
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 3, 595–607
DOI: 10.2478/amcs-2018-0046

HARDWARE REDUCTION FOR LUT–BASED MEALY FSMS

ALEXANDER BARKALOV a, LARYSA TITARENKO a , KAMIL MIELCAREK a,*

aInstitute of Metrology, Electronics and Computer Science
University of Zielona Góra, ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland

e-mail: {A.Barkalov,L.Titarenko,K.Mielcarek}@imei.uz.zgora.pl

A method is proposed targeting a decrease in the number of LUTs in circuits of FPGA-based Mealy FSMs. The method
improves hardware consumption for Mealy FSMs with the encoding of collections of output variables. The approach is
based on constructing a partition for the set of internal states. Each state has two codes. It diminishes the number of
arguments in input memory functions. An example of synthesis is given, along with results of investigations. The method
targets rather complex FSMs, having more than 15 states.

Keywords: Mealy FSM, synthesis, FPGA, LUT, partition, encoding collections of output variables.

1. Introduction

A lot of digital systems include control units (Baranov,
2008; Gajski et al., 2009). As follows from the works of
Czerwiński and Kania (2013) or Minns and Elliot (2008),
different models of finite state machines (FSMs) are used
very often for representing and designing control units.
In many practical cases, the model of a Mealy FSM is
used for these purposes (Sklyarov et al., 2014; Micheli,
1994). That is why we choose the Mealy FSM model in
this research.

It is very important to diminish the amount of
hardware consumed by an FSM logic circuit (Gajski et al.,
2009; Czerwiński and Kania, 2013). Solution methods for
this problem strongly depend on specific features of logic
elements used for implementing the circuits (Czerwiński
and Kania, 2013; Sklyarov et al., 2014). In our article,
we discuss a case when field programmable gate arrays
(FPGAs) are used to implement Mealy FSM logic circuits.
We chose FPGAs because they are very popular and
are used very often for implementing FSM logic circuits
(Maxfield, 2004; Grout, 2008).

It is enough to use only two components of FPGA
fabric to implement any logic circuit. These components
are logic elements (LEs) and a matrix of programmable
interconnections (Altera, 2018; Xilinx, 2018). An LE
includes a look-up table (LUT) element, a programmable
flip-flop and multiplexers. The LUT is a memory block

*Corresponding author

having SL address inputs and a single output. The LUT
can keep a truth table of an arbitrary Boolean function
having up to SL arguments. It is possible to bypass the
flip-flop of an LE. Consequently, the output of the LE
could be either combinational or registered.

The LUT has a rather small amount of inputs (SL ≤
6) (Altera, 2018; Xilinx, 2018). This peculiarity leads
to applying functional decomposition (Scholl, 2001; Kam
et al., 1997; Nowicka et al., 1999) of Boolean functions
having more than SL arguments. The decomposition leads
to multilevel circuits with complex interconnections. In
turn, it leads to increasing the propagation time and power
consumption of the circuit (Barkalov et al., 2015). It is
very important to decrease the power consumption for
FSM circuits (Kubica and Kania, 2017) as well as for
other digital systems (Sajewski, 2017).

To improve the characteristics of FSM circuits, it is
necessary to reduce the number of arguments in Boolean
functions representing an FSM logic circuit (Sklyarov
et al., 2014). As a rule, various methods of state
assignment are used to solve this problem (Minns and
Elliot, 2008; Kam et al., 1997). JEDI (Lin and Newton,
1989) is one of the best among these methods. JEDI is
used, for example, in CAD tools such as SIS (Sentowich
et al., 1992) and ABC (ABC System, 2018).

Also, a hardware reduction can be obtained due to
a structural decomposition of the FSM circuit (Barkalov
et al., 2012). In this case, the designers use methods
such as the replacement of logical conditions (Sklyarov

{{A.Barkalov, L.Titarenko, K.Mielcarek}}@imei.uz.zgora.pl

596 A. Barkalov et al.

et al., 2014; Baranov, 1994), the encoding of collections
of microoperatios (Sklyarov et al., 2014; Baranov,
1994), the transformation of object codes (Barkalov and
Barkalov, Jr., 2005). These methods are based on the
representation of an FSM circuit as a multi-level circuit.
Each level of the FSM circuit is represented by a system
of additional functions. They are much simpler than
the functions implemented by a single-level circuit. The
composition of additional functions represents the system
of functions of a single-level circuit

In this article, we propose a design method targeting
a hardware reduction in LUT-based Mealy FSMs. The
method is based on a three-level structure of an FSM
circuit and an encoding of collections of output variables.

2. Background of Mealy FSMs

A Mealy FSM is defined as the sextuple S =
(X,Y,A, δ, λ, a1) (Baranov, 2008; Micheli, 1994), where
X = {x1, . . . , xL} is a finite set of inputs, Y =
{y1, . . . , yN} is a finite set of outputs, A = {a1, . . . , aM}
is a finite set of states, δ : A × X → A is the transition
function, λ : A ×X → Y is the output function, a1 ∈ A
is the initial state.

The sextuple S can be represented by a state
transition table (STT) (Micheli, 1994). The STT includes
the following columns: am is the current state; as is
the state of the transition; Xh is a conjunction of some
elements of the set X (or their complements) determining
the transition from am into as; Yh is the collection of
outputs generated during the transition 〈am, as〉; h is the
number of the transition.

Consider the STT of a Mealy FSM S1 (Table 1). It
has H = 20 rows. The following sets can be derived from
Table 1: A = {a1, . . . , a10}, X = {x1, . . . , x5}, Y =
{y1, . . . , y8}. This gives M = 10, L = 5 and N = 8.

When the set of states is constructed, the state
assignment should be executed (Micheli, 1994; Baranov,
1994). During this step, each state am ∈ A is represented
by its code K(am) having R bits. The variables Tr ∈
T are used for state assignment, where T is a set of
state variables. The method of one-hot state assignment
is very popular in the FPGA-based design of FSMs
(Garcia-Vargas et al., 2007; Tiwari and Tomko, 2004).
But if embedded memory blocks (EMB) are used, then
a binary assignment is more preferable, when we have

R = �log2 M�. (1)

A register (RG) is used to keep the state codes. It
includes flip-flops with the mutual synchronization pulse
Clock and mutual clearing pulse Start. As a rule, D
flip-flops are used for implementing the RG (Baranov,
2008). To change the content of the RG, input memory
functions Dr ∈ Φ are used, where Φ = {D1, . . . , DR}.

To design an FSM logic circuit, it is necessary to
construct a structure table (ST) of the Mealy FSM. It is
the extension of the initial STT by the following three
columns: K(am) is the code of the current state; K(as)
is the code of the state of transition; Φh is a collection
of input memory functions equal to 1 to load into RG
the code K(as). The ST forms a basis for deriving the
functions

Φ = Φ(T,X), (2)

Y = Y (T,X). (3)

They are used for implementing the FSM logic circuit.
Let us construct the ST for Mealy FSM S1. We

have M = 10, so that R = 4. Let us form an
ST for the Mealy FSM represented by Table 1. Since
M = 10, we see that R = 4. This yields the sets
T = {T1, . . . , T4} and Φ = {D1, . . . , D4}. Use the
trivial state assignment resulting in the following state
codes: K(a1) = 0000, . . . ,K(a10) = 1001. These codes
are used in the structure table (Table 2).

An ST is used to derive functions (2) and (3).
For example, observe the symbol D1 in rows 14–16 of
Table 2. This gives the equation D1 = A6x̄1x̄3 ∨ A7 ∨
A8x5 = T̄1T2T̄3T4x̄1x̄3 ∨ T̄1T2T3T̄4 ∨ T̄1T2T3T4x5.

Functions (2) and (3) depend on terms

Fh = AmXh (h = 1, H). (4)

In (4), the symbol Am stands for the conjunction of state
variables Tr ∈ T corresponding to the code K(am) from
the row h of the ST.

Table 1. State transition table of Mealy FSM S1.
am as Xh Yh h

a1 a2 1 y1y2 1

a2
a3 x1 y3 2
a3 x̄1 y2y4 3

a3

a4 x2 y1y2 4
a4 x1x̄2 y3y5 5
a3 x̄1x̄2 y2y4 6

a4 a5 1 y6y7 7

a5

a6 x3x4 y6y7 8
a6 x3x̄4 y3 9
a7 x̄3x5 y2y4 10
a7 x̄3x̄5 y7 11

a6

a8 x1 y2y5 12
a8 x̄1x3 y2y8 13
a9 x̄1x̄3 y3 14

a7 a9 1 y3 15

a8
a10 x5 y2y4 16
a1 x̄5 y2y8 17

a9 a1 1 – 18

a10
a4 x6 y1y2 19
a1 x̄6 – 20

Hardware reduction for LUT-based Mealy FSMs 597

Functions (2) and (3) determine the trivial structural
diagram of LUT-based Mealy FSM U1 (Fig. 1). We use
the symbol LUTer for circuits implemented with LUTs.

In U1, the block LUTerΦ implements the system (2).
If a function Dr ∈ Φ is generated as an output function of
some LUT, then this output is connected with D flip-flops.
These flip-flops form a distributed register (RG) keeping
the state codes. Pulse Start is used for zeroing the RG.
The pulse Clock allows changing the content of the RG.
The block LUTerY implements the system (3).

Let us analyse the design methods targeting the
hardware reduction in FPGA-based Mealy FSM circuits.

3. State of the art

Four basic optimization problems arise in the process
of FSM design (Sklyarov et al., 2014). They are the
following: (i) a decrease in the chip area occupied by an
FSM circuit (the problem of hardware reduction); (ii) a

Table 2. Structure table of Mealy FSM S1.
am K(am) as K(as) Xh Yh Φh h

a1 0000 a2 0001 1 y1y2 D4 1

a2 0001
a3 0010 x1 y3 D3 2
a3 0010 x̄1 y2y4 D3 3

a3 0010
a4 0011 x2 y1y2 D3D4 4
a4 0011 x1x̄2 y3y5 D3D4 5
a3 0010 x̄1x̄2 y2y4 D3 6

a4 0011 a5 0101 1 y6y7 D2 7

a5 0100

a6 0101 x3x4 y6y7 D2D4 8
a6 0101 x3x̄4 y3 D2D4 9
a7 0110 x̄3x5 y2y4 D2D3 10
a7 0110 x̄3x̄5 y7 D2D3 11

a6 0101
a8 0111 x1 y2y5 D2D3D4 12
a8 0111 x̄1x3 y2y8 D2D3D4 13
a9 1000 x̄1x̄3 y3 D1 14

a7 0110 a9 1000 1 y3 D1 15

a8 0111
a10 0010 x5 y2y4 D1D4 16
a1 0000 x̄5 y2y8 – 17

a9 1000 a1 0000 1 – – 18

a10 1001
a4 0011 x6 y1y2 D3D4 19
a1 0000 x̄6 – – 20

LUTerΦ

Clock

Start LUTerY

T

X

Y

Fig. 1. Structural diagram of Mealy FSM U1.

reduction in signal propagation time; (iii) a reduction in
power consumption; (iv) an improvement in testability. In
this article, we consider the first of these problems.

Functions (2) and (3) could depend on up to R +
L arguments. Our analysis of the library LGSynth93
(LGSynth93, 1993) shows that for some benchmarks we
have L + R > 15. At the same time, we get SL ≤ 6 for
modern LUTs (Altera, 2018; Xilinx, 2018). Therefore, the
following condition could be met for FSM U1:

L+R
 SL. (5)

If (5) is fulfilled, the problem of hardware reduction
arises for a particular FSM. There are four main groups of
methods for solving this problem:

(a) the appropriate state assignment (Baranov, 2008;
Micheli, 1994; Kam et al., 1997);

(b) the functional decomposition of Boolean functions
(2) and (3) representing an FSM circuit (Scholl,
2001; Nowicka et al., 1999; Rawski et al., 2005a;
2005b; Sasao, 2011);

(c) the replacement of LUTs by embedded memory
blocks (Sklyarov et al., 2014; Barkalov et al., 2015;
Sutter et al., 2002; Cong and Yan, 2000; Sklyarov,
2000; Garcia-Vargas et al., 2007; Tiwari and Tomko,
2004; Rawski et al., 2011);

(d) the structural decomposition of the FSM circuit
(Sklyarov et al., 2014; Barkalov and Titarenko, 2009;
Kołopieńczyk et al., 2017).

Known methods of state assignment target obtaining
state codes making it possible to diminish the number of
arguments in functions (2) and (3). Modern FPGAs have
a lot of flip-flops. Therefore the one-hot state assignment
is very popular in FPGA-based design (Sklyarov et al.,
2014). In this case, we have R = M and only a single
variable Tr ∈ T forms a conjunction Am(m = 1,M). It
allows reducing the number of arguments in terms (4). But
results in (Sklyarov, 2000) show that the binary encoding
of states produces better results than the one-hot if M >
10.

It seems to us that JEDI is the best among the known
state assignment algorithms (Czerwiński and Kania,
2013). It is distributed with the system SIS (Sentowich
et al., 1992). JEDI targets a multi-level implemented FSM
circuits. In the case of the input dominant version of JEDI,
it maximizes the size of common cubes in functions (2)
and (3). The output dominant version of JEDI maximizes
the number of common cubes in these functions.

There are different strategies of state assignment
used in standard industrial packages. For example, seven
different methods are used in the design tool XST of
Xilinx (Xilinx, 2018). Among them, there are one-hot,

598 A. Barkalov et al.

compact, Gray, Johnson and other. It is really difficult to
say which would be the best for a particular FSM.

In the case of functional decomposition (Scholl,
2001; Rawski et al., 2005a; 2011; Sasao, 2011), an
original function is broken down into smaller and smaller
components. The process is terminated when each
component depends on no more than SL arguments.
Three main approaches are used for the decomposition:
serial, parallel and balanced. Each step of serial
decomposition leads to an increase in the number of
circuit levels. In turn, this results in a reduction in
the maximum operating frequency of the FSM circuit.
In the parallel decomposition, these characteristics are
minimized. The balanced decomposition leads to
a solution minimizing disadvantages and maximizing
strong sides of the previous two approaches. This
approach is used, for example, by the systems DEMAIN
(DEMAIN, 2018) and PKmin (PKmin, 2018).

There are a lot of EMBs in modern FPGA chips
(Sentowich et al., 1992). Using EMBs allows improving
characteristics of FSM circuits (Sklyarov, 2000). A lot of
EMB-based design methods can be found in the literature
(Sklyarov et al., 2014; Cong and Yan, 2000; Sklyarov,
2000; Garcia-Vargas et al., 2007; Tiwari and Tomko,
2004; Rawski et al., 2005a; 2011).

All these methods use the property of the
configurability of EMBs (Nowicka et al., 1999).
This property allows changing the numbers of cells and
their outputs (Grout, 2008). Consequently, the modern
EMBs are very flexible and could be tuned to meet the
requirements of a particular FSM.

Let V0 be the number of memory cells having only a
single output. Assume that

2L+R(R +N) ≤ V0. (6)

In this case, only a single EMB is necessary to implement
an FSM logic circuit. Our investigations (Kołopieńczyk
et al., 2017) show that the condition (6) is met for 68%
of benchmarks from the library LGSynth93 (LGSynth93,
1993).

If (6) is violated, then an FSM circuit could be
implemented as: (i) a network of EMBs or (ii) a network
of LUTs and EMBs. A survey of various approaches
to EMB-based design is provided by Garcia-Vargas and
Senhadji-Navarro (2015). But these methods could be
used only if there are “free” EMBs, which are not used
for implementing other parts of a digital system.

Our article is connected with structural
decomposition of FSM circuits. In this case, an
FSM circuit is represented by several blocks (Barkalov
et al., 2015). Some blocks implement functions different
from (2) or (3). We discuss the encoding of collections of
output variables (COVs). Let us explain this approach.

Each row of ST includes a COV. The following

COVs could be derived from Table 2:

Y1 = ∅, Y2 = {y1, y2},
Y3 = {y3}, Y4 = {y2, y4},
Y5{y3, y5}, Y6 = {y6, y7},
Y7 = {y1, y7}, Y8 = {y7},
Y9 = {y2, y5}, Y10 = {y2, y8}.

The COV Y1 corresponds to the transition from a10 into a1
when no output variables are generated. Therefore, there
are Q = 10 different COVs in the case of S1.

Encode each COV Yq ⊆ Y by a binary code K(Yq)
having RQ bits,

RQ = �log2 Q�. (7)

Use variables zr ∈ Z for encoding COVs, where |Z| =
RQ.

This approach leads to LUT-based Mealy FSM U2

with a decomposed output block (Fig. 2). In this FSM,
the LUTerΦ implements the system (2). The LUTerZ
implements functions

Z = Z(T,X). (8)

The LUTerY implements the functions

Y = Y (Z). (9)

Let us compare FSMs U1 and U2. Two FSMs are
called equivalent if they are designed using the same STT.
Obviously, there are the same amounts of LUTs in the
blocks LUTerΦ in equivalent FSMs U1 and U2. Assume
that

N
 Q. (10)

In this case, the number of LUTs in LUTerZ is much lower
than the numbers of LUTs in LUTerY of U1. Assume that

RQ ≤ SL. (11)

In this case, only N LUTs are sufficient to implement the
circuit of LUTerY of U2.

Obviously, the method should be applied if the
number of elements in the block LUTerY of U1

significantly exceeds the total number of LUTs in the

LUTerΦ

Clock

Start LUTerZ LUTerY

T

X

Z
Y

Fig. 2. Structural diagram of Mealy FSM U2.

Hardware reduction for LUT-based Mealy FSMs 599

blocks LUTerZ and LUTerY of equivalent U2. Our
investigations of the library LGSynth93 (LGSynth93,
1993) show that circuits of FSMs U2 always require
fewer LUTs than the circuits of equivalent FSMs U1.
However, the circuits of U2 have more structural levels
than their counterparts U1. This may lead to a decreased
performance of FSMs U2 compared with equivalent FSMs
U1.

An overview of various methods of structural
decomposition in presented in the works of Sklyarov
et al. (2014) and Barkalov et al. (2015). All the known
methods are based on introduction of additional variables
and reducing the number of functions depending on both
state and input variables.

To design an FSM U2, it is necessary to transform its
initial ST. To do it, the column Yh should be replaced by
a column Zh. The column Zh includes variables zr ∈ Z
equal to 1 in the code K(Yq) of COV Yq ⊆ Y from the
h-th row of ST.

Using (7), we can find that RQ = 4 for FSM
U2(S1). We use the symbol Ui(Sj) to show that an
FSM Ui is designed using an STT of the Mealy FSM
Sj . Consequently, there is Z = {z1, . . . , z4} in the
discussed case. Let us encode COVs Yq ⊆ Y in the trivial
way: K(Y1) = 0000,K(Y2) = 0001 and so on. The
transformed ST of Mealy FSM U2(S1) is represented by
Table 3.

Let us explain how the column Zh is obtained. For
example, observe COV Y1 in the first row of Table 2. It
has code 0001. Thus is the variable z4 is included in the

Table 3. Transformed ST of Mealy FSM U2(S1).
am K(am) as K(as) Xh Zh Φh h

a1 0000 a2 0001 1 z4 D4 1

a2 0001
a3 0010 x1 z3 D3 2
a3 0010 x̄1 z3z4 D3 3

a3 0010
a4 0011 x2 z4 D3D4 4
a4 0011 x1x̄2 z2 D3D4 5
a3 0010 x̄1x̄2 z3z4 D3 6

a4 0011 a5 0101 1 z2z4 D2 7

a5 0100

a6 0101 x3x4 z2z4 D2D4 8
a6 0101 x3x̄4 z3 D2D4 9
a7 0110 x̄3x5 z3z4 D2D3 10
a7 0110 x̄3x̄5 z2z3z4 D2D3 11

a6 0101
a8 0111 x1 z1 D2D3D4 12
a8 0111 x̄1x3 z1z4 D2D3D4 13
a9 1000 x̄1x̄3 z3 D1 14

a7 0110 a9 1000 1 z3 D1 15

a8 0111
a10 0010 x5 z3z4 D1D4 16
a1 0000 x̄5 z1z4 – 17

a9 1000 a1 0000 1 – – 18

a10 1001
a4 0011 x6 z4 D3D4 19
a1 0000 x̄6 – – 20

first row of Table 3, and so on.
In this article we propose a design method allowing

us to reduce the number of LUTs in blocks LUTerΦ and
LUTerZ of Mealy FSM U2. The method is based on
introducing new variables τr ∈ T . Let us discuss the
proposed method.

4. Main idea of the proposed method

Let us find a partition ΠA = {A1, . . . , AI} of the set A
such that

Ri + Li ≤ SL (i = 1, I). (12)

In (12), the symbol Ri stands for the number of additional
state variables τr ∈ T necessary for encoding the states
am ∈ Ai. The symbol Li stands for the number of input
variables xe ∈ X i determining transitions from states
am ∈ Ai.

Each state am ∈ Ai has its code C(am) having Ri

bits
Ri = �log2(|Ai|+ 1)�. (13)

It is necessary to have a code showing that am /∈ Ai. This
necessity explains 1 in (13). Codes C(am) are generated
based on codes K(as).

There are R0 variables in the set T , where

R0 = R1 +R2 + · · ·+RI . (14)

The first R1 variables are used to encode the states am ∈
A1, the next R2 variables encode the states am ∈ A2 and
so on.

Each class Ai ∈ ΠA determines a structure table
STi with transitions from the states am ∈ Ai. The
table STi could be constructed for both the initial and the
transformed ST of the Mealy FSM. In the second case, it
is possible to derive the sets X i, Zi and Φi from the table
STi (i = 1, I).

The set X i ⊆ X includes input variables from the
column Xh of STi. The set Zi ⊆ Z includes additional
variables from the column Zh of STi. The set Φi ∈ Φ
includes input memory functions from the column Φh of
STi. Let us point out that current states am ∈ A have
codes C(am), whereas the states of transitions as ∈ A
have codes K(am).

Using this preliminary information, we propose the
structural diagram of Mealy FSM U3 (Fig. 3). It includes
three levels of logic.

Each block LUTeri corresponds to the table STi (i =
1, I). The LUTeri generates the systems of functions:

Zi = Zi(T i, X i), (15)

Φi = Φi(T i, X i). (16)

In (15) and (16), the symbol T i stands for the subset of T
whose elements are used to encode the states am ∈ Ai.

600 A. Barkalov et al.

The block LUTerTZ generates variables zr ∈ Z and
Dr ∈ Φ. Each LUT of this block executes function OR:

zr =

I∨

i=1

zir (r = 1, RQ), (17)

Dr =
I∨

i=1

Di
r (r = 1, R). (18)

In (17), the symbol zir means that zr ∈ Zi. In (18), the
symbol Di

r means that Dr ∈ Φi.
The block LUTerT implements the system

T = T (T). (19)

This block transforms codes K(as) into codes C(as).
At each instant, only a single LUTeri is “active.” This

means that there are 1’s at some of its outputs. At the
same time, there are only 0’s at the outputs of other blocks.
These blocks are “idle.” The following relation is used to
show that a block LUTeri is idle:

τr ∈ T i → τr = 0. (20)

If (12) is true, then a single LUT is sufficient to
implement any function Dr ∈ Φi and zr ∈ Zi. Assume
that

I ≤ SL. (21)

In this case, there are exactly R+RQ LUTs in the circuit
of LUTerTZ.

Assume that
R ≤ SL. (22)

In this case, there are only R0 LUTs in the circuit of
LUTerT .

If conditions (11), (21) and (22) are fulfilled, then
there are only R + RQ + N + R0 LUTs in the
blocks LUTerTZ, LUTerY and LUTerT of FSM U3.

LUTerTZ

Clock

Start

X
1

Z
1

Φ
1

Φ
I

X
I

Z
I

LUTerY LUTer�

Z T

�

�
1

�
I

Y

LUTer1 LUTerI

Fig. 3. Structural diagram of Mealy FSM U3.

Accordingly, this is the best case for applying our
approach. In this case, it is important to reduce the number
of functions implemented by each block LUTeri. This is
possible through finding an appropriate partition ΠA. In
what follows, we discuss an approach to find this partition.

5. Construction of partition ΠA

The problem could be formulated as the following one. It
is necessary to find a partition ΠA of the set A having a
minimum number of blocks I and such that the condition
(12) is met for each block.

In this article we propose a sequential algorithm to
solve this problem. The algorithm minimizes appearance
of the same input variables into different sets X i ⊂ X . In
the best case, the following relation takes place:

X i ∩Xj = ∅ (i �= j, i, j ∈ {1, . . . , I}). (23)

Each state am ∈ A is characterized by two sets.
The set X(am) includes input variables determining
transitions from state am ∈ A. The set Z(am) includes
variables zr ∈ Z equal to 1 in codes K(Yq) for COVs
generated during transitions from the state am ∈ A. If
am ∈ Ai, then X(am) ⊆ X i and Z(am) ⊆ Zi.

We use two evaluations in the proposed algorithm.
The first of them regards the difference between the
number of shared input variables and the number of
different input variables for class Ai and state am ∈ A:

N(am, X i) = |X(am) ∩X i| − |X(am) \X i|. (24)

The second evaluation counts to the number of
variables zr ∈ Z common for Z(am) and Zi:

N(am, Zi) = |Z(am) ∩ Zi|. (25)

There are two stages in generating each block. At the
first stage, we choose a basic element (BE) for the block
Ai. We take the state am ∈ A∗ as a BE, if the following
condition takes place

|X(am)| = max |X(aj)|, aj ∈ A∗ \ {am}. (26)

In (26), the symbol A∗ stands for the set of states which
are not distributed after constructing the block Ai−1 ∈
ΠA. If (26) is fulfilled for states am and as, choose the
state with the lower value of the subscript.

The second stage is a multi-step one. During each
step, the next state is successively added to the block Ai.
The rules of inclusion are explained below. The process of
forming the block is terminated if: (i) all states are already
distributed among the blocks or (ii) it is not possible to
include any state in Ai without violation of (12).

We use the following rule for including the next
successive element in Ai. Let A∗ include all unallocated
states am ∈ A. Choose all states am ∈ A∗ whose

Hardware reduction for LUT-based Mealy FSMs 601

inclusion into Ai does not violate the restriction (12).
Collect these states in the set P (Ai). Select a state am ∈
P (Ai) with the following property:

N(am, X i) = maxN(aj , X
i),

aj ∈ P (Ai) \ {am}. (27)

If there are more than one such state, then we should
choose a state with the following property:

N(am, Zi) = maxN(aj , Z
i),

aj ∈ P (Ai) \ {am}. (28)

If the evaluations (28) are the same for several states from
P (Ai), then the state with the minimum value of the
subscript is selected.

Let us find the partition ΠA for U3(S1). The process
is represented by Table 4. The partition is constructed for
SL = 5.

Let us explain the columns of Table 4. The column
am contains states of the FSM. There are a number of
input variables for states am ∈ A in the column |X(am)|.
There are basic elements for each stage shown in the
columns BEi (i ∈ {1, 2, 3}). The symbol “I” stands for
(24), the symbol “II” for (25). The sign ⊕ means that the
state from the corresponding row is included in the set Ai.
The sign “–” means that am /∈ A∗, where am is a state
from the corresponding row. The row Ai includes states
am ∈ Ai. The states are listed in the order of selection.

As follows from Table 4, there are M = 10 steps
of selection. As a result, there is a partition ΠA =
{A1, A2, A3} with A1 = {a4, a5, a8}, A2 = {a2, a3, a6}
and A3 = {a1, a7, a9, a10}. Using Table 3, one could
find the following sets: Z1 = {z1, . . . , z4}, X2 =
{x1, x2, x3}, Z2 = {z1, . . . , z4}, X3 = {x6}, Z3 =
{z3, z4}. Now we can depict the block diagram of the
FSM U3(S1) (Fig. 4).

Using (13), we find that R1 = R2 = 2 and R3 = 3.
It gives R0 = 7 and T = {τ1, . . . , τ7}. There are 8 LUTs

LUTerTZ

Clock

Start

LUTer�

T

�

LUTerY

Z

Y

x
3

x
1

x
4

x
2

x
5

x
3

Z
1

Φ
1

�
1

LUTer1

Z
2

Φ
2

�
2

LUTer2

D
1
D

3
D

4
Z

3
Z

4

x
6 �

3

LUTer3

44

7

32 2

Fig. 4. Block diagram of Mealy FSM U3(Γ1).

in LUTer1, 8 LUTs in LUTer2 and 5 LUTs in LUTer3.
Since I = 3, the condition (21) is satisfied. Thus, there
are R + R0 = 8 LUTs in LUTerTZ. There are N = 8
LUTs in LUTerY, because the condition (11) is satisfied.
The condition (22) is met. Accordingly, there are R0 = 7
LUTs in LUTerT . Then, there are 44 LUTs with SL = 5
in the circuit of Mealy FSM U3(S1).

As follows from Fig. 4, only x3 is shared between
LUTer1 and LUTer2. Therefore, our approach allows
obtaining circuits with more regular connections than,
e.g., for FSM U1. The same is true for pulses Start
and Clock, which are distributed only among the LUTs
of LUTerTZ.

6. Proposed design method and an example
of synthesis

In this article, we propose a design method for Mealy
FSM U3. It includes the following steps:

1. Finding set A from the state transition table.

2. Executing the state assignment.

3. Encoding collections of output variables.

4. Constructing the structure table of FM U1.

5. Constructing the transformed structure table.

6. Constructing the partition ΠA.

7. Constructing tables STi for classes Ai ∈ ΠA.

8. Finding systems (15) and (16) for each class Ai.

9. Finding systems (17) and (18) for LUTerTZ.

10. Constructing tables for LUTerY and LUTerT .

11. Implementing FSM circuit with particular LUTs.

Let us discuss an example of synthesis for Mealy
FSM U3(S1). We have already executed the first six
design steps of this example. Table 2 represents the FSM
structure table; Table 3 represents the transformed ST;
partition ΠA follows from Table 4.

Use state variables τ1, τ2 ∈ T 1 for encoding states
am ∈ A1, τ3, τ4 ∈ T 2 for am ∈ A2 and τ5, τ6, τ7 ∈ T 3

for am ∈ A3. There are state codes C(am) shown in
Table 5.

Tables ST1–ST3 are constructed using the
transformed ST (Table 3). Each table STi includes
only transitions from the states am ∈ Ai. But there is
column C(am) instead of K(am). There are superscripts
i for functions zr ∈ Z and Dr ∈ Φ in STi. This means
that columns Zh,Φh of ST are replaced by columns
Zi
h,Φ

i
h in tables STi (i = 1, I).

602 A. Barkalov et al.

Table 4. Constructing partition ΠA for FSM U3(S1).

am |X(am)| BE1
I/II

BE2
I/II

BE3
I/II

1 2 1 2 1 2 3

a1 0 0/1 0/1 0/1 0/1 0/0⊕ – –
a2 1 -1/2 -1/2 1/2⊕ – – – –
a3 2 -2/3 -2/3 ⊕ – – – – –
a4 1 0/2 0/2⊕ – – – – –
a5 3 ⊕ – – – – – – –
a6 2 0/2 0/2 1/2 1/2⊕ – – –
a7 0 0/1 0/1 0/1 0/1 0/0 0/0⊕ –
a8 1 1/2⊕ – – – – – –
a9 0 0/0 0/0 0/0 0/0 0/0 0/0 0/0⊕
a10 1 -1/0 -1/0 -1/0 -1/0 ⊕ – – –
A2 a5 a8 a4 a3 a2 a6 a10 a1 a7 a9

For example, Table 6 represents ST1. It has H1 = 7
rows. The following minimized Boolean functions could
be derived from it:

z14 = τ̄1τ2 ∨ τ1τ̄2x3x4 ∨ τ1τ̄2x̄3 ∨ τ1τ2,

D1
2 = τ̄1τ2 ∨ τ1τ̄2.

Acting in the same manner, it is possible to construct
other tables (ST2 and ST3) and functions. These
functions are used to construct systems (17) and (18).

Each LUT of LUTerTZ executes the function OR.
It clearly follows from equations (17) and (18). For
example, D2 /∈ Φ3, and then D2 = D1

2 ∨ D2
2 . Next,

we have z1 /∈ Z3. Therefore, z1 = z11 ∨ z21 . Accordingly,
it is a trivial thing to find equations for output functions of
LUTerTZ.

Functions (9) depend on variables zr ∈ Z .
Therefore, the following columns are present in the table

Table 5. State codes C(am) of Mealy FSM U3(S1).

am ∈ A1 C(am)
am ∈ A2 C(am)

am ∈ A3 C(am)
τ1τ2 τ3τ4 τ5τ6τ7

a4 01 a2 01 a1 001
a5 10 a3 10 a7 010
a8 11 a6 11 a9 011
– – – – a10 100

Table 6. Structure table ST1 of Mealy FSM U3(S1).
am C(am) as K(as) Xh Z1

h Φ1
h h

a4 01 a5 0100 1 z12z
1
4 D1

2 1

a5 10

a6 0101 x3x4 z12z
1
4 D1

2D
1
4 2

a6 0101 x3x̄4 z13 D1
2D

1
4 3

a7 0110 x̄3x5 z13z
1
4 D1

2D
1
3 4

a7 0110 x̄3x̄5 z12z
1
3z

1
4 D1

2D
1
3 5

a8 11
a10 1001 x5 z13z

1
4 D1

1D
1
4 6

a1 0000 x̄5 z11z
1
4 – 7

of LUTerY: Yq,K(Yq), Y, q. There are Q = 10 rows in
table of LUTerY for the discussed example (Table 7).

This table could be viewed as N truth tables for
output functions. Let us point out that all output functions
are equal to zero for codes 1010–1111.

The table of LUTerT is constructed based on
the table of state codes C(am). It has columns
am,K(am), T ,m. In the discussed case, there are M =
10 rows in this table (Table 8). Let us explain how to fill
this table. For example, we have C(a4) = 01 (Table 5).
So, τ1 = 0, τ2 = 1, τ3 = τ4 = 0 (a4 /∈ A2) and
τ5 = τ6 = τ7 = 0 (a4 /∈ A3). All other rows are filled
in the same manner. The table of LUTerT corresponds to
R0 tables of LUTs.

To implement an FSM circuit, it is necessary to use
standard CAD tools (Altera, 2018; Xilinx, 2018). They
form bit-streams for each LUT based on the technology
mapping of the FSM circuit (Maxfield, 2004; Grout,
2008). We do not discuss this step for our example.

Table 7. Table of LUTerY for Mealy FSM U3(S1).

Yq
K(Yq) Y

q
z1z2z3z4 y1y2y3y4y5y6y7y8

y1 0000 00000000 1
y2 0001 11000000 2
y3 0010 00100000 3
y4 0011 01010000 4
y5 0100 00101000 5
y6 0101 00000110 6
y7 0110 10000010 7
y8 0111 00000010 8
y9 1000 01001000 9
y10 1001 01000001 10

Hardware reduction for LUT-based Mealy FSMs 603

7. Results

To investigate the efficiency of the proposed method, we
use standard benchmarks from the LGSynth93 library. It
includes 48 benchmarks related to the practice of FSM
design. These benchmarks are presented in the KISS2
format.

We choose this set of benchmarks because it includes
both simple (M < 10) and quite complex (M > 50)
FSMs. Also, it is very often used to study the efficiency of
various methods of FSM design (Czerwiński and Kania,
2013; Tiwari and Tomko, 2004).

To use these benchmarks, we applied the CAD tool
named K2F. It translates the KISS2 file into VHDL model
of an FSM. To synthesize and simulate the FSM, we use
the Active-HDL environment. To get the FSM circuit, we
use the Xilinx ISE package. Its version 14.1 was used
for synthesis and implementation of the FSM for a given
control algorithm.

We compared our approach with four other methods,
namely: (i) Auto of ISE 14.1, (ii) Compact of ISE 14.1,
(iii) JEDI, (iv) DEMAIN. The results of investigations
are shown in Table 9. The system DEMAIN is used for
synthesis of combinational circuits. We use this system to
decompose the Boolean functions representing circuits of
benchmarks FSMs.

For each method, we found two characteristics of
benchmark FSMs. They are the number of LUTs in the
FSM circuit (columns “LUTs”) and the FSM maximum
operating clock frequency (column “Freq.”) measured in
MHz.

The results of summation for both the numbers
of LUTs and frequency in are included the row
“Total.” We have taken the summarized characteristics
of U3 as 100%. The row “Percentage” shows the
percentage of summarized characteristics with respect to
the benchmarks synthesized as U3.

As can be seen in Table 9, the proposed method
allows minimizing the number of LUTs in FSM circuits

Table 8. Table of LUTerT for Mealy FSM U3(S1).

am
K(am) T

m
T1T2T3T4 τ1τ2τ3τ4τ5τ6τ7

a1 0000 0000001 1
a2 0001 0001000 2
a3 0010 0010000 3
a4 0011 0100000 4
a5 0100 1000000 5
a6 0101 0011000 6
a7 0110 1000010 7
a8 0111 1100000 8
a9 1000 0000011 9
a10 1001 0000100 10

in comparison with other investigated methods. There
are the following gains: (i) 23% in comparison with
U1Auto, (ii) 29% in comparison with U1Compact, (iii)
9% in comparison with JEDI-based FSMs, and (iv) 13%
in comparison with FSMs, designed by DEMAIN.

The following conclusion can be made. There are
more LUTs in FSM circuits designed by ISE 14.1 in
comparison with their counterparts designed using either
JEDI or DEMAIN or K2F. If M < 15, then the best
results are obtained using JEDI. Our approach yields
better results for rather complex FSMs having more than
15 states. Sometimes, DEMAIN produces better results
than JEDI (for rather simple automata).

To support this conclusion, Table 10 was included.
It contain the results for 10 most complex benchmarks
of the library LGSynth93 (LGSynth93, 1993). Our
approach requires 19% fewer LUTs in comparison with
JEDI and 25% fewer in comparison with DEMAIN. Thus,
the gain practically doubled for complex benchmarks
of LGSynth93 with respect to the average gain for all
benchmarks.

As follows from Table 9, our approach produces
FSMs which are a bit slower than the FSMs produced
by U1Auto (2%), JEDI (5%) and DEMAIN (5%). But
this drawback is diminished for complex benchmarks
(Table 10). For the complex benchmarks, our approach
obtains the operating frequency only 4% lower than JEDI
and practically the same as DEMAIN.

To show the benefits of usage of different methods,
we use Table 9 to construct two line graphs shown in
Figs. 5 and 6. We show the difference in the numbers
of LUTs for different methods from Table 9 in Fig. 5.
Figure 6 shows the difference of frequencies. For both
the graphs, the number of states is shown in the x-axis.
In both graphs, we used the methods with the minimum
value of LUTs (Fig. 5) or the maximum value of frequency
(Fig. 6) as a reference. As can be seen, the differences
for benchmarks with the numbers of states up to about 15
are minor and the models are quite similar (Fig. 5). In
this range, model U3 is not the winner (the differences
between U3 and the smallest one are up to about 5 LUTs).
Since then U3 is the best model (at the bottom of the
chart). For benchmarks with more than 15 states, U3 has
the lowest number of LUTs used.

Differences between models are quite significant and
start from about 10 LUTs and end (owing to the lack of
benchmarks with more states) at about 75 LUTs.

As can be seen in Fig. 6, the JEDI model is the
fastest, the U3 model is slower for about 50–150 MHz
for benchmarks having less than 20 states and from 5
to 35 MHz slower for benchmarks having more than 20
states. One can observe an interesting property of the U3

model for LGSynth benchmarks with over 20 states. The
differences of maximal frequency are surprisingly small.

To sum up, according to Figs. 5 and 6, the U3 model

604 A. Barkalov et al.

Table 9. Results of investigations.

Benchmark
U1Auto U1Com JEDI DEMAIN U3

LUTs Freq. LUTs Freq. LUTs Freq. LUTs Freq. LUTs Freq.

bbara 11 639 13 635 10 690 9 702 12 650
bbsse 29 559 29 582 24 592 26 580 21 620
bbtas 5 962 5 966 5 980 5 978 8 860

bbcount 7 952 7 952 6 989 5 1022 9 920
cse 49 480 46 463 42 498 44 482 40 480

dk14 8 545 8 945 7 982 6 996 12 860
dk15 7 1062 7 1062 6 1090 7 1066 11 920
dk16 16 556 15 625 14 582 16 578 12 594
dk17 6 952 6 952 6 952 5 964 8 920
dk27 5 900 5 897 5 900 4 912 9 880

dk512 17 730 7 899 13 789 14 776 12 760
donfile 15 558 14 612 11 596 13 574 10 580

ex1 64 586 74 447 51 620 53 608 46 620
ex2 14 940 16 985 11 1002 12 988 12 980
ex3 12 980 13 986 12 982 11 998 14 960
ex4 15 962 16 626 12 1003 13 996 15 920
ex5 14 986 15 986 13 998 12 1003 16 890
ex6 29 553 20 621 26 579 24 599 28 580
ex7 14 988 15 990 12 1002 11 1060 14 992

keyb 56 384 65 358 48 410 50 398 42 420
kirkman 51 874 53 569 43 901 49 898 41 890

lion 3 1084 3 1080 3 1080 3 1080 6 920
lion9 6 980 5 996 5 996 5 998 7 910

mark1 27 726 19 708 22 798 24 749 26 744
mc 5 1071 5 1071 5 1071 5 1071 7 980

modulo12 26 612 28 632 19 710 22 678 24 640
opus 22 596 21 628 17 688 20 642 22 622

planet 100 888 138 389 88 989 92 921 64 940
planet1 100 888 138 389 88 989 92 921 64 940

pma 73 554 72 438 67 596 68 574 52 580
s1 77 550 75 447 70 598 76 582 61 570

s1488 140 425 141 432 131 470 136 452 101 460
s1494 124 412 143 442 112 492 118 478 93 472

s1a 77 550 75 447 70 598 76 586 64 580
s208 28 559 23 669 23 670 25 582 20 590
s386 26 577 28 581 24 598 22 621 24 590
s8 4 962 4 962 4 962 4 962 8 920

sand 99 569 121 426 89 612 91 598 81 602
shiftreg 3 1584 3 1584 3 1584 3 1584 6 1220

sse 29 559 28 543 24 610 26 588 21 562
styr 118 430 127 369 109 476 111 462 92 440
tav 6 1556 6 911 6 1560 6 1560 8 1402
tbk 55 406 71 465 48 492 49 484 36 441
tma 30 440 32 438 26 476 28 461 21 458

train11 28 560 26 580 25 598 27 572 28 568
train4 8 416 10 466 8 416 7 470 9 401
s27 4 962 4 962 4 962 4 962 6 890
s298 362 406 330 313 320 438 334 429 286 410
Total 2028 35870 2125 33526 1797 37686 1863 37245 1650 35151

Percentage 123% 102% 129% 95% 109% 107% 113% 105% 100% 100%

Hardware reduction for LUT-based Mealy FSMs 605

Table 10. Results of investigations for the most complex benchmarks.

Benchmark M
JEDI DEMAIN U3

LUTs Freq. LUTs Freq. LUTs Freq.

s298 218 320 438 339 429 286 410
planet 48 88 989 92 921 64 940
planet1 48 88 989 92 921 64 940
s1488 48 131 470 136 452 101 460
s1494 48 112 492 118 478 93 472
sand 32 89 612 91 598 81 602
tbk 32 48 492 49 484 36 441
styr 30 109 976 111 462 92 440

dk16 27 14 582 16 578 12 594
donfile 24 11 596 13 574 10 580
Total 1010 6116 1062 5898 849 5879

Percentage 111% 104% 125% 100,3% 100% 100%

101 102

0

10

20

30

40

50

60

70

80

M

D
iff

er
en

ce
in

L
U

T
s

U1Auto

U1Comp

JEDI

DEMAIN

U3

Fig. 5. Differences in the number of LUTs for benchmarks in
comparison to minimum values.

is better for rather complex FSMs structures.
Let us point out that these conclusions are

valid only for LGSynth93 benchmarks and the device
XC5VLX30FF324 used for implementing FSM circuits.
In the case of FPGA-based design, it is almost impossible
to make some predictions for the common case. However,
it is evident from out investigations that our approach
could give better results for FSMs with M > 15.

8. Conclusion

The paper presents an original approach targeting
LUT-based Mealy FSMs. The method is based on
structural decomposition of the FSM circuit. As a result,
the circuit has three levels of logic. The proposed method
also uses an encoding of output variable collections.

The initial structure table of Mealy FSM is divided
by sub-tables. To encode the states for each sub-table, use

101 102

0

50

100

150

200

250

300

350

400

M

D
iff

er
en

ce
in

Fr
eq

ue
nc

y
(M

H
z)

U1Auto

U1Comp

JEDI

DEMAIN

U3

Fig. 6. Differences in frequencies for benchmarks in compari-
son with the maximum value.

of additional state variables has been proposed. It leads to
a reduction in the number of arguments in input memory
functions in comparison with known design methods. As
a result, a single LUT is sufficient to implement any
function for any sub-table.

References

ABC System (2018). https://people.eecs.berkeley
.edu/~alanmi/abc/.

Altera (2018). Cyclone IV Device Handbook, http://www.
altera.com/literature/hb/cyclone-iv/cy
clone4-handbook.pdf.

Baranov, S. (1994). Logic Synthesis of Control Automata,
Kluwer, Boston, MA.

Baranov, S. (2008). Logic and System Design of Digital Systems,
TUT Press, Tallinn.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf

606 A. Barkalov et al.

Barkalov, A.A. and Barkalov, Jr., A.A. (2005). Design of Mealy
finite-state machines with the transformation of object
codes, International Journal of Applied Mathematics and
Computer Science 15(1): 151–158.

Barkalov, A. and Titarenko, L. (2009). Logic Synthesis for FSM-
based Control Units, Springer, Berlin.

Barkalov, A., Titarenko, L. and Barkalov Jr., A. (2012).
Structural decomposition as a tool for the optimization of
an FPGA-based implementation of a Mealy FSM, Cyber-
netics and Systems Analysis 48(2): 313–322.

Barkalov, A., Titarenko, L., Kołopieńczyk, M., Mielcarek, K.
and Bazydło, G. (2015). Logic Synthesis for FPGA-Based
Finite State Machines, Springer, Cham.

Cong, J. and Yan, K. (2000). Synthesis for FPGAs with
embedded memory blocks, Proceedings of the 2000
ACM/SIGDA 8th International Symposium on FPGAs,
New York, NY, USA, pp. 75–82.

Czerwiński, R. and Kania, D. (2013). Finite State Machine
Logic Synthesis for Complex Programmable Logic De-
vices, Springer, Berlin.

DEMAIN (2018). http://zpt2.tele.pw.edu.pl/Fil
es/demain/demain.htm.

Gajski, D.D., Abdi, S., Gerstlauer, A. and Schirner, G. (2009).
Embedded System Design: Modeling, Synthesis and Verifi-
cation, Springer, Berlin/Heidelberg.

Garcia-Vargas, I. and Senhadji-Navarro, R. (2015). Finite state
machines with input multiplexing: A performance study,
IEEE Transactions a Computer-Aided Design of Integrated
Circuits and Systems 34(5): 867–871.

Garcia-Vargas, I., Senhadji-Navarro, R., Jiménez-Moreno,
G., Civit-Balcells, A. and Guerra-Gutierrez, P. (2007).
ROM-based finite state machine implementation in low
cost FPGAs, Proceedings of the IEEE International Sym-
posium on Industrial Electronics, ISIE 2007, Toronto,
Canada, pp. 2342–2347.

Grout, I. (2008). Digital Systems Design with FPGAs and
CPLDs, Elsevier, Oxford.

Kam, T., Villa, T., Brayton, R. and Sangiovanni-Vincentelli, A.
(1997). A Synthesis of Finite State Machines: Functional
Optimization, Springer, Boston, MA.

Kołopieńczyk, M., Titarenko, L. and Barkalov, A. (2017).
Design of EMB-based Moore FSMs, Journal of Circuits,
Systems, and Computers 26(7): 1–23.

Kubica, M. and Kania, D. (2017). Area-oriented technology
mapping for LUT-based logic blocks, International Jour-
nal of Applied Mathematics and Computer Science
27(1): 207–222, DOI: 10.1515/amcs-2017-0015.

LGSynth93 (1993). Benchmarks test, http://people.eng
r.ncsu.edu/brglez/CBL/benchmarks/LGSyn
th93/LGSynth93.tar.

Lin, B. and Newton, A. (1989). Synthesis of multiple level logic
from symbolic high-level description languages, Proceed-
ings of the International Conference on VLSI, Taipei, Tai-
wan, pp. 187–196.

Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs,
Academic Press, Orlando, FL.

Micheli, G.D. (1994). Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, New York, NY.

Minns, P. and Elliot, I. (2008). FSM-Based Digital Design Using
Verilog HDL, Wiley, Hoboken, NJ.

Nowicka, M., Łuba, T. and Rawski, M. (1999). FPGA-based
decomposition of Boolean functions: Algorithms and
implementation, Proceedings of the 6th International Con-
ference on Advanced Computer Systems, Szczecin, Poland,
pp. 502–509.

PKmin (2018). http://pkmin.za.pl/.

Rawski, M., Selvaraj, H. and Łuba, T. (2005a). An
application of functional decomposition in ROM-based
FSM implementation in FPGA devices, Journal of System
Architecture 51(6–7): 423–434.

Rawski, M., Selvaraj, H., Luba, T. and Szotkowski, P. (2005b).
Application of symbolic functional decomposition concept
in FSM implementation targeting FPGA devices, Proceed-
ings of the 6th International Conference on Computational
Intelligence and Multimedia Applications (ICCIMA’05),
Las Vegas, NV, USA, pp. 153–158.

Rawski, M., Tomaszewicz, P., Borowski, G. and Łuba, T.
(2011). Logic synthesis method of digital circuits designed
for implementation with embedded memory blocks on
FPGAs, in M. Adamski et al. (Eds.), Design of Digital Sys-
tems and Devices, Springer, Berlin, pp. 121–144.

Sajewski, Ł. (2017). Minimum energy control of descriptor
fractional discrete-time linear systems with two
different fractional orders, International Journal of
Applied and Computer Science 27(1): 33–41, DOI:
10.1515/amcs-2017-0003.

Sasao, T. (2011). Memory-Based Logic Synthesis, Springer, New
York, NY.

Scholl, C. (2001). Functional Decomposition with Application
to FPGA Synthesis, Kluwer, Boston, MA.

Sentowich, E., Singh, K., Lavango L., Moon, C., Murgai,
R., Saldanha, A., Savoj, H., P, P.S., Bryton, R. and
Sangiovanni-Vincentelli, A. (1992). SIS: A system for
sequential circuit synthesis, Technical report, University of
California, Berkeley, CA.

Sklyarov, V. (2000). Synthesis and implementation of
RAM-based finite state machines in FPGAs, Proceed-
ings of the 10th International Conference on Field-
Programmable Logic and Applications: The Roadmap to
Reconfigurable Computing, Villach, Austria, pp. 718–728.

Sklyarov, V., Skliarova, I., Barkalov, A. and Titarenko, L.
(2014). Synthesis and Optimization of FPGA-Based Sys-
tems, Springer, Berlin.

Sutter, G., Todorovich, E., López-Buedo, S. and Boemo,
E. (2002). Low-power FSMs in FPGA: Encoding
alternatives, Proceedings of the 12th International Work-
shop on Power and Timing Modelling Optimization and
Simulation, Sevilla, Spain, pp. 363–370.

http://zpt2.tele.pw.edu.pl/Files/demain/demain.htm
http://zpt2.tele.pw.edu.pl/Files/demain/demain.htm
http://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
http://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
http://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
http://pkmin.za.pl/

Hardware reduction for LUT-based Mealy FSMs 607

Tiwari, A. and Tomko, K. (2004). Saving power by mapping
finite-state machines into embedded memory blocks in
FPGAs, Proceedings of the Conference on Design, Au-
tomation and Test in Europe, Paris, France, pp. 916–921.

Xilinx (2018). Virtex-5 Family Overview, http://www.xil
inx.com/support/documentation/data_she
ets/ds100.pdf.

Alexander A. Barkalov worked as a tutor at
Donetsk National Technical University (DNTU)
from 1976 to 1996. He cooperated actively with
the Kiev Institute of Cybernetics (IC), named af-
ter Victor Glushkov. He obtained his DSc degree
in informatics from the IC in 1995. From 1996 to
2003 he worked as a professor at DNTU. Since
2003 he has been working as a professor at the
Faculty of Computer, Electrical and Control En-
gineering, University of Zielona Góra, Poland.

Larysa Titarenko obtained her DSc de-
gree in telecommunications in 2005 from the
Kharkov National University of Radioelectronics
(KNURE). Up to 2003 she worked as a professor
of the KNURE. Since 2005 she has been working
as a professor at the Faculty of Computer, Elec-
trical and Control Engineering of the University
of Zielona Góra.

Kamil Mielcarek received his MSc in com-
puter engineering from the Technical University
of Zielona Góra in 1995 and his PhD in computer
science from the University of Zielona Góra in
2010. Since 2001 he has been a lecturer there.
His current interests include synthesis and opti-
mization of control units in field-programmable
logic devices, hardware description languages,
perfect graphs and Petri nets, algorithmics, and
safety of UNIX and network systems.

Received: 9 October 2017
Revised: 13 February 2018
Accepted: 28 April 2018

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

	Introduction
	Background of Mealy FSMs
	State of the art
	Main idea of the proposed method
	Construction of partition ΠA

	Proposed design method and an example of synthesis
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

