residual generator estimation have to be performed
again. However, this problem could be overcome by
using more advanced (e.g., self-tuning) methodologies
exploiting for example adaptive neural networks, (fuzzy)
self-organising maps, as well as on-line estimation
schemes (e.g., recursive Frisch scheme) (Beghelli et al.,
1990; Ioannou and Sun, 1996; Babuška, 1998; Simani
and Castaldi, 2013). However, their implementations
could require more complicated on-line implementations,
especially when considered for real-time applications.

4. Simulation results

This section reports the simulations related to the
considered benchmark, in which the proposed solutions
for fault diagnosis have been implemented. Firstly, the
focus is placed on the single wind turbine benchmark.
Both the fuzzy and the neural network fault estimators
are analysed and validated by means of an MC analysis.
Then, their performances are compared with those of
other fault diagnosis methods, commonly adopted in the
related literature. Finally, in order to assess the proposed
systems in a more realistic framework, the HIL test
has been performed by means of an industrial computer
interacting with on-board electronics.

4.1. Wind turbine simulations. In the following, with
reference to the wind turbine benchmark model of Section
2, all the simulations are driven by the same wind mean
speed sequence reported in Fig. 9. It comes from real
acquisition of wind speed data. It represents a good
coverage of typical operating conditions, as it ranges from
5 to 20 m/s, with a few spikes at 25 m/s. The other wind
speed components are represented by uniform random
variables.

Fig. 9. Wind speed sequence driving the simulations.

The simulations last for 4400 s, during which only
one fault may occur. The discrete-time benchmark
model runs at a sampling frequency of 100 Hz, so that
N = 440 000 samples per simulation are acquired.
With reference to the different scenarios described in
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Section 2.4, Table 6 reports the shape and the time of the
fault signals affecting the system. They are modelled as
input (actuator) or output (sensor) additive faults, based
on the FMEA results of Section 3.6.

Table 6. Fault characteristics.
Fault Type Shape Time (s)

1 actuator step 2000 − 2100
2 actuator step 2300 − 2400
3 actuator step 2600 − 2700
4 actuator step 1500 − 1600
5 actuator step 1000 − 1100
6 sensor step 2900 − 3000
7 sensor trapezoidal 3500 − 3600
8 sensor step 3800 − 3900
9 sensor step 4100 − 4300

In order to highlight how faults affect the system, the
comparison between the faulty and the fault free signal is
represented in Fig. 10 regarding the most affected signals
of the FMEA test. As an example, the cases of faults 1, 2,
3, and 8 are reported here.

Fig. 10. Faulty signals (black line) compared with the fault-free
signals (grey line).

4.2. Fault diagnosis via fuzzy identified models. The
issue on the fault diagnosis of the wind turbine benchmark
model via fuzzy models was proposed by Simani et al.
(2014; 2015), but the fuzzy models were used as wind
turbine output predictors, rather than fault estimators, as
investigated in this paper. As addressed in Section 3.2, the
fuzzy c-means clustering exploits a number nC = 4 of
clusters and o = 3 delays on input and output regressors.

The algorithm generates the membership function points
that are fitted through Gaussian membership functions.

Afterwards, the regressands α and δ of (16) are
identified for each cluster, following the procedure
explained in Section 3.2. As a result, the TS models can
be implemented and the nine fault estimators are built
and organised into the estimator scheme of Section 3.1,
in order to accomplish the fault detection, isolation and
identification tasks.

The capabilities of the fuzzy TS models used are
evaluated again in terms of the root mean squared error
(RMSE), where the error is calculated as the difference
between the predicted f̂i(k) and the actual fault fi(k)
signals, for each of the fuzzy estimators, with i =
1, . . . , 9. Table 7 shows the achieved fault prediction
performances of the 9 designed fault estimators of Fig. 5.

Table 7. Fault estimator performance in terms of RMSE.
Fault estimator f̂i 1 2 3 4 5

RMSE 0.016 0.023 0.021 0.020 0.019

Fault estimator f̂i 6 7 8 9
RMSE 0.021 0.017 0.021 0.019

In the following, an example of the structure of the
fuzzy model used for the reconstruction of the fault f̂1
is reported. As shown in Table 5, the estimation of this
fault requires the proper processing of the signals β1,m1,
β1,m2, and ωg,m2, as well as the identified consequents, as
summarised below for each rule:

Rule 1: f̂1(k) = 0.97 f̂1(k − 1)−8.93 · 10−4 f̂1(k − 2)

+4.01 · 10−2 f̂1(k − 3) + 9.12 β1,m1(k − 1)
−11.6 β1,m1(k − 2) + 2.46β1,m1(k − 3)
−0.121 β1,m2(k − 1) + 0.34 β1,m2(k − 2)
−0.21 β1,m2(k − 3) + 4.28ωg,m2(k − 1)
−0.423ωg,m2(k − 2)− 3.77ωg,m2(k − 3),

Rule 2: f̂1(k) = 1.04 f̂1(k − 1)− 3.41 · 10−2 f̂1(k − 2)

−1.21 · 10−4 f̂1(k − 3)− 0.23 β1,m1(k − 1)
+0.32 β1,m1(k − 2)− 0.17 β1,m1(k − 3)
−1.17 · 10−2 β1,m2(k − 1)
+2.28 · 10−3 β1,m2(k − 2)
+1.24 · 10−2 β1,m2(k − 3)
−0.62ωg,m2(k − 1) + 0.12ωg,m2(k − 2)
+0.54ωg,m2(k − 3),

Rule 3: f̂1(k) = 0.94 f̂1(k−1)+3.17 · 10−2 f̂1(k−2)

+1.8 · 10−2 f̂1(k − 3)− 10.1 β1,m1(k − 1)
+4.08 β1,m1(k − 2) + 6 β1,m1(k − 3)
+8.74 · 10−2 β1,m2(k−1)− 0.26 β1,m2(k−2)
+0.18 β1,m2(k − 3)− 3.23ωg,m2(k − 1)
+2.37ωg,m2(k − 2) + 0.85ωg,m2(k − 3),
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Rule 4: f̂1(k) = 0.97 f̂1(k−1)+3.01 · 10−2 f̂1(k−2)

+1.14 · 10−2 f̂1(k−3)+2.97 β1,m1(k−1)
−5.10 β1,m1(k − 2) + 1.99 β1,m1(k − 3)
+1.38 · 10−2 β1,m2(k − 1)
−1.56 · 10−2 β1,m2(k − 2)
−2.12 · 10−3 β1,m2(k − 3)
+1.75ωg,m2(k − 1) + 0.35ωg,m2(k − 2)
−2.03ωg,m2(k − 3).

(38)
These estimated signals f̂i are directly exploited as
residuals ri, as described by (9), and they are compared
with the thresholds of (10), optimally selected in
order to achieve the optimisation of the fault diagnosis
performance indices, e.g., the missed fault and the false
alarm rate, defined in the following. Table 8 reports
the adopted δ value for the threshold logic of each fault
estimator i.

Note that, as highlighted by the example of (38), in
general each of the nine fuzzy fault estimators has three
inputs (see Table 5), with a number of delays n = 3 and
nC = 4 clusters. Therefore, the number of estimated
parameters for each fuzzy MISO model is equal to (3 +
1)× n = 12. Moreover, each fault estimator requires the
identification of the fuzzy membership function λi(·) of
Eqn. (14) with i = 1, . . . , nC .

The most meaningful simulation results, proposed in
the following, consider two actuator faults fu and two
sensor faults fy, namely faults 1,4 and faults 8, 9 of the
scenarios described in Section 2.4.

These faults change the monitored input and output
signal u, y affecting the residual r1 = f̂1, r4 = f̂4 and
r8 = f̂8, r9 = f̂1 generated by the fuzzy fault estimators.
These faults f̂i are displayed in Fig. 11. They clearly
show the achievement of the fault detection task, as they
are significantly above the threshold bounds only when
the relative fault is active.
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Fig. 11. Fault-free (grey line) and faulty (black continuous line)
residuals for faults 1, 4, 8 and 9.

Figure 11 shows the estimated fault functions f̂i(k)
generated in faulty conditions by the fuzzy estimators

(black continuous line) compared with the fault-free
residuals (grey line). The fixed thresholds are depicted
with dotted lines. The considered residuals regard the
fault cases 1, 4, 8 and 9. It is worth noting that in
fault-free conditions the estimated fault functions f̂i(k)
are not zero due to both the model-reality mismatch and
the measurement errors.

Finally, as remarked at the end of Section 3.1,
Fig. 11 shows an example of fault detection logic relying
on time-varying thresholds, rather than the fixed ones,
depicted in Fig. 11. In particular, these thresholds have
been determined by means of the methodology already
proposed by the same authors, (e.g., Simani and Diversi,
2003).
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Fig. 12. Fault-free (grey line), faulty (black continuous line)
residuals for faults 1, 4, 8, 9, and time-varying thresh-
olds (dashed grey lines).

4.3. Fault diagnosis via neural networks. As for
the fuzzy systems, nine NARX neural network described
in Section 3.4 have been designed to estimate the nine
faults affecting the acquired measurements. The selected
architecture of the neural networks involves three layers,
namely the input layer, the hidden layer and the output
layer. The number of neurons in the input layer is 3, the
number in the hidden layer has been fixed to nh = 16,
while the output layer has only one neuron. Finally,
a number of du = dy = 4 has been chosen for the
input-output delays. Both the input and hidden layers
use sigmoidal activation functions, while the output layer
exploits the linear one. Each of the nine neural networks
is driven by three inputs, as highlighted in Table 5.

Similarly to the fuzzy models, the neural network
modelling capabilities have been tested in terms of RMSE
and the results are reported in Table 9, obtained by
comparing the reconstructed faults and the actual ones.

The fault detection task is achieved by comparing
the residuals ri = f̂i(k) of (9) with a fixed optimised
threshold, as described by (10).
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Table 8. Threshold logic selection in terms of the parameter δ.
ri(k) 1 2 3 4 5 6 7 8 9
δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

Table 9. Neural network performance in terms of RMSE.
Fault estimator f̂i(k) 1 2 3 4 5

RMSE 0.009 0.009 0.009 0.012 0.011

Fault estimator f̂i(k) 6 7 8 9
RMSE 0.011 0.009 0.009 0.014

Fig. 13. Reconstructed signals (continuous line) f̂i(k) and fixed
thresholds (dashed line) for the actuator faults f1(k),
f2(k), f3(k), f4(k).

Figure 13 shows some meaningful residual signal for
actuator faults, together with the relative thresholds, while
Fig. 14 shows the estimated signals regarding the sensor
faults. Further details on validation and comparative
results are described in the following.

In particular, Fig. 13 shows the residuals f̂i(k)
generated in faulty conditions by neural network
estimators (continuous line) compared with the fixed
thresholds (dashed line). The considered residuals
concern the actuator faults f1(k), f2(k), f3(k), and f4(k).

On the other hand, Fig. 14 shows the residuals f̂i(k)
generated by the neural network estimators (continuous
line) compared with the fixed thresholds (dashed line).
The residuals considered concern the sensor fault cases

Fig. 14. Reconstructed faults f̂i(k) (continuous line) and fixed
thresholds (dashed line) for the sensor faults f6(k),
f7(k), and f8(k).

f6(k), f7(k), and f8(k).
Finally, since the proposed solutions have been

working quite well in the considered application, it
is worth discussing advantages and disadvantages of
the two approaches considered in this paper. On the
one hand, the fuzzy estimation method leads to the
direct estimation of the residual generator parameters
(via the Frisch scheme algorithm), which is able to
provide also the model orders. However, it requires
the preliminary fuzzy clustering of the data used by the
Frisch scheme identification approach. On the other
hand, the neural network methodology does not require
any data fuzzy clustering, but a trial-and-error procedure
for the selection of the optimal number of neurons and
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Table 10. Variations in MC parameters.
Parameter Nominal value Min. error Max. error

ρ 1.225 kg/m3 ±0.1% ±20%
J 7.794 × 106 kg/m3 ±0.1% ±30%
Cp Cp0 ±0.1% ±50%

delays is needed in general. In the authors’ opinion, by
taking into account also previous applications of the same
proposed approaches (Simani, 2013), the fuzzy strategy
has appeared to be more powerful and flexible general
than the neural network scheme.

4.4. Validation and comparative analysis. The
evaluation of the performances of the considered fault
diagnosis strategies is based on the computation of the
following indices:

• false alarm rate (FAR): the ratio of the number of
wrongly detected faults to the number of simulated
faults;

• missed fault rate (MFR): the ratio of the total number
of missed faults to the number of simulated faults;

• true FDI rate (TFR): the ratio of the number of
correctly detected faults to the number of simulated
faults (complementary to MFR);

• mean FDI delay (MFD): the delay time of the fault
occurrence to the fault detection.

A proper MC analysis has been performed in order
to compute these indices and to test the robustness of the
considered FDI schemes. Indeed, the MC tool is useful
at these stage, as the efficacy of the diagnosis depends
on both the model approximation capabilities and the
measurements errors.

In particular, a set of 1000 MC runs has
been executed, during which realistic wind turbine
uncertainties have been considered by modelling some
meaningful variables as Gaussian stochastic processes
around the nominal values and with standard deviations
corresponding to the realistic minimal and maximal error
values of Table 10.

In addition to the proposed fuzzy and neural network
fault estimators, the performance indices of other fault
diagnosis schemes are analysed, as described by Odgaard
and Stoustrup (2015).

The first alternative approach considered here uses
a support vector machine (SVM) based on a Gaussian
kernel (GKSV) developed by Laouti et al. (2011).
The scheme defines a vector of features for each
fault, which contains relevant signals obtained directly
from measurements, filtered measurements or their
combinations. These vectors are subsequently projected

onto the kernel of the SVM, which provides suitable
residuals for all of the defined faults. Data with and
without faults were used for training the model for the FDI
of the specific faults.

The second scheme consists in an estimation-based
(EB) solution shown by Zhang et al. (2011). In particular,
a fault detection estimator is designed to detect a fault, and
an additional bank of estimators is derived to isolate them.
The method was designed on the basis of a system linear
model and used fixed thresholds. Each estimator for fault
isolation was computed on the basis of the particular fault
scenario under consideration.

The third method relying on up-down counters
(UDC) was addressed by Ozdemir et al. (2011). These
tools are commonly used in the aerospace framework,
and they provide a different approach to the decision
logic applied to the FDI residuals. Indeed, the decision
to declare the fault occurrence involves discrete-time
dynamics and is not simply a function of the residual
value.

The fourth approach are combined observer and
Kalman filter (COK) methods (Chen et al., 2011). It relies
on an observer used as a residual generator for diagnosing
the faults of the drive train, in which the wind speed is
considered as a disturbance. This diagnosis observer was
designed to decouple the disturbance and simultaneously
achieve optimal residual generation in a statistical sense.
For the other two subsystems of the wind turbine, a
Kalman filter-based approach was applied. The residual
evaluation task used a generalised likelihood ratio test,
and cumulative variance indices were applied. For fault
isolation, a bank of residual generators was exploited.
Sensor and system faults were thus isolated via a decision
table.

Finally, the fifth method is a general fault model
(GFM) scheme, which is a method of automatic design
(Svard and Nyberg, 2011). The FDI strategy consists of
three main steps. In the first step, a large set of potential
residual generators was designed. In the second step, the
most suitable residual generators to be included in the final
FDI system were selected. In the third step, tests for the
selected set of residual generators were performed, which
were based on comparisons of the estimated probability
distributions of the residuals, evaluated with fault-free and
faulty data.

The comparative analysis results are reported in
Table 11. In particular, different approaches to the fault
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diagnosis of the wind turbine benchmark model, i.e., the
fuzzy and the neural network estimators, are shown.

The results show the efficacy of the proposed FDI
solutions. In details, both fuzzy and neural network
estimators seem to work better than other approaches,
and they have a noteworthy performance level considering
the mean delay time, which is significantly lower than
10 s for all the fault cases. Also false alarm and
missed fault rates are often lower than those of other
approaches. Particularly neural networks features an
almost null missed fault rate for all the considered faults.
However, for both fuzzy and neural networks FDI design,
optimisation stages are required, for example, for the
selection of the optimal thresholds. Furthermore, GKSV
involves delays bigger than 25 s, with false alarms
and missed fault rate up to 35%. EB has comparable
performance with respect to GKSV in terms of false
alarm, true detection and a missed fault rates, but with
a quicker detection. UDC often involves high false alarms
rates, greater than 12% for all the detectable faults. COK
and GFM have similar performances, with delay times
higher than 10 s, false alarm and missed fault rates greater
than 10%. Fault 9 concerns the drive train. This fault is
difficult to detect at the wind turbine level. Therefore it is
investigated also in the context of wind farm installations
(Odgaard and Stoustrup, 2013). However, the fuzzy
estimators can detect it, with a minimum delay but with
a lower true FDI rate, with respect to the other fault cases.

4.5. Hardware-in-the-loop tests. The HIL test rig has
been implemented in order to validate the proposed fault
diagnosis schemes in more realistic real-time working
conditions. These experimental tests aim at validating the
noteworthy results obtained in simulations, considering
the almost real conditions that the systems under analysis
(i.e., the wind turbine in this paper) may deal with,
during their working situations. This tool was originally
proposed by Simani (2012) but for fault tolerant control,
rather than the direct reconstruction of the fault signals
aimed at fault diagnosis.

The set-up of the test-rig, represented in Fig. 15,
consists of three interconnected components:

• Simulator: The models of the system dynamics
have been implemented in LabVIEW� and consider
factors such as disturbance, measurement noise
and uncertainty, in addition to the system models
described in Section 2. This software tool runs on an
industrial CPU and allows the real-time monitoring
of the simulated system parameters.

• On board electronics: The fault estimators have
been implemented in the AWC 500 system, which
features standard wind turbines specifications. This
element receives the signals relative to the generated
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Fig. 15. Block diagram of the HIL test rig.

power and the generator angular rates. Then,
it processes the control algorithm, including the
fault diagnosis module, and produces the generator
torques and pitches command signals transmitted to
the simulator.

• Interface circuits: They carry out the communication
between the simulator and the on-board electronics,
receiving the output signals from the simulator and
transmitting the signal generated by the diagnosis
modules and the wind turbine controller.

Table 12 refers to the fuzzy fault diagnosis scheme
and summarises the results obtained using this real-time
HIL set-up for the wind turbine simulated system.

On the other hand, Table 13 refers to the neural
network fault diagnosis scheme and reports the values
achieved exploiting the same real-time HIL set-up used
for the fuzzy fault diagnosis strategy.

It is worth observing the consistency of the near
real-time test with respect to the MC analysis mentioned
above in Section 4.1. Although the performances of
the MC analysis seem to be better than those obtained
using the HIL platform, some issues have to be taken into
account. Indeed, the numerical accuracy of the on-board
electronics, which involves float calculations, is more
restrictive than the CPU of the simulator. Moreover, also
the analog to digital and the digital to analog conversions
can motivate possible deviations. Note that real situations
do not require to transfer data from a computer to the
on-board electronics, so that this error is not actually
introduced.

However, the obtained deviations are not critical and
the developed control systems can be also considered in
real wind turbine applications.

5. Conclusion

The paper proposed a solution to the problem of earlier
fault detection, diagnosis and isolation. The design
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Table 11. Comparison of the FDI results.
Fault Performance GKSV EB UDC COK GFM Fuzzy Neural
Case Index FDD FDD

1 FAR 0.001 0.001 0.001 0.001 0.001 0.001 0.001
MFR 0.002 0.003 0.002 0.003 0.002 0.001 0.001
TFR 0.978 0.977 0.987 0.977 0.982 0.999 0.999

MFD (s) 0.03 0.03 0.04 10.32 0.05 0.020 0.010
2 FAR 0.234 0.224 0.123 0.003 0.235 0.001 0.228

MFR 0.343 0.333 0.232 0.029 0.532 0.003 0.001
TFR 0.657 0.667 0.768 0.971 0.468 0.997 0.999

MFD (s) 47.24 44.65 69.03 19.32 13.74 0.080 0.080
3 FAR 0.004 0.141 0.123 0.056 0.135 0.003 0.001

MFR 0.006 0.132 0.241 0.128 0.232 0.008 0.001
TFR 0.974 0.868 0.769 0.872 0.768 0.992 0.999

MFD (s) 0.05 0.54 0.05 19.32 0.74 0.020 0.010
4 FAR 0.006 0.005 0.123 0.056 0.236 0.004 0.001

MFR 0.005 0.006 0.113 0.128 0.333 0.004 0.001
TFR 0.975 0.994 0.887 0.872 0.667 0.996 0.999

MFD (s) 0.15 0.33 0.04 19.32 17.64 0.020 0.690
5 FAR 0.178 0.004 0.234 0.256 0.236 0.002 0.004

MFR 0.223 0.005 0.254 0.329 0.242 0.003 0.005
TFR 0.777 0.995 0.746 0.671 0.758 0.997 0.986

MFD (s) 25.95 0.07 0.04 31.32 9.49 0.030 0.039
6 FAR 0.897 0.173 0.334 0.156 0.096 0.042 0.001

MFR 0.987 0.234 0.257 0.129 0.042 0.033 0.001
TFR 0.013 0.766 0.743 0.871 0.958 0.967 0.999

MFD (s) 95.95 11.37 12.94 34.02 9.49 3.030 0.010
7 FAR 0.899 0.044 0.134 0.134 0.123 0.047 0.676

MFR 0.899 0.035 0.121 0.101 0.098 0.023 0.001
TFR 0.101 0.965 0.879 0.899 0.902 0.977 0.999

MFD (s) 99.95 26.17 13.93 35.01 29.79 5.070 6.870
8 FAR 0.004 0.045 0.144 0.109 0.099 0.003 0.466

MFR 0.007 0.011 0.101 0.032 0.124 0.002 0.001
TFR 0.993 0.989 0.899 0.968 0.876 0.998 0.999

MFD (s) 0.07 0.08 0.09 0.06 8.94 0.050 0.200
9 FAR – – – – – 0.134 0.101

MFR – – – – – 0.165 0.123
TFR – – – – – 0.835 0.802

MFD (s) – – – – – 0.301 0.379

Table 12. FDI performance indices for the wind turbine HIL test
with the fuzzy fault estimators.

Estimated fault f̂i(k) FAR MFR TFR MFD

1 0.005 0.005 0.995 0.077
2 0.004 0.004 0.996 0.490
3 0.004 0.004 0.996 0.080
4 0.005 0.005 0.995 0.070
5 0.003 0.004 0.997 0.060
6 0.004 0.005 0.996 0.760
7 0.005 0.004 0.995 0.640
8 0.005 0.004 0.995 0.060
9 0.004 0.005 0.996 0.180

Table 13. FDI performance indices for the wind turbine HIL test
with the neural network fault estimators.

Estimated fault f̂i(k) FAR MFR TFR MFD

1 0.007 0.006 0.899 0.014
2 0.234 0.005 0.867 0.516
3 0.004 0.004 0.914 0.080
4 0.005 0.005 0.922 0.070
5 0.006 0.007 0.905 0.097
6 0.005 0.006 0.989 0.871
7 0.701 0.007 0.981 6.987
8 0.498 0.008 0.987 0.289
9 0.197 0.176 0.798 0.399
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of the fault indicator, in this work represented by
the direct estimate of the fault itself, involved two
data-driven approaches, as they represented an effective
tool for coping with a poor analytical knowledge of the
system dynamics, together with noise and disturbances.
In particular, the proposed data-driven solutions were
based on fuzzy systems and neural networks used to
describe the strongly nonlinear relationships between
the input-output measurement and the considered faults.
The chosen architectures belong to the nonlinear
autoregressive-with-exogenous-input system topology, as
it can represent a dynamic evolution of the system along
time.

The developed fault diagnosis schemes were tested
by means of a high-fidelity benchmark model that
simulated the normal and the faulty behaviour of a
wind turbine system. The achieved performances were
compared with those of other control strategies, coming
from the related literature. Finally, Monte-Carlo analysis
and an hardware-in-the-loop test-rig served to analyse the
robustness and the reliability of the proposed solutions
against realistic and typical parameter uncertainties and
disturbances. Further works will address the analysis
of the performance of the developed fault diagnosis
strategies when used for active fault tolerant control
applications.
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