
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 3, 493–504
DOI: 10.2478/amcs-2018-0038

AN EXACT GEOMETRY–BASED ALGORITHM FOR PATH PLANNING

HASSAN JAFARZADEH a,∗, CODY H. FLEMING a

aDepartment of Systems and Information Engineering
University of Virginia, 151 Engineer’s Way, Charlottesville, VA, USA

e-mail: hj2bh@virginia.edu

A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path
from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed
algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices
of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility
graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe,
smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments
that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the
polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal
path in O(nn′2) time, where n is the number of vertices of all polygons and n′ is the number of vertices that are considered
in constructing the path network (n′ ≤ n). The performance of the algorithm is evaluated relative to three major classes of
algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the
algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning),
a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map),
two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is
compared analytically.

Keywords: shortest possible path (SPP) algorithm, path planning, collision-free path.

1. Introduction

Path planning problems are concerned with finding a
shortest possible path from a starting point toward a goal
point in an environment populated with obstacles. In a
path planning problem, an algorithm is given the required
information of the components such as the location and
the shape of the obstacles and the location of the start
and goal points, and it generates an optimal or near
optimal collision-free path in the least possible time.
Because the generated path is an input for navigation,
smoothness of the path is a critical factor in addition to
path length and safety. Generally, the major problems
for path planning are computational complexity, existence
of local (or global) optima, and adaptability to different
environments.

There is already an extensive literature on path
planning, and methods have been developed to plan
path in real time, for example, the Voronoi diagram

∗Corresponding author

method, the directed graph based method, A* algorithms,
probabilistic road map (PRM) methods, rapidly-exploring
random tree (RRT) based methods, mixed-integer linear
programming (MILP) based methods, i.e., are used to
model and solve the sophisticated problems with different
constraints and objective functions (Klaučo et al., 2016),
potential field approaches, bouncing algorithms, etc. All
these methods have been successfully applied to path
planning applications, however there are still limitations
with respect to computational complexity and optimality.

To solve this problem, an efficient and flexible
algorithm is needed, which is applicable for real-time path
planning problems. To handle computational complexity,
the algorithm must search all the near optimal paths,
including the optimal one, but overlook other poor
solutions. The algorithm presented in this work, called the
shortest possible path (SPP), is classified under a subset
of classic algorithms called geometry based algorithms.
Like existing geometry based algorithms, which will be
described in the next section, SPP generates the optimal

hj2bh@virginia.edu

494 H. Jafarzadeh and C.H. Fleming

path, which is not guaranteed by non-classic algorithms
such as heuristic or probabilistic approaches. However,
SPP has significantly lower computational complexity
than the other geometry based algorithms.

The paper is organized as follows: the second section
provides a review of the state of the art in path planning
algorithms, including heuristic, probabilistic and classic
algorithms, and Section 3 then describes SPP formally.
Section 4 presents the results of the computer simulation
and compares SPP performance with a baseline algorithm
under a series of complex scenarios. Finally, the paper
concludes with a summary and directions for future study.

2. Literature review

Though the body of research is fairly mature, with
the increasing prevalence of autonomous systems it
is important to develop alternative and more efficient
techniques. To solve the problem in which the
environment is assumed to be static, numerous algorithms
have been presented and can be classified in three major
groups: heuristic, probabilistic, and classic algorithms
(Mac et al., 2016). Heuristic algorithms are flexible and
can be adapted for different optimization and decision
making problems such as path planning. Although they
often generate a good solution, the optimality of the
solutions is not guaranteed. There has been a trend
towards increasing usage of heuristic algorithms in path
planning, compared with classic algorithms.

The classic algorithms suffer from high time
complexity in high dimensional spaces, and some fail
to reach global optimal solution. To overcome the
limitations of classic algorithms, probabilistic algorithms
have been developed (Masehian and Sedighizadeh,
2007). Probabilistic algorithms do not provide optimal
solutions necessarily but they are a suitable choice for
three-dimensional problems such as path planning for
manipulators. They also tend to generate solutions
quickly, but they have problems expanding through
narrow passages and getting around obstacles.

Being relatively easy to implement, the classical
and probabilistic approaches are preferred in most of
the real-time path planning applications. Although
these methods are effective, most of these algorithms
do not provide any theoretical guarantees for obtaining
an optimal solution (Tang et al., 2012). Furthermore,
like the heuristic algorithms, they also suffer from
high computational complexity and, consequently, long
running times (Tang et al., 2012).

In this section some of the path planning algorithms
are studied in three major classes with focus on the
geometry-based algorithms in classic algorithms group:

2.1. Heuristic algorithms. The term heuristic is used
for algorithms which find a good solution but they do

not guarantee the optimality. Therefore, they might
be considered as approximate and not exact algorithms.
These algorithms, usually find a solution close to the
optimal one and they find it fast. Among the heuristic
algorithms, genetic algorithms (GAs) (Davoodi et al.,
2015; Jafarzadeh et al., 2017), artificial neural networks
(ANNs) (Ni et al., 2017), and ant colony optimization
(ACO) (Liu et al., 2017) have been the most popular
for solving path planning problems (Masehian and
Sedighizadeh, 2007). These algorithms take into account
different objectives at the same time and can be adjusted
for a wide variety of problems. But, they do not guarantee
the optimality of the generated solution. Increasing usage
of heuristic algorithms in path planning has been observed
compared with the classical algorithms. The heuristic
algorithms are considered more intelligent and advanced
methods, which can handle uncertain and incomplete
information in continuously changing environments and
obtain near-optimal solutions. On the other hand, many
of the heuristic algorithms require an additional learning
phase and very high computational cost (Mac et al., 2016).

2.2. Probabilistic algorithms. These are a group
of algorithms that take random samples from the
configuration space, testing them for feasibility, and
use a local planner to connect them to other nearby
configurations. This class of algorithms, including
rapidly-exploring random trees (RRTs) (LaValle, 1998)
and probabilistic road maps (PRMs) (Kavraki et al.,
1998) as well as other versions of PRM such as
lazy PRM (Bohlin and Kavraki, 2000) and semi-lazy
PRM (Akbaripour and Masehian, 2017), consists of two
phases. In the first phase a probabilistic road map is
incrementally constructed. In the second phase which is
called query phase, the constructed road map is used for
solving individual path planning in the given environment.
The shortest path finder algorithms such as Dijkstra’s
algorithm is used to accomplish the query phase. Further
details can be found in the work of Latombe (2012). RRT
has difficulty in expanding through narrow passages and
getting around the obstacles. In addition, the generated
path is not smooth and suboptimal with respect to path
length. To solve this problem, biased RRTs are proposed
(Urmson and Simmons, 2003). Because these biased
RRT algorithms are greedy, they tend to generate a local
minimum solution.

One of the most recently published versions of RRT
is IB-RTT* (Qureshi and Ayaz, 2015), which is specially
designed for sophisticated cluttered environments. It uses
the bidirectional tree technique and proposes an intelligent
sample insertion heuristic to converge faster to the optimal
solution. According to the provided experimental results,
IB-RRT* shows superior computational efficiency in
comparison with RRT and its variants. Although this is the
fastest variant of RRT, it still needs considerable amount

An exact geometry-based algorithm for path planning 495

of time to compute a sufficient solution, and for some
reported scenarios the running time exceeds 510 seconds.
To reduce running time, IB-RRT* can present a local
optimal solution which is relatively poor in smoothness
and the path length, but by increasing the number of
iterations (and thus running time) it improves the quality
of the path.

2.3. Classic algorithms. The classic algorithms, also
known as exact algorithms, are a group of algorithms
that decompose the environment into different sections.
A remarkable number of the studies in this group are
an enhanced version of the preliminary motion planning
algorithms such as the bug algorithm, potential fields
(Ge and Cui, 2000), mathematical programming, and the
geometry-based algorithm (Mac et al., 2016; Jafarzadeh
et al., 2014). The presented algorithm is categorized in
the geometry-based algorithms.

Bug algorithms assume that, although the agent
knows the location of the global goal, only local
information of the environment is available (Choset,
2005). Bug algorithms generate suboptimal (i.e., long)
paths and have long running time. Another algorithm
in this list is the potential field algorithm, which has
the ability to generate a path in real time. However,
the potential field algorithm cannot solve many complex
scenarios, especially when there is a non-convex obstacle
in the environment and either the starting or goal point
is located within the convex hull of this obstacle (Tang
et al., 2012). Also, the potential field algorithm does not
generate a passage between very closely spaced obstacles.
The other set of algorithms in this category is the
mathematical programming approach which represents
the requirement of obstacle avoidance and an objective
function with a set of inequalities and equalities on the
configuration parameters. MP is formulated then as a
mathematical optimization problem that finds a curve
between the start and goal points.

The last group of the classic algorithms in this
classification are the geometry based algorithms. Because
the SPP algorithm introduced in this paper is within this
group, these algorithms warrant a relatively longer review.
These algorithms try to provide a globally optimal path
by generating a network of all possible paths between the
start and goal points and then proceed with a shortest path
algorithm over this network, such as Dijkstra’s algorithm
(Cormen, 2001). Because of the complexity of the
generated network, the run time of these algorithms can
be relatively long; however, the path length is generally
globally optimal. There are four major algorithms in this
sub-group: triangulation dual graph, generalized Voronoi
diagram, cell decomposition, and visibility graph (VG).
All the geometry based algorithms, also known as road
map algorithms, assume that global knowledge of the
environment is available. These algorithms try to generate

paths by using sets of nodes and edges. Usually the graph
is formed offline without information of the start and goal
locations. Eventually, these locations are given as a query
and some required edges are added to the graph, then the
graph is searched to find the shortest path from the start to
the goal point.

The first algorithm to be described in this group is
the algorithm of triangulation dual graph paths (Choset,
2005), which decomposes the solution space environment
into triangles, where each triangle composes a graph.
Then the algorithm computes the dual graph of the
original triangulated graph that generates a rough path. To
do this, the algorithm finds the center of each triangle (an
alternative method is finding the midpoint of triangulation
edges) and connects each center if the triangles share
an edge with each other. Then, one of the shortest
path algorithms is utilized to find the best path within
the designed graph. Sometimes, the generated path is
infeasible and inefficient. To improve the given path,
the algorithm applies a refining method that ensures the
computed path will be acceptable and more efficient in
terms of length.

A Voronoi road map (Choset, 2005) is a set of
paths in the environment that ensures maximum clearance
between obstacles. This method reduces the probability of
the collision, and is thus preferred in robotics. A Voronoi
cell is the set of points that are closer to an assumed or
specified point (also called a seed) than to any of the other
seed points. More formally, given a finite set of points
{p1, . . . , pn}, the Voronoi cell Rk associated with pk of
every point whose distance to pk is less than or equal
to its distance to any other pi in the set. A generalized
Voronoi diagram is designed for environments that are
populated by polygons instead of points. After forming
the Voronoi diagram, the desired graph can be processed
by a shortest path algorithm. This algorithm generates
a safe, obstacle-free path, which is suitable when the
sensors on the robot include large errors, but it does not
generate the shortest path.

The basic idea behind the cell decomposition method
(Choset, 2005) is determining a path between the start
and the goal configuration by dividing the obstacle-free
space into smaller regions called cells. After this step,
a connectivity graph is constructed according to the
adjacency relationships between the cells, where the
nodes represent the cells in the free space, and the edges
between the nodes show that the corresponding cells are
adjacent to each other. From this connectivity graph
a path will be determined by following adjacent free
cells from the start point to the goal. The final set of
algorithms in the geometry based class are visibility graph
techniques. The algorithms in this group are capable of
finding an optimal path. Two arbitrary points a and b
are visible to each other when the line segment ab does
not intersect any polygonal obstacles (Latombe, 2012).

496 H. Jafarzadeh and C.H. Fleming

By connecting all mutually visible vertices, the visibility
graph is constructed. According to the following lemma,
the visibility graph includes the optimal path.

Lemma 1. (De Berg et al., 2008) Any shortest path be-
tween S and G among a set of polygonal obstacles is a
polygonal path whose inner vertices are vertices of given
obstacles.

In this lemma, S and G indicate the starting point
and the goal point, respectively. This lemma helps to
shrink the solution space from continuous to discrete.
According to the definition, the algorithms presented to
construct the visibility graph take into account all the
vertices of existing polygonal obstacles. In the literature,
the effectiveness of algorithms in this class is often
measured in terms of the time complexity in constructing
the visibility graph.

The simplest algorithm has O(n3) running time,
where n is the number of all vertices in the given case
(Lozano-Pérez and Wesley, 1979). This algorithm is a
naive one, in which all the edges are drawn by using
two arbitrary vertices and checked for the feasibility. In
1978, Lee presented an improved algorithm (Asano et al.,
1986) by applying the rotation sweep technique. In this
algorithm vertices are sorted based on their angle relative
an arbitrary point. The sorting operation can be completed
in O(n log n) and after adding the visibility check of
all n vertices, the running time will be O(n2 logn). If
cardinality of inter-polygonal edges, denoted by εν is
equal to O(n2), the overall running time after applying
Dijkstra’s algorithm will be O(n2 logn).

Quadratic algorithms (Asano et al., 1986;
Edelsbrunner et al., 1986) can construct the visibility
graph in O(n2). In the case when the cardinality of εν is
O(n2), these algorithms work optimally with respect to
the running time of Dijkstra’s algorithm. Most of them
utilize a triangulation over the obstacle-free space or
mapping to the dual space and using the rotation sweep
technique to check the feasibility of inter-polygonal
edges.

Another quadratic algorithm, which does not use
the triangulation method and is relatively intuitive and
easy to implement, was presented by Welzl (1985). This
algorithm has been designed to construct the visibility
graph for line segments that can be easily generalized to
polygonal obstacles.

Finally, an output-sensitive algorithm proposed by
Ghosh and Mount (1991) outperforms all previous
algorithms when the cardinality of εν is less than O(n2).
The time complexity of this algorithm is O(n log n +
card(εν)).

Rohnert introduced an improved version of the
visibility graph called the reduced-visibility-graph
algorithm that considers only the supporting and
separating edges to find the shortest path (Rohnert, 1986).

S

ε

v '
v

(a)

S
v 'v

ε

(b)

Fig. 1. Vertex v is not a part of the shortest path.

S
v

Fig. 2. Vertex v might be a part of the shortest path.

By applying this method, the number of inter-polygonal
edges decreases significantly to the visibility graph. The
main thought behind Rohnert’s algorithm is computing
the part of the visibility graph which plays a role in
finding the shortest path in O(n + p2 logn) time, where
p is the number of polygons in the obstacle space. The
following lemma ensures that the reduced visibility graph
includes the optimal path.

Lemma 2. (Rohnert, 1986) The shortest collision-free
path between S and G among a set of polygonal obsta-
cles, runs through edges of the polygons and supporting
and separating segments of pairs of polygons.

The number of edges created by the reduced
visibility graph to find the shortest path is bounded by
O(p2) which is less than O(n2). Unfortunately, this
algorithm is limited to convex polygons and does not
cover nonconvex polygons in O(p2) time complexity.

An exact geometry-based algorithm for path planning 497

3. SPP algorithm description

As mentioned above, SPP is classified in the geometry
based algorithms. Although the reduced visibility graph
algorithm considers just the extreme vertices of the
obstacles, it cannot handle nonconvex obstacles and in the
convex polygonal obstacles it still uses all the obstacles in
its calculations. It is the first algorithm that intelligently
eliminates a significant part of the solution space while
ensuring the optimal solution is not in the eliminated
set. However, not all obstacles in an environment will
necessarily play a role in constructing the optimal path.
For example, consider a sparsely populated environment,
i.e., one with numerous obstacles that are far from each
other and the line between the start and goal points SG.
Why would a path planning algorithm need to consider
such obstacles?

Therefore, an algorithm is needed to ignore those
obstacles from its calculations. SPP overlooks those
irrelevant obstacles by cleverly constructing the network
of the polygonal paths so that the size of the network
significantly decreases in terms of the number of nodes
and the number of edges. We introduce effective polygons
as a new term in this paper and define them as follows.

Definition 1. Effective polygons are those whose vertices
(and edges) are contained in the optimal path from S to
G. Polygons that are not included in the optimal path are
called ineffective polygons.

SPP attempts to ignore the ineffective obstacles in its
path finding process. There is currently no guarantee that
SPP can eliminate all of the ineffective polygons for every
scenario, but it shows significantly improved performance
in a variety of environments, particularly those that do not
have a dense population of obstacles. The fundamental
idea behind the SPP algorithm is considering just the
obstacles that block its way toward G. Before starting the
path planning, to release the shape of the agent (i.e., a disk
shape) the obstacles are expanded as much as the size of
the agent’s radius and then the algorithm considers it as a
point.

First, SPP checks the shortest path from S to G,
which is straight line SG. If it is feasible the algorithm
returns it as the optimal path, otherwise, according to
Lemma 1, it uses the vertices of the blocking polygonal
obstacles (i.e., either convex or nonconvex) to construct
its path to reach the goal point. Lemma 3 gives a
detailed instruction to find the desirable vertices in convex
and nonconvex polygons (although, there is a lemma in
(Rohnert, 1986) which helps to find the end-points and
delete the other vertices, it is limited to convex polygons
and is not applicable to the nonconvex ones).

Lemma 3. The shortest collision-free path between S
and G among a set of convex and nonconvex polygonal
obstacles does not run through any vertex v such that an

arbitrary prolongation of line segment Sv lies inside a
polygon.

Proof. If line segment Sv goes through a polygon, then
this is an infeasible segment and should be ignored in
constructing the network. Assume that the line segment
Sv is feasible and vertex v is a part of an optimal path,
but its prolongation, which is shown by line segment vv′,
enters a polygon (see Fig. 1).

Because Sv is feasible, there is a circle with radius
ε > 0 (i.e., an arbitrarily small number) at v such that the
line segment starting fromS and ending on arcαγβ is also
feasible. Assume that v is not the goal point and should
be left, and recall that we know that line segment vv′ is
an infeasible direction. The only feasible exit region from
vertex v lies along arc αγβ. The leaving ray intersects the
imaginary circle at a point called δ anywhere along the arc
αγβ. Constructed the triangle Svδ and note that |vδ| = ε.
By the triangle inequality, |Sδ| < |Sv|+|vδ| and therefore
Sδ represents a shortcut from the original path through v
and v is not on the optimal path.

On the other hand, if prolongation Sv does not enter
the polygon, then there would exists an arc such as σδλ
(in Fig. 2) for a ray leaving v in which the shortcut Sσ is
infeasible. The region of rays going from v through this
arc can be a part of an optimal path. �

The following pseudocode applies Lemma 3 to find
the required vertices in constructing the optimal path. To
do this, based on the location of the current point, goal
point, and shape of the obstacle, the algorithm constructs
the network with the encountered polygonal obstacle.

This algorithm is invoked by command f(s′,M j
i) in

the main SPP algorithm, in which s′ is the current point
and M j

i shows the set of vertices of the j-th obstacle
that makes the i-th path infeasible and the desirable
output would be the set of acceptable vertices (i.e., V)
in M j

i and are accessible from s′. Wherever the SPP
algorithm confronts this command, this means that the
first algorithm will take the vertices of the j-th obstacle
from set Mi (i.e., the set of obstacles that make the i-th
path infeasible) and s′ and returns acceptable vertices V .

Algorithm 1. Finding acceptable vertices (f(s′,M j
i)).

1: V ← ∅

2: for {∀vk|vk ∈M j
i } do

3: calculate v′k
4: if s′v′k ∈ Ofree then
5: V ← V

⋃
vk

6: end if
7: end for
8: return V

In the given pseudocodeOfree represent the space free
of obstacles. In the first step, the algorithm checks for two

498 H. Jafarzadeh and C.H. Fleming

end-points (eu and el) in the obstacle which are called ex-
trema in this work. These extrema are the two outermost
tangential points of the obstacle identified by the smallest
two-dimensional cone that includes all of the encountered
obstacles with the cone origin set on the current location
S. If there exists a cone starting from point S (i.e.
card(V) = 2), again based on Lemma 1 of Rohnert
(1986), both of extrema which are constructing the sup-
porting line segments will be returned as the acceptable
vertices and are enough to find the optimal path. If these
points can be found by the algorithm, they are called
eu and el and saved in set V , which will be returned
as a desired output. However, in cases where the start
point is located in the inner section of spiral polygon, this
cone cannot be drawn from point S (i.e., card(V) �= 2).
Therefore, in this case we need to take into account the
other vertices to establish the network of the path to reach
the goal (see Fig. 3).

According to Lemma 3, the algorithm should not
consider all of the vertices in the polygon to find the
optimal path. If the prolongation of the connecting line S
and vk enters into the polygonal obstacle, then this vertex
is not a part of the optimal path from S to G. By this
method, most of the vertices are eliminated and the size
of the network is decreased significantly. For instance, if
line segment (Sv1) is prolonged as much as ε (where ε is
an arbitrarily small number) to obtain a new point (v′1) line
segment (Sv′1) will be infeasible, because (v′1) is inside of
the polygon. This vertex will not be in the optimal path
from S to G, and the only vertex should be considered in
the current position S is v6.

Lemma 4. In a polygonal obstacle with number nk ver-
tices, finding the vertices such that the prolongation of the
line segment starting from S is feasible takes O(nnk).

Proof. According to the pseudocode given in Algo-
rithm 1, for each vertex vk the algorithm finds v′k which

 v 1

ε
 v '1

 v 2

 v 3 v 4

 v 5

G
S

Fig. 3. Nonconvex polygon with no extrema from point S.

takes O(1), then it checks if line segment Sv′k is feasible
or not in time O(n), where n is all the vertices. The
algorithm repeats this step for all vertices of the k-th
polygon, i.e., nk. Altogether, the time complexity for this
part of the algorithm is O(nnk). �

There is provided pseudocode for SPP in
Algorithm 2.

Algorithm 2. SPP algorithm.

1: ρ← 〈S〉
2: ξ ← 〈S,G〉
3: while {∃k|¬ρkorρk‖ρk‖ �= G} do
4: calculate ξ
5: if ‖ξ‖〉0 then
6: for i = 1 to ‖ξ‖ do
7: calculate M〈ξi‖ξi‖−1

,ξi‖ξi‖〉
8: delete ξi from ρ
9: for j = 1 to ‖M〈ξi‖ξi‖−1

,ξi‖ξi‖〉‖ do

10: θ ← f(ξi‖ξi‖−1,M
j
〈ξiqi−1,ξ

i
qi
〉)

11: if 〈〈ξi − ξi‖ξi‖〉, θ >/∈ ρ then
12: ρ← 〈ρ, 〈〈ξi − ξi‖ξi‖〉, θ〉〉
13: end if
14: end for
15: end for
16: go to 4
17: else
18: for q = 1 : ‖ρ‖ do
19: ρq ← 〈ρq, G〉
20: end for
21: end if
22: end while

What follows is a brief explanation of the given
pseudocode. First, we define two factors ξ and ρ. ξ is
an n-tuple of an ordered list of infeasible paths and ρ is
another n-tuple of paths that SPP tries to make them all
feasible and this pseudocode returns that as its output. At
the beginning, SPP assumes that the connecting line from
its current position S to the goal point G is infeasible and
saves it in ξ. It is a repetitive procedure that will continue
till finding an n-tuple ρ of feasible paths that ends into G.
If n-tuple ρ has at least one infeasible path (i.e., ¬ρk is
true) or the last point of at least one path in n-tuple ρ is
not the goal point (i.e., ρk‖ρk‖), it will repeat the “while”

loop to satisfy both of the conditions. Here ρk shows the
k-th path in n-tuple ρ, and ρk‖ρk‖ represents the last point

of the path ρk where ‖ρk‖ is the number of the points
constructing the path ρk.

Within this loop, the algorithm finds the infeasible
paths and saves them as ξ, if this n-tuple is empty (‖ξ‖=
0) and all paths are feasible it adds the goal point to the
end of each paths in n-tuple ρ and checks the twofold

An exact geometry-based algorithm for path planning 499

conditions again, but if ‖ξ‖> 0, for each of the paths in ξ
the algorithm will calculate an alternative path. Because
the algorithm corrects the infeasibility of the paths in each
step, then the origin of the infeasibility is the last point
added to the existing path. The line segment constructed
by the last point and the point before that makes the
path infeasible (i.e., 〈ξi‖ξi‖−1, ξ

i
‖ξi‖〉). Accordingly, at

the first step, it calculates the set of obstacles that make
the assumed line segment infeasible, and saves them as
M〈ξi‖ξi‖−1

,ξi‖ξi‖〉and deletes them from ρ. Now, for each of

these obstacles (i.e., ‖M〈ξi‖ξi‖−1
,ξi‖ξi‖〉‖ is the number of

these obstacles), the algorithm invokes the first algorithm
by command f(ξi‖ξi‖−1,M

j
〈ξiqi−1,ξ

i
qi
〉) to calculate the

acceptable vertices from the current point ξi‖ξi‖−1 and
substitutes it. The algorithm checks whether or not the
generated path 〈〈ξi − ξi‖ξi‖〉, θ〉 is already in the current
n-tuple ρ. If it is repetitive, it deletes them from the
process to make the performance of the algorithm better.

After constructing the network of the paths, the SPP
algorithm chooses the shortest path from the n-tuple ρ.
Then to make the output path applicable for navigation, it
will be smoothed by a given algorithm at the end. All
the obstacles participating in constructing this network
are effective polygons which can obtained by uniting
M〈ξi‖ξi‖−1

,ξi‖ξi‖〉
in each iteration of the algorithm. The

obtained set is not necessarily equal to the whole set
of obstacles and the SPP algorithm just considers those
obstacles that blocks its way toward the goal point. By
this approach it skips ineffective obstacles and saves time,
especially in the environments in which obstacles are
located far from each other.

Lemma 5. The SPP algorithm can find the shortest
collision-free path from starting point S to goal point G in
the presence of convex and nonconvex polygonal obstacles
in O(nn′2) time, where n is the number of all vertices and
n′ is the number of vertices of the polygons that construct
the path network.

Proof. The SPP algorithm draws line segment vijG from
the i-th vertex of the j-th effective polygon toward the
goal point to find the other effective polygons and checks
for feasibility, which takes O(nn′) . Also, according to
Lemma 4, it finds the required vertices from each effective
polygon in time O(nn′). The algorithm completes these
steps for all of the vertices in effective polygons, and the
overall time complexity for constructing the network of
paths is O(n′(nn′+nn′)), which yields O(nn′2). Finally,
to find the shortest path in the constructed network,
Dijkstra’s algorithm is applied over the n′ graph, resulting
inO(nn′2+n′ logn′) complexity and reduces to O(nn′2).

�
Note that for all cases, we have n′ ≤ n. In

many environments, including the scenarios presented in
Section 4 (Figs. 5 and 6), n′ � n. The result, as will be

seen in following sections, is that in practice SPP executes
very fast. In the environments with sparsely distributed
polygonal obstacles in which n′ � n, the time complexity
of the SPP algorithm becomes linear in n, but the most
effective given algorithm for this problem has quadratic
(i.e., the cardinality of the number of edges) or in the best
case has quasilinear time complexity.

After generating [ρ], a shortest path algorithm (e.g.,
Dijkstra’s algorithm) is applied to find the shortest path
between the start and the goal points among matrix [ρ].
Finally, this path is smoothed for navigation. There
are many metrics for smoothness, but the overarching
goal of this smoothing function is to limit the sharp
discontinuities that exist between two segments of the path
generated by SPP. Consider a path R−P −Q, i.e., a path
that begins at point R, makes a discontinuous turn at point
P , and then ends at point Q. The function selects a point
to begin a “turn” some distance before the discontinuity
(T1), another point to exit the turn after the discontinuity
and begin traveling on a straight line again (T2), and a
turning radius with which to complete the turn ω. See
Fig. 4 for an example of this geometry.

The smoothing algorithm selects T1 and T2 such
that they are equidistant from the original, discontinuous
turning point, P . For conservatism, this distance d
is selected as d = min{dt, d1, d2, do}, where dt is
a user-selected parameter that represents the desired
distance to begin the turn, d1 is the distance of the
path segment entering the turn generated by SPP (i.e.,
the path from R to P), d2 is the distance of the path
segment exiting the turn generated by SPP (the path from
P to Q), and do is the distance necessary to ensure that
the smoothed path remains obstacle free. The turning
radius is then simply ω = d/ tan(θ). The turn from
T1 to T2 sweeps an arc of radius ω through an angle
2θ. The algorithm identifies the desired direction of turn
and computes the center of curvature and the sweep angle
accordingly, based on the geometry presented in Fig. 4.

minC

P m
inC

d

d

ω
θ

θ

C

Q

R

T 1

T 2

Fig. 4. Geometry used in the smoothing algorithm.

500 H. Jafarzadeh and C.H. Fleming

The resulting arc is continuous but can be discretized
according to user preferences. For the simulations in the
next section, each smoothed turn is discretized into 50
equidistance points between T1 and T2.

The smooth path is guaranteed to be obstacle free
because of the buffer added to each obstacle. However,
in the form presented in Fig. 4 it is not guaranteed to
remain outside of the buffer defined by minC. Our
implementation includes the option for an additional
buffer, ε, at the turning point in the direction of vector
CP . With sufficient ε, the new path from R−(P +ε)−Q
can be guaranteed to lie on our outside of the area defined
by minC.

To evaluate the smoothness of the generated path, a
new evaluation measure called ADCP (average degree of
discontinuous connection point) has been used (Suzuki
et al., 2009). ADCP is calculated by the sum
of the discontinuous angles divided by the count of
discontinuous events. Therefore, the value of the
smoothest path becomes zero in this measure. The
formula of the smoothness evaluation ADCP is

Smoothness =
1

DC

G∑

i=S

Di
A, (1)

where Di
A is the discontinuity angle of the i-th turn, DC

discontinuity counts, i = S represents the start of the path,
and G the goal.

4. Results and discussion

This section provides different scenarios to evaluate
the performance of the SPP algorithm relative to the
heuristic and probabilistic algorithms. Since the presented
algorithm is exact, it deterministically generates a single
solution for the same scenario in different runs. We used
MATLAB as a platform to implement the SPP algorithm.

To validate the SPP algorithm, we compare its
performance with the genetic algorithm from the heuristic
algorithms, the rapidly-exploring random tree (RRT) and
the probabilistic road map (PRM) from the probabilistic

algorithms. Because the time complexity of the SPP
algorithm has been presented in Lemma 5 and it is
available for other classic algorithms in the literature,
the running time of this group of algorithms can be
compared based on their time complexities. We therefore
do not consider this group in the simulations. For
the other two groups (i.e., heuristic and probabilistic
algorithms) we chose GAMOPP (multi-objective path
planning) (Davoodi et al., 2015), RRT (Kala, 2014b) and
PRM (Kala, 2014a).

GAMOPP represents a state-of-the-art path planning
algorithm and has been published recently in the
literature. Also, in the GAMOPP paper, the authors
have compared the performance of their algorithm with
two other previously presented powerful algorithms,
i.e., the improved strength Pareto evolutionary algorithm
(SPEA2) (Zitzler et al., 2001) and multi-objective particle
swarm optimization (MOPSO) (Zhang et al., 2013;
Coello et al., 2004), and they show that their algorithm
outperforms those. SPEA2 is an effective algorithm
and several evolutionary algorithms have compared their
results with this algorithm in the literature (e.g., Deb,
2001). Particle swarm optimization (PSO) is a swift and
simple randomized search algorithm applied to optimize
numerous NP-hard problems, and by now, several
versions of multi-objective PSO have been proposed
(Coello et al., 2004; 2007). One application of this
algorithm is in the path planning problems (Zhang et al.,
2013; Purcaru et al., 2013).

Because GAMOPP, MOPSO, and SPEA2 are
heuristic algorithms, they produce a different solution
for the same problem for each run. They thus perform
their algorithm several times and study its results using
statistical tools. Alternatively, SPP produces a single
path for each problem. Davoodi et al. (2015) highlight
that sometimes MOPSO is not able to find any feasible
solution in 100 generations, especially when there is
a narrow passage framework, or numerous obstacles
have cluttered the environment, but GAMOPP always
provides a feasible solution per each run. Therefore, we
select GAMOPP presented by Mohanta et al. (2011) and

(a) (b) (c) (d)

Fig. 5. Standard framework (minC = 10): SPP (a), GAMOPP (b), RRT (c), PRM (d).

An exact geometry-based algorithm for path planning 501

(a) (b) (c) (d)

Fig. 6. Clutter space (minC = 4): SPP (a), GAMOPP (b), RRT (c), PRM (d).

compare its results with SPP in terms of running time and
quality of solutions.

Being probabilistic, RRT and PRM have the same
problem as GAMOPP and they cannot find a feasible
solution for the given problem all the time. To solve this
problem, we increased the number of randomly chosen
points from the environment in PRM and the number
of trials in RRT. Although this approach increases the
running time in PRM, it improves the likelihood of
achieving a feasible solution. Increasing the number of
trials will not increase the running time in RRT, because
whenever it reaches the goal point it stops but it affects the
likelihood of producing a feasible solution. Accordingly,
these factors were adjusted such that the probability of
generating a feasible solution in both algorithms would
be 90%.

To have a clear comparison between these
algorithms, we use the same test problems from the
work of Davoodi et al. (2015) to evaluate the performance
of the SPP algorithm. These four cases examine the
capabilities of each algorithm under difference scenarios.
Figure 5 shows the paths produced by GAMOPP.

GAMOPP attempts to optimize a multi-objective
function with three output parameters. The first function
is concerned with minimizing the length of the path, the
next two functions maximize the smoothness of the path

and the last two terms try to maximize the clearance of
the path. GAMOPP seeks to maximize the minimum
distance of the path from the closest obstacle and also
the minimum distance from the nearest obstacle along
the path. Alternatively, the SPP algorithm adds the
desirable distance of the agent from each obstacle in the
first step and substitutes the expanded obstacles in its
calculation. This factor is accounted for, which allows for
a comparison with respect to the length and smoothness
of the paths.

In the SPP, RRT and PRM algorithms we have
extended the polygons as much as the desired distance
value and considered these extended polygons as the
obstacles that the paths need to avoid.

The first scenario in this group is called the stan-
dard framework (Fig. 5). The desired clearance (minC)
for this case has been set at 10. The expanded obstacles
around the real obstacles (filled with dark color) show
the virtual obstacles that involve minC. The output of
GAMOPP for different runs has been shown.

The number of randomly generated points in PRM
was set at 50 and the size of each step for RRT was set
to 20.

Three other scenarios that have been provided to
challenge the effectiveness of the presented SPP algorithm
are used to evaluate its performance. The four algorithms

(a) (b) (c) (d)

Fig. 7. Narrow passage (corridor) (minC = 3): SPP (a), GAMOPP (b), RRT (c), PRM (d).

502 H. Jafarzadeh and C.H. Fleming

(a) (b) (c) (d)

Fig. 8. Spiral shape (minC = 0): SPP (a), GAMOPP (b), RRT (c), PRM (d).

are compared across several scenarios, and their results
are summarized in Table 1 in terms of running time,
length and smoothness of the generated paths. The second
scenario is called the clutter space and 20 convex and
nonconvex obstacles have been distributed randomly in it
(Fig. 6). This is a challenging case, because it contains
more obstacles that the other scenarios since there are
numerous local optima for this scenario. The minimum
clearance for this case is set to 4.

To make sure that algorithms can handle a case with a
narrow passage, the scenario shown in Fig. 7 is used. Here
minC is 3, resulting in a very narrow clearance between
the virtual expanded obstacle and the real obstacle. The
last scenario is a spiral obstacle (Fig. 8). For this case
minC is set to zero, so the algorithms generate paths
relative to the real obstacle.

Three outputs with different results have been
presented by GAMOPP for this case but we considered
the best running time and path length in the Table 1.

5. Conclusions and future work

In this paper, a novel algorithm, which is called SPP, has
been presented for solving path-planning problems in a
static environment with convex and nonconvex obstacles.

Although SPP is presented for static environments
and this version does not address unknown and dynamic
areas, being fast it can applied on different screen shots of
environment repetitively to handle them easily and in real
time.

The SPP algorithm is classified as a geometry based
algorithm in which the first step is coming up with a
network of the segment lines that connect the vertices of
obstacles and location of the start and goal points. The
visual graph and the improved version of this algorithm,
RVG—for a reduced visibility graph, generate this graph
of possible paths for this problem, but the advantage
of SPP over existing techniques is shrinking the size
of this network as much as possible while preserving
optimality conditions. It was proven mathematically
that the SPP algorithm generates an optimal path and

Table 1. Comparing the results of the SPP, GAMOPP, RRT and PRM algorithms.
Scenarios Algorithm Clearance Smoothness Path length Running time [s]

Standard framework

SPP 10 0.41 818.4 0.01
GAMOPP 10.24 12.60 924.8 1.5

RRT 10 33.42 1353.1 6.23
PRM 10 35.1 1238.4 1.04

Clutter space

SPP 4 0.98 1541.3 0.67
GAMOPP 4.49 18.61 1613 4

RRT 4 35.78 1944.6 5.33
PRM 4 59.61 2220.7 1.93

Narrow passage

SPP 3 2.15 2034.9 0.02
GAMOPP 3 29.97 2201 1

RRT 3 29.37 4292.2 8.94
PRM 3 70.68 3315.6 2.1

Spiral shape

SPP 0 1.65 3729.8 0.13
GAMOPP 0 40.49 4147 3

RRT 0 46 7017.7 25.81
PRM 0 54.73 4424.8 53.21

An exact geometry-based algorithm for path planning 503

the time complexity of this algorithm was calculated
as O(nn′2). The SPP algorithm has the capability of
discerning the ineffective polygon and eliminating them
from its calculations.

In a densely populated environment, in which n′ >√
n, the advantages of SPP over the other algorithms

are somewhat minimized. As seen in Table 1, SPP
still outperforms the other algorithms. However, in the
absolute worst-case environment, i.e., if all polygons
become so-called effective polygons, SPP has O(n3) time
complexity.

To evaluate the effectiveness of SPP, we selected
one from each of path planning algorithm groups
and compared the results. The selected algorithm
from the heuristic algorithms is the genetic algorithm
for multi-objective path planning (GAMOPP) which
outperforms two other state-of-the-art path planning
algorithms (i.e., improved strength pareto evolutionary
algorithm (SPEA2) and multi-objective particle swarm
optimization (MOPSO)). The selected algorithms from
the probabilistic algorithms are the rapidly exploring
random tree (RRT) and the probabilistic road map (PRM).
The provided results show that SPP algorithms generated
better solutions in terms of running time as well as length
and smoothness of the path. In some cases GAMOPP,
RRT and PRM could not find a feasible solution, but as
long as there is a feasible solution SPP is able to give
a feasible and optimal solution. The SPP algorithm has
been tested by scenarios designed for different purposes,
and its results have been presented in tabular format as
well as graphically. This algorithm generates the shortest
paths for different scenarios.

The future work would be exploring this class
of algorithms, which emphasize on distinguishing and
eliminating the redundant polygons from visibility graph
algorithms in path planning.

References
Akbaripour, H. and Masehian, E. (2017). Semi-lazy

probabilistic roadmap: A parameter-tuned, resilient and
robust path planning method for manipulator robots, Inter-
national Journal of Advanced Manufacturing Technology
89(5–8): 1401–1430.

Asano, T., Asano, T., Guibas, L., Hershberger, J. and Imai,
H. (1986). Visibility of disjoint polygons, Algorithmica
1(1): 49–63.

Bohlin, R. and Kavraki, L.E. (2000). Path planning using lazy
PRM, Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA’00, San Francisco, CA,
USA, Vol. 1, pp. 521–528.

Choset, H.M. (2005). Principles of Robot Motion: Theory, Algo-
rithms, and Implementation, MIT Press, Cambridge, MA.

Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004).
Handling multiple objectives with particle swarm

optimization, IEEE Transactions on Evolutionary Compu-
tation 8(3): 256–279.

Coello, C.C., Lamont, G.B. and Van Veldhuizen, D.A.
(2007). Evolutionary Algorithms for Solving Multi-
Objective Problems, Springer, New York, NY.

Cormen, T.H. (2001). Introduction to Algorithms, MIT Press,
Cambridge, MA, pp. 595–601.

Davoodi, M., Panahi, F., Mohades, A. and Hashemi, S.N. (2015).
Clear and smooth path planning, Applied Soft Computing
32: 568–579.

De Berg, M., Cheong, O., Van Kreveld, M. and Overmars, M.
(2008). Computational Geometry: Algorithms and Appli-
cations, Springer-Verlag TELOS, Santa Clara, CA.

Deb, K. (2001). Multi-Objective Optimization Using Evolution-
ary Algorithms, Wiley, New York, NY.

Edelsbrunner, H., Guibas, L.J. and Stolfi, J. (1986). Optimal
point location in a monotone subdivision, SIAM Journal
on Computing 15(2): 317–340.

Ge, S.S. and Cui, Y.J. (2000). New potential functions for mobile
robot path planning, IEEE Transactions on Robotics and
Automation 16(5): 615–620.

Ghosh, S.K. and Mount, D.M. (1991). An output-sensitive
algorithm for computing visibility graphs, SIAM Journal
on Computing 20(5): 888–910.

Jafarzadeh, H., Gholami, S. and Bashirzadeh, R. (2014). A new
effective algorithm for on-line robot motion planning, De-
cision Science Letters 3(1): 121–130.

Jafarzadeh, H., Moradinasab, N. and Elyasi, M. (2017). An
enhanced genetic algorithm for the generalized traveling
salesman problem, Engineering, Technology & Applied
Science Research 7(6): 2260–2265.

Kala, R. (2014a). Code for robot path planning using
probabilistic roadmap, Indian Institute of Information
Technology, Allahabad, http://rkala.in/codes.
php.

Kala, R. (2014b). Code for robot path planning using
rapidly-exploring random trees, Indian Institute of
Information Technology, Allahabad, http://rkala.i
n/codes.php.

Kavraki, L.E., Kolountzakis, M.N. and Latombe, J.-C. (1998).
Analysis of probabilistic roadmaps for path planning, IEEE
Transactions on Robotics and Automation 14(1): 166–171.

Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal
path planning problem for heterogeneous multi-vehicle
systems, International Journal of Applied Mathemat-
ics and Computer Science 26(2): 297–308, DOI:
10.1515/amcs-2016-0021.

Latombe, J.-C. (2012). Robot Motion Planning, Springer, New
York, NY.

LaValle, S.M. (1998). Rapidly-Exploring Random Trees: A New
Tool for Path Planning, Iowa State University, Ames, IA.

Liu, J., Yang, J., Liu, H., Tian, X. and Gao, M. (2017). An
improved ant colony algorithm for robot path planning,
Soft Computing 21(19): 5829–5839.

http://rkala.in/codes.php
http://rkala.in/codes.php
http://rkala.in/codes.php
http://rkala.in/codes.php

504 H. Jafarzadeh and C.H. Fleming

Lozano-Pérez, T. and Wesley, M.A. (1979). An algorithm for
planning collision-free paths among polyhedral obstacles,
Communications of the ACM 22(10): 560–570.

Mac, T.T., Copot, C., Tran, D.T. and De Keyser, R. (2016).
Heuristic approaches in robot path planning: A survey,
Robotics and Autonomous Systems 86: 13–28.

Masehian, E. and Sedighizadeh, D. (2007). Classic and heuristic
approaches in robot motion planning—a chronological
review, World Academy of Science, Engineering and Tech-
nology 23(5): 101–106.

Mohanta, J.C., Parhi, D.R. and Patel, S.K. (2011). Path planning
strategy for autonomous mobile robot navigation using
Petri-GA optimisation, Computers & Electrical Engineer-
ing 37(6): 1058–1070.

Ni, J., Wu, L., Shi, P. and Yang, S. X. (2017). A dynamic
bioinspired neural network based real-time path planning
method for autonomous underwater vehicles, Computa-
tional Intelligence and Neuroscience 2017, Article ID:
9269742.

Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O.
and David, R.-C. (2013). Hybrid PSO-GSA robot path
planning algorithm in static environments with danger
zones, Proceedings of the 17th International Conference
System Theory, Control and Computing (ICSTCC), Sinaia,
Romania, pp. 434–439.

Qureshi, A.H. and Ayaz, Y. (2015). Intelligent bidirectional
rapidly-exploring random trees for optimal motion
planning in complex cluttered environments, Robotics and
Autonomous Systems 68(6): 1–11.

Rohnert, H. (1986). Shortest paths in the plane with
convex polygonal obstacles, Information Processing Let-
ters 23(2): 71–76.

Suzuki, Y., Thompson, S. and Kagami, S. (2009). Smooth path
planning with pedestrian avoidance for wheeled robots:
Implementation and evaluation, 4th International Confer-
ence on Autonomous Robots and Agents, ICARA 2009,
Wellington, New Zealand, pp. 657–662.

Tang, S., Khaksar, W., Ismail, N. and Ariffin, M. (2012). A
review on robot motion planning approaches, Pertanika
Journal of Science and Technology 20(1): 15–29.

Urmson, C. and Simmons, R. (2003). Approaches for
heuristically biasing RRT growth, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 2,
pp. 1178–1183.

Welzl, E. (1985). Constructing the visibility graph for n-line
segments in O(n2) time, Information Processing Letters
20(4): 167–171.

Zhang, Y., Gong, D.-W. and Zhang, J.-H. (2013). Robot
path planning in uncertain environment using
multi-objective particle swarm optimization, Neuro-
computing 103: 172–185.

Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2:
Improving the strength Pareto evolutionary algorithm,
Working paper, ETH Zürich, Zürich.

Hassan Jafarzadeh received his BS and MSc,
both in industrial engineering, from Tabriz Uni-
versity and the K.N. Toosi University of Science
and Technology, respectively. He is currently a
PhD candidate with the Systems and Informa-
tion Department at the University of Virginia.
His research interests include connected and au-
tonomous vehicles, computational geometry, and
optimization models and methods.

Cody H. Fleming joined the Department of
Systems and Information Engineering, Univer-
sity of Virginia, in 2015. He received his doc-
toral degree in aeronautics and astronautics at the
Massachusetts Institute of Technology, where he
focused on formally and rigorously integrating
safety analysis into early concept development of
complex systems. He holds a Bachelor’s degree
in mechanical engineering from Hope College
with honors (summa cum laude) and a Master’s

degree from MIT. Prior to getting his doctorate, he spent 5 years working
in space system development for various satellite and laser projects, spe-
cializing in dynamics, design, and systems integration. His research in-
terests are in methods for development and verification of safety-critical
systems, particularly those with high levels of automation, aside general
interests in dynamic systems and control.

Received: 12 July 2017
Revised: 6 January 2018
Re-revised: 24 February 2018
Accepted: 9 April 2018

	Introduction
	Literature review
	Heuristic algorithms
	Probabilistic algorithms
	Classic algorithms

	SPP algorithm description
	Results and discussion
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

