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Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-
art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches
have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these
impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced
with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is
unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the
impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore,
we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition
by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural
architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification
we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely.
However, in the case of very low resolution images the classification accuracy remained considerably affected.
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1. Introduction

Deep neural networks, and more specifically
convolutional neural networks, emerged in recent
years as a methodology of choice in various computer
vision problems. They have been successfully used in
numerous tasks, such as semantic segmentation (Long
et al., 2015), facial point detection (Sun et al., 2013),
dense captioning (Johnson et al., 2016), biomedical
image segmentation (Ronneberger et al., 2015) and image
restoration (Mao et al., 2016), to name just a few. Perhaps
most importantly, deep neural networks have been used in
the image recognition task, achieving superhuman visual
pattern recognition in many controlled competitions
(Schmidhuber, 2015).

Such competitions, especially the ImageNet
challenge (Russakovsky et al., 2015), were the driving
force behind the recent progress in neural-based
models. Numerous novel architectures of deep neural
networks (Krizhevsky et al., 2012; Simonyan and
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Zisserman, 2014; He et al., 2016) have gained their
popularity based on the results achieved on the ImageNet
benchmark. However, ImageNet consists of fairly high
quality images, while in practical applications we are
often faced with low quality of images and the presence
of factors such as low resolution, noise, blur, compression
artifacts and a low dynamic range. While human
examiners are, to a large extent, resilient to such factors
during image recognition, it is unclear to what degree
low image quality affects the performance of deep neural
networks.

In this paper we evaluate the impact of low resolution
on the image recognition task, considering several most
notable neural architectures of recent years, that is,
AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan
and Zisserman, 2014) and ResNet (He et al., 2016).
Furthermore, we examine application of the neural-based
super-resolution method, VDSR (Kim et al., 2016), to
improve classification accuracy for low resolution images.
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2. Related work

Poor image quality has been recognized as an important
aspect influencing the performance of deep neural
networks in computer vision tasks. Various factors
influencing image quality have been considered in the
context of classification accuracy of deep neural networks.
Dodge and Karam (2016) evaluated the impact of
blur, noise, contrast and JPEG compression on the
performance of several neural architectures. Karahan
et al. (2016) examined blur, noise, compression artifacts,
color distortions and occlusion in the context of the
face recognition task. Vasiljevic et al. (2016) performed
a more thorough analysis of different types of blur,
at the same time considering different methods of
dealing with this type of distortion. Koziarski and
Cyganek (2017) evaluated the impact of the presence of
different types of noise and the effectiveness of different
approaches to cope with these phenomena. Sanchez
et al. (2016) examined the influence of illumination
quality and contrast measures. Several papers evaluating
the impact of low image quality on different types of
classification algorithms can also be found (da Costa et al.,
2016; Dutta et al., 2012). In particular, Zou and Yuen
(2012) considered the problem of a very low resolution.
However, to the best of our knowledge, no research on the
impact of low image resolution on classification accuracy
of deep neural networks has been conducted yet.

Applying super-resolution prior to image recognition
is an intuitive approach to mitigating the negative impact
of low image resolution on classification accuracy. The
problem of image super-resolution has a rich research
history in the computer vision community. Currently,
the most dominant paradigm relies on training the model
based on the available data, the methodology that can
be traced back to the work of Freeman et al. (2002).
This family of methods can be based on various machine
learning algorithms, such as nearest neighbor approaches
(Freeman et al., 2002), manifold learning (Chang et al.,
2004), dictionary learning (Yang et al., 2010), locally
linear regression (Timofte et al., 2014) and random forests
(Schulter et al., 2015), to name just a few. However,
with the advent of deep learning, convolutional neural
networks began to outperform methods based on other
machine learning techniques.

The SRCNN (Dong et al., 2014) was the first of
convolutional-based neural architectures achieving the
state-of-the-art results in the domain, afterwards improved
by Dong et al. (2016). Since then, numerous variants
of convolutional neural networks have been proposed
for the image super-resolution task. Out of them, the
most notable are the following: a sub-pixel convolutional
network proposed by Shi et al. (2016), designed as
a real-time method, a generative adversarial network
proposed by Ledig et al. (2016), as well as a fully

convolutional architecture taking advantage of residual
connections, the VDSR network proposed by Kim et al.
(2016), which was later extended by Tai et al. (2017)
to enable recursive connections. The notion of using
residual connections was also further examined by Lim
et al. (2017), who proposed novel single-scale and
multi-scale architectures. However, despite the abundance
of super-resolution research, to the best of our knowledge,
the possibility of using a super-resolution technique as a
form of low resolution image preprocessing in the task
of classification with deep neural networks has not been
examined before. Thus, we fill this gap with the methods
described in this paper.

Finally, applying the super-resolution is not the
only method of dealing with low resolution in the
context of image recognition. Another notable approach
was described by Peng et al. (2016), who proposed
transferring the fine-grained knowledge obtained from
high resolution data to the task of low resolution image
classification.

3. Background

In this section we provide a brief overview of deep
neural networks in the context of image recognition
and super-resolution tasks. We provide the problem
definitions, describe the methodology of using neural
networks and highlight the most relevant neural
architectures. A more detailed description of deep
neural networks can be found in the work of Goodfellow
et al. (2016).

3.1. Image recognition with deep neural networks.
Let us denote the input image by X and the associated
label, belonging to a set of a fixed length, by y. The
goal of the image recognition task is providing a mapping
f(X) best approximating y for a given X . By far
the most prevalent approach to the image recognition
problem is the data-driven paradigm: instead of explicitly
defining the mapping f(X), we propose a parametrized
family of models f(X |θ), with θ being a set of trainable
parameters. Based on the available data, we later optimize
the values of θ. Deep neural networks are a particular
type of a trainable model. They consist of building
blocks called neurons, which are basic computational
units of neural networks. The neurons are grouped into
consecutive layers, which form a complete model. Based
on the arrangement of neurons within layers and layers
within the whole network, we define the function space
used in the optimization procedure. The choice of the
arrangement of the neural network is therefore essential to
achieve good performance in the image recognition task,
and a significant amount of research has been dedicated to
evaluating various architectures. Below we describe three
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of the most notable models of neural networks, used later
in the experimental analysis.

AlexNet (Krizhevsky et al., 2012) was an architecture
developed by Alex Krizhevsky and co-workers, as well
as the winner of the 2012 edition of the ImageNet
ILSVRC challenge (Russakovsky et al., 2015). It
was a neural architecture that popularized the usage of
convolutional neural networks in the image recognition
task, achieving considerably better results than the
state-of-the-art methods of the time. It consists of
60 million parameters, grouped into five convolutional
layers, some of which followed by a pooling layer, and
three fully-connected layers. At the time, AlexNet was
one of the largest neural networks applied. It was also
one of the first networks using rectified linear units as
nonlinearity.

VGGNet (Simonyan and Zisserman, 2014) was a neural
architecture introduced by the Visual Geometry Group of
the University of Oxford, and a contender in the 2014
edition of the ILSVRC challenge. Compared to AlexNet,
VGGNet consists of a significantly higher number of
parameters: 144 million for the largest possible variant.
The main contribution of VGGNet was showing the
importance of the depth of convolutional neural networks.
In total, the largest version of VGGNet consisted of 19
weight layers. Filters with a very small receptive field,
with the size of 3×3, were used in the convolutional layers
to decrease the number of parameters without limiting
the depth. To make the learning feasible, the training
was conducted in stages: instead of optimizing a large,
randomly initialized network, shallower versions were
trained first, and afterwards used to initialize the weights
of deeper networks.

ResNet (He et al., 2016) was a neural network that won
the 2015 edition of the ILSVRC challenge. It introduced
the concept of residual connections: instead of learning
unreferenced functions, in the residual framework the
functions with reference to the layer inputs are learned.
This allowed the authors to successfully train a networks
with up to 152 layers. Furthermore, since only a single
fully connected layer was used, the overall number of
parameters was significantly reduced to only 60 million.

3.2. Image super-resolution. Let us denote by XH a
ground truth, high resolution image, and by XL its low
resolution counterpart. The goal of the super-resolution
task is, given XL, estimating g(XL) resembling the
ground truth image as closely as possible. The problem is
inherently ill-posed, since multiple solutions may exist for
a given input image. This issue is particularly pronounced
for very low resolution images, for which the space of
possible source, high resolution images is larger.

In the context of the image recognition task,
super-resolution can be viewed as a preprocessing

technique for low resolution images. In general, we
are concerned with the task of low resolution image
recognition, that is, the optimization of f(XL|θ) to find
the best approximation of y. However, in the practical
setting we may be faced with several limitations that
may make the direct optimization of f(XL|θ) impossible.
First of all, training deep neural networks is usually a
computationally expensive procedure. In real applications
we may not be able to afford the cost of training a
complete model. Pre-trained models can be used in such
cases, but they are usually trained on relatively high
quality data and may not be suitable for the recognition
of low resolution images. Secondly, deep neural networks
used for image recognition usually require large amounts
of data. We may not know the exact resolution of
the images of interest, which would make artificially
lowering the image resolution impossible, and may not
have enough real data to train the model without that
operation. Using a super-resolution technique prior
to classification to approximate XH using g(XL) and
afterwards approximating y using f(g(XL)|θ), with θ
trained based on XH , can be a suitable approach in such
cases.

The method we chose for the super-resolution
task is VDSR, a neural architecture proposed by Kim
et al. (2016). It is a fully-convolutional model with
a conceptually simple structure: it consists of 20
convolutional layers, each containing 64 filters of size
3 × 3. Furthermore, VDSR takes advantage of residual
learning, introducing a skip connection between the input
and the output of the network. As can be seen, these
are the exact main attributes of the most successful
image recognition networks: significant depth, a small
filter size, relying on the convolutional layers and the
presence of skip connections. In addition, the VDSR
network introduced the concept of multi-scale learning,
that is training a single model on data with varying levels
of low resolution. The VDSR network displays great
performance in the super-resolution task, at the same time
being simple and fast to train.

4. Experimental study

To assess the impact of low resolution on the task of image
recognition with deep neural networks, an empirical
study was performed. Firstly, we measured classification
accuracy of various neural architectures on images with a
varying level of low resolution. Secondly, we evaluated
the performance of a state-of-the-art super-resolution
method, VDSR, to establish its suitability as a form of
preprocessing in the image recognition task. Finally,
we integrated super-resolution into the image recognition
pipeline in an attempt to improve classification accuracy.
In the remainder of this section we give a detailed
description of the conducted experimental procedure,



738 M. Koziarski and B. Cyganek

present the achieved results and state our conclusions.

4.1. Impact of low resolution on the image recognition
task. We began our evaluation by measuring how the
quality of images affects the classification accuracy in the
situation in which low resolution is not accounted for. To
this end, we examined three of the most significant neural
architectures of recent years: AlexNet (Krizhevsky et al.,
2012), 16-layer VGGNet (Simonyan and Zisserman,
2014) and 50-layer ResNet (He et al., 2016). Our goal
was, first of all, to evaluate how significant is the decrease
in the accuracy due to low image resolution. Furthermore,
we aimed to establish whether the observed trends are
similar across the different neural architectures, or if some
of the models are more resilient to poor image quality.

Given an image and a scale factor (SF), we artificially
decreased the resolution of the luminance channel of the
image. We manipulated only the luminance channel to
ensure consistency with the super-resolution framework
described by Huang et al. (2015). Firstly, we reduced
the size of the luminance channel to 1/SF of the
original, and afterwards we increased it back using bicubic
interpolation. An example of an image with reduced
resolution is shown in Fig. 2.

We conducted our evaluation on the ImageNet
(Russakovsky et al., 2015) dataset. Specifically, we used
a subset of images provided during the Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). ImageNet
is a standard, publicly available benchmark, commonly
used to evaluate the performance of convolutional neural
networks in the image recognition task. It consists of
1.2 million training and 50 thousand validation images,
grouped into 1000 categories. Throughout the performed
evaluation, suggested images were used during the
training of the models, whereas the reported results were
based on the performance on the validation data. Instead
of training the models from scratch, the weights provided
by the authors of the corresponding papers were used in
every case. The experiment itself was implemented in
the Python programming language, using the TensorFlow
(Abadi et al., 2016) machine learning library. The
resulting code was made available at https://
github.com/michalkoziarski/LowResCNN.

During the examination we measured the impact
of the SF in {1, 2, . . . , 8} on both top-1 and top-5
classification accuracy, with top-k accuracy being defined
as a fraction of the images for which the ground
truth image label was included in the k most probable
predictions of the classifier. We present the results of this
part of the experimental evaluation in Fig. 2. As can be
seen, low resolution of the images significantly decreases
both top-1 and top-5 classification accuracy of the neural
networks considered. Even in the case of the mildest
image quality deterioration, represented by an SF equal
to 2, the drop in accuracy was noticeable. In the case

of top-1 accuracy it ranged from 3.88 percentage points
for AlexNet, through 2.31 percentage points for VGGNet,
up to 2.28 percentage points for ResNet. In the case
of top-5 accuracy the observed drop was 3.15, 1.53 and
1.69 percentage points for AlexNet, VGGNet and ResNet,
respectively. The observed drop in performance was much
more significant at higher deterioration levels. For the
SF equal to 8, top-1 accuracy decreased by 30.32, 30.64
and 27.12 percentage points, whereas top-5 accuracy by
33.63, 25.89 and 20.80 percentage points, respectively, for
AlexNet, VGGNet and ResNet.

As can be seen, the observed trends are similar
between the discussed architectures of neural networks.
The relation between classification accuracy and the SF
of low resolution images is close to being linear, in all
the cases. The disproportion between top-1 and top-5
accuracy remains relatively stable for different values
of the SF. For low values of the SF, both VGGNet
and ResNet display a similar drop in performance.
However, for a higher SF, ResNet was the most resilient
model, especially when top-5 classification accuracy
was considered. In general, even the state-of-the-art
architectures of neural networks remain significantly
affected by the issue of low image resolution. Visually
examining images with lowered resolution, presented in
Fig. 1, even small values of the SF that should not
affect human recognition capabilities noticeably affect
classification accuracy of neural networks.

4.2. Image super-resolution with the VDSR net-
work. The goal of the latter part of the experimental
study was evaluating the possibility of applying image
super-resolution prior to recognition, with the hope
of improving classification accuracy for low resolution
images. As alluded to previously, the VDSR (Kim
et al., 2016) neural architecture as a super-resolution
method was chosen, since it displayed a state-of-the-art
performance in the SR task. Furthermore, since both
the super-resolution model as well as the classification
model are neural networks, it presents the practical
benefit of the possibility of treating the whole system
as a single, large network. This, in turn, allows the
usage of operations such as fine-tuning the combined
network. In the remainder of this section we
experimentally evaluate the super-resolution capabilities
of the model considered, that is, the VDSR neural
network with an adjusted training procedure. We
describe the adjustments made, experimental set-up and
the achieved results. The implementation of the VDSR
model used in this part of the experimental study was
made publicly available at https://github.com/
michalkoziarski/VDSR.

Similarly to Kim et al. (2016), for the training of
the model we used a combination of 91 images provided
by Yang et al. (2010) and 200 images from the Berkeley

https://github.com/michalkoziarski/LowResCNN
https://github.com/michalkoziarski/LowResCNN
https://github.com/michalkoziarski/VDSR
https://github.com/michalkoziarski/VDSR
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Fig. 1. Example of an image with the resolution artificially lowered using bicubic interpolation (original image on the far left).

Fig. 2. Impact of low image resolution on classification accuracy with various convolutional neural networks.

Segmentation Dataset (Martin et al., 2001). The data
were further augmented applying rotation and flipping,
which effectively increased the size of the dataset 8
times. For the evaluation of the models’ performance
we used four different benchmarks: Set5 (Bevilacqua
et al., 2012), Set14 (Zeyde et al., 2010), 100 test images
from the Berkeley Segmentation Dataset (B100) (Martin
et al., 2001) and Urban100 (Huang et al., 2015). When
combined, the benchmarks considered consist of diverse
images from a broad distribution, including images of
people, animals, buildings and inanimate objects.

Compared with Kim et al. (2016), we adjusted
the proposed training procedure. Most importantly,
we discovered that the training is susceptible to the
initialization of the weights, and the final performance can
vary depending on the starting point of the optimization.
We were able to stabilize the learning process to a large
extent by using the Adam optimizer (Kingma and Ba,
2014) instead of the stochastic gradient descent, which
allowed easier reproducibility of the results. We used
the values of β1 = 0.9 and β2 = 0.999 for the Adam
algorithm. Furthermore, we were unable to avoid the
issue of exploding gradients when starting the training
with very high learning rates. This was the case even
though we were using the gradient clipping procedure
described in the original paper. Still, we clipped the

gradients to the range of [−θ/γ, θ/γ], with γ being the
current learning rate, and θ the parameter of the gradient
clipping procedure. In our experiments we set θ = 0.5,
while in the original paper that choice was not mentioned.
Because of the described issues with exploding gradients,
we began the optimization with a learning rate equal to
0.0001. We further decreased it by a factor of 10 every
20 epochs. In total, we trained the model for 60 epochs.
We did not adjust the remaining parameters of the training
procedure, that is, batch size of 64, patch size of 41 and
weight decay of 0.0001. The architecture of the network
remained unchanged as well. The training and evaluation
times of the model were comparable to those described in
the original paper.

We present the average values of the peak
signal-to-noise ratio (PSNR) for different benchmarks
in Table 1. We duplicated the results achieved by
the reference methods from Kim et al. (2016) while
adjusting the values for the work of VDSR based on
our experiments. Despite the adjustments made, which
improved the performance of the algorithm, we were still
unable to achieve the exact results reported in the original
paper, overall observing slightly worse performance. The
drop in performance was, however, negligible, and VDSR
still outperformed the reference methods in every single
case. Since the code necessary to train the model was
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not made available together with the original paper, for
the sake of the reproducibility we decided to use our
model during further evaluation. To assess the statistical
significance of the observed results we also conducted
a Wilcoxon signed-rank test. The results observed for
VDSR were statistically significantly different than those
observed for all of the reference methods at a significance
level of 0.005.

A sample image from Set5 after applying
super-resolution is presented in Fig. 3. As can be
seen, applying the VDSR algorithm produces sharp edges
and eliminates the blurring associated with low resolution
images. However, especially for larger values of the SF,
loss of some of the detail remains unavoidable. VDSR,
while producing visually pleasing images, is unable to
restore the full information that could later be used during
classification.

4.3. Applying super-resolution prior to classifica-
tion. In the final stage of the conducted experimental
study we examined whether applying super-resolution
prior to classification can improve classification accuracy
for low resolution images. We considered all of the
previously used neural network architectures, that is,
AlexNet, VGGNet and ResNet, and the SF in {1, 2, 3, 4}.
We used the VDSR neural network, trained according to
the procedure described in the previous section, as the
super-resolution algorithm.

Visualization of the trends observed during this part
of the experimental study is presented in Fig. 4, whereas
the complete numerical results are presented in Table 2.
As can be seen, applying super-resolution as a form
of image preprocessing led to an improvement in the
performance in every single case. For the SF equal
to 2 we were able to achieve performance close to the
one observed on the original, undistorted data. When
top-1 accuracy was considered, compared with the case
of undistorted data, the observed drop in classification
accuracy was equal to 0.47 percentage points for AlexNet,
0.45 for VGGNet and 0.43 for ResNet. This means that
applying super-resolution eliminated 87.92%, 80.59% and
81.15% of the performance drop, i.e., the difference
between the baseline and the low-resolution affected data,
for AlexNet, VGGNet and ResNet, respectively. Similar
trends were observed for top-5 accuracy: for AlexNet,
the drop in performance was reduced to 0.35 percentage
points, meaning that 88.76% of the accuracy drop caused
by low image resolution was eliminated. For VGGNet
the observed values were 0.25 percentage points and
83.46%, whereas for the ResNet 0.35 percentage points
and 79.14%.

In the case of a severely reduced image resolution,
that is when the SF was equal to 4, the degree to which
the classification accuracy was restored due to applying
the super-resolution was significantly lower. For the top-1

accuracy, 29.17% of the performance drop caused by the
low resolution was eliminated for the AlexNet, 31.36% for
the VGGNet and 35.84% for the ResNet. Still, compared
with the case in which the low image resolution was
not accounted for, applying super-resolution increased the
accuracy by 3.84 percentage points for the AlexNet, by
3.24 for VGGNet and by 4.37 for the ResNet. Once again,
the observed trends were similar for the top-5 accuracy.
In that case, applying the super-resolution eliminated
30.52% of the performance drop for AlexNet, 37.30%
for VGGNet and 32.59% for ResNet. To assess the
statistical significance of the observed results, a Wilcoxon
signed-rank test was conducted. The null hypothesis
that the classification accuracy observed after applying
super-resolution prior to classification and the results
observed for low resolution images come from the same
distribution was rejected at the 0.001 significance level.

In summary, applying super-resolution as a form
of image preprocessing is a suitable approach for low
resolution images as long as the decrease in their quality
is not too significant. For the case of an SF equal
to 2, by applying super-resolution we were able to
obtain classification accuracy close to that observed on
the undistorted data. This was not the case for higher
levels of distortion. However, while we were unable to
restore classification accuracy close to that observed on
the original images, a noticeable improvement was still
achieved when compared with the case in which low
resolution was not accounted for in any way.

5. Conclusions

In this paper we experimentally evaluated the impact of
low resolution on the task of image recognition with deep
neural networks. We measured the effect of artificially
induced low resolution on classification accuracy of
the most notable neural architectures of recent years.
Furthermore, we evaluated the possibility of applying
super-resolution as a form of preprocessing to increase
classification accuracy for low resolution images. The
main findings of this paper are the following:

• Low image resolution, when not accounted for, may
significantly decrease classification accuracy of deep
neural networks. This is true even if the decrease
in image resolution is relatively mild: a noticeable
drop in performance was still observed for the lowest
analysed level of low resolution, arguably difficult to
spot with a naked eye in many cases. This stands
in a stark contrast with the supposed “superhuman”
(Schmidhuber, 2015) capabilities of deep neural
networks in the image recognition task.

• The observed trends were similar across different
architectures of neural networks. Based on our
observations, the models achieving higher accuracy
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Table 1. Average PSNR values for various super-resolution methods. Results replicated from the work of Kim et al. (2016), with the
updated values for the VDSR method, based on our own experiments. Best performance in bold.

Dataset Scale Bicubic
A+ (Timofle RFL (Schulter SelfEx (Huang SRCNN (Dong VDSR (Kim
et al., 2014) et al., 2015) et al., 2015) et al., 2014) et al., 2016)

Set5
×2 33.66 36.54 36.54 36.49 36.66 36.79
×3 30.39 32.58 32.43 32.58 32.75 33.28
×4 28.42 30.28 30.14 30.31 30.48 31.08

Set14
×2 30.24 32.28 32.26 32.22 32.42 32.60
×3 27.55 29.13 29.05 29.16 29.28 29.55
×4 26.00 27.32 27.24 27.40 27.49 27.78

B100
×2 29.56 31.21 31.16 31.18 31.36 31.59
×3 27.21 28.29 28.22 28.29 28.41 28.67
×4 25.96 26.82 26.75 26.84 26.90 27.15

Urban100
×2 26.88 29.20 29.11 29.54 29.50 30.36
×3 24.46 26.03 25.86 26.44 26.24 26.88
×4 23.14 24.32 24.19 24.79 24.52 24.97

Fig. 3. Example of a low resolution image after applying super-resolution (VDSR method) (original image on the left).

on the original, undistorted images were also more
resilient to low image resolution. This was especially
the case for top-5 classification accuracy, for which
the differences were more significant than in the case
of top-1 accuracy.

• For relatively low levels of low resolution, applying
super-resolution as a form of image preprocessing
allowed us to achieve classification accuracy close
to that observed on the original, undistorted images.
We therefore conclude that the current state of
super-resolution research is sufficient to mitigate the
decrease in classification accuracy caused by low
levels of low resolution.

• For significantly lowered image resolution, the
state-of-the-art super-resolution method considered
was still capable of substantially improving
classification accuracy. However, the achieved
results were far from those observed on undistorted
data. Based on the results of our experimental
analysis, the existing super-resolution methods
are far from being able to completely mitigate
the negative impact of very low resolution on
classification accuracy.

Several directions for further research can be

distinguished. First of all, super-resolution remains
an active area of study. It is likely that with future
improvements in the quality of super-resolution methods
it will be possible to further reduce the negative effect
of low resolution on classification accuracy. Especially
methods based on generative adversarial networks
(Goodfellow et al., 2014) seem promising with regard to
improving classifiers performance, since they are better
suited to producing highly detailed images. It is also
possible that achieving the highest possible performance
in the restoration task as a super-resolution method does
not translate to being the best preprocessing tool in the
image recognition task, and designing methods capable
of boosting image quality with the goal of improving
classification accuracy is necessary.

Furthermore, similar advances are likely to be
made in neural architectures used for image recognition.
Especially the design of neural networks specifically for
dealing with low resolution images could be beneficial.
Finally, due to computational constraints, in this paper
we did not evaluate the possibility of training the
classification network on distorted data. However, based
on our previous research on noisy data (Koziarski and
Cyganek, 2017), we speculate that this approach could
lead to improved classification accuracy at the cost of
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Table 2. Classification accuracy depending on the level of resolution degradation and the type of preprocessing used, specifically:
baseline accuracy (BLA), classification accuracy on low resolution images (LRA), classification accuracy on low resolution
images with the super-resolution applied (SRA), as well as the mitigated performance drop (MPD), calculated as MPD =
(1 − BLA−SRA

BLA−LRA ) × 100%. MPD = 100% indicates that applying super-resolution allowed complete restoring of baseline
performance, and MPD = 0% indicates that no improvement was observed due to applying super-resolution.

Network BLA Scale LRA SRA BLA - LRA BLA - SRA MPD

AlexNet

top-1 54.57
×2 50.69 54.10 3.88 0.47 87.92
×3 46.09 49.83 8.48 4.73 44.17
×4 41.41 45.25 13.16 9.32 29.17

top-5 77.98
×2 74.83 77.62 3.15 0.35 88.76
×3 70.68 73.83 7.30 4.15 43.17
×4 66.06 69.69 11.92 8.28 30.52

VGGNet

top-1 69.61
×2 67.29 69.16 2.31 0.45 80.59
×3 63.92 67.06 5.68 2.55 55.22
×4 59.29 62.52 10.32 7.08 31.36

top-5 89.11
×2 87.58 88.86 1.53 0.25 83.46
×3 85.12 87.36 3.99 1.75 56.04
×4 81.56 84.37 7.56 4.74 37.30

ResNet

top-1 73.93
×2 71.65 73.50 2.28 0.43 81.15
×3 67.17 70.65 6.77 3.28 51.51
×4 61.74 66.11 12.19 7.82 35.84

top-5 91.47
×2 89.78 91.12 1.69 0.35 79.14
×3 87.13 89.21 4.34 2.26 47.92
×4 83.91 86.38 7.56 5.09 32.59

significantly longer training. Evaluating this possibility
remains open for further research.
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