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The problem of practical synchronization of an uncertain Duffing oscillator with a higher order chaotic system is considered.
Adaptive control techniques are used to obtain chaos synchronization in the presence of unknown parameters and bounded,
unstructured, external disturbances. The features of the proposed controllers are compared by solving Duffing–Arneodo
and Duffing–Chua synchronization problems.

Keywords: chaos synchronization, adaptive control, Duffing oscillator.

1. Introduction

Chaos synchronization has been intensively studied in
the last 30 years. The problem is interesting as an
important basic research issue and offers wide application
possibilities. Secure information transmission and
synchronization of biological systems (such as neuron
lattices) are well-known fields of implementation. An
extensive review of chaos synchronization techniques
developed till 2010 can be found in the works of Zhang
et al. (2009) or Andrievskii and Fradkov (2004). Primary
results were limited to synchronization of two similar
chaotic systems with perfectly known parameters. But in
real-life applications, the parameters of physical systems
are perturbed by external factors and cannot be known
exactly. Therefore, adaptive control techniques became
most important for synchronization of chaotic systems
and are used in numerous references (e.g., Wang and Fan,
2015; Sundarapandian, 2011; 2010; Wang et al., 2015;
Chang et al., 2009; Hua and Guan, 2004; Hua et al.,
2005).

In this contribution, a simple but very important
chaotic system is considered—the Duffing oscillator. For
many years, the Duffing oscillator has been investigated
intensively as a benchmark of a chaotic system which is
able to demonstrate all phenomena of chaos. Practical
oscillating systems that exhibit Duffing-like behaviour
occur in many areas: MEMS (Rhoads et al., 2008),
laser techniques (Hofmann et al., 2012), wireless power

harvesters (Wang and Mortazawi, 2016), and many others.
It is assumed that all parameters of the chaotic system
considered are unknown and that a bounded external
disturbance is present.

The control aim is to synchronize the response
system with another, higher order chaotic one. The
problem of synchronization of chaotic systems possessing
different structures, different models and a different
number of state variables is interesting per se and may
lead to important applications. For example, numerous
biological systems (such as circulatory and respiratory
systems) behave in a synchronous way, although they
are quite different. The problem of synchronization of
a Duffing oscillator with a Chua system was reported by
Femat and Solís-Perales (2002), who considered a known
parameter case with the solution depending on the drive
system parameters. The authors stress that “synchro-
nization of different chaotic systems is a hard task if we
think that: (i) initial conditions of master and slave sys-
tems are different and unknown, (ii) topological and geo-
metrical properties of different chaotic systems are quite
distinct and (iii) unrelated chaotic systems have strictly
different time evolution.” Here, the problem is made
more challenging by assuming unknown parameters and
external disturbances.

The main contribution of the paper is development
and comparison of three simple adaptive controllers for
the chaos synchronization problem. The controllers
are based on well-known adaptive control techniques.
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The first one is a standard adaptive controller for
the multidimensional system with disturbances. This
approach utilizes a control Lyapunov function selected for
a linear model. The other two are based on the adaptive
backstepping technique (Krstic et al., 1995), including the
filtering of the stabilizing function (Dong et al., 2012).
To demonstrate that the same controller can be used for
different drive (master) systems, the experiments with
Arneodo and Chua chaotic systems are reported.

2. Problem formulation

Consider the Duffing equation

ẋ1 = x2,

ẋ2 = −px2 − p1x1 − p2x
3
1 + q cos (ωt) + u,

(1)

where t is time, ω is external force frequency, q is its
amplitude, and p, p1, p2 are real constants. The variable u
represents the control is an external signal (force) added to
the periodic excitation. For p1 > 0, the Duffing oscillator
can be interpreted as a forced oscillator with a spring
whose restoring force is R = −p1x1 − p2x

3
1. When

p2 > 0, we have a ‘hardening spring’, and when p2 < 0,
we have a ‘softening spring’, although this interpretation
is valid only for small x. For p1 < 0, the Duffing equation
describes a trajectory of a point mass in a double well
potential. It can be a model of a steel beam deflection
in between two magnets.

It is assumed that the constant parameters of the
oscillator are unknown, and only initial guesses of the
approximated values are provided. An external, bounded
disturbance d(t) satisfying

|d(t)| ≤ δ (2)

is supposed to affect the system. The disturbance may
represent a non-periodical component of the external force
or an inaccurate realization of the derived control. The
bound δ must be estimated according to our knowledge
about the disturbance nature and impact. Finally, the
uncertain Duffing oscillator model may be represented as

ẋ1 = x2,

ẋ2 = θTφ+ d(t) + u,
(3)

where
θ ∈ R

4 (4)

is the vector of unknown parameters and

φT =
[−p0x2 −p10x1 −p20x

3
1 q0 cos (ωt)

]
(5)

is composed of known functions, while[
p0 p10 p20 q0

]
are the initial guesses for[

p p1 p2 q
]
. Such a representation of uncertainty

allows us to balance all adaptive parameters.

The Duffing oscillator (1) is supposed to be
a “response” (slave) system, i.e., a system to be
synchronized with another chaotic one—a “drive system”
(master). In this contribution, the drive system is supposed
to be a higher order chaotic system, and it may possess a
different model structure as well as distinct topological
and geometrical properties. The control objective is to
achieve reduced-order synchronization, i.e., all states of
the response system should be synchronized, in some
sense, with two selected states of the drive system. Such
synchronization is possible only if the selected states of
the drive system, let us say, x1d and x2d, fulfil the phase
canonical equation ẋ1d = x2d.

Two examples of drive systems will be considered,
although generalization to other chaotic systems
is straightforward. The first drive system is a
three-dimensional chaotic Arneodo one,

ẋ1d = x2d,

ẋ2d = x3d,

ẋ3d = −a0x1d − a1x2d − a2x3d + a3x
2
1d,

(6)

which generates a chaotic motion with parameters a0 =
−7.5, a1 = 3.8, a2 = 1, a3 = −1, x1d(0) = 3.

The second drive system is the Chua one. It was
introduced as a model of a simple electronic circuit
that consists of one linear resistor, two capacitors, one
inductor, and one nonlinear resistor. The standard state
variables are the capacitor voltages and the inductor
current, but the circuit equations can be also written in
the following, standard, dimensionless form:

ẋ1s = γ1{x2s − (γ3 + 1)x1s

− 0.5(γ4 − γ3)[|x1s + 1| − |x1s − 1|])},
ẋ2s = x1s − x2s + x3s,

ẋ3s = −γ2x2s.

(7)

A discussion of equivalent models is presented by Pospsil
et al. (2000). The parameters in (7) are chosen as γ1 =
10.00, γ2 = 14.87, γ3 = −0.68, γ4 = −1.27. The change
of variables x1d = x3s, x2d = −γ2x2s, x3d = x1s

provides the system equations

ẋ1d = x2d,

ẋ2d = −γ2x1d − x2d − γ2x3d,

ẋ3d = γ1{−x3d − 1

γ2
x2d − (γ3x3d

+ 0.5(γ4 − γ3)[|x3d + 1| − |x3d − 1|])},

(8)

which are used as a drive system for a Duffing oscillator.
Both the drive systems belong to the general class of
n-dimensional chaotic systems with state variables xd
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described by the equations

ẋ1d = x2d,

ẋ2d = f2(xd),

...

ẋnd = fn(xd).

(9)

Sample plots of the Duffing oscillator and the drive system
trajectories are presented in Figs. 1–3.

3. Adaptive synchronization

Consider the tracking errors e1 = x1 − x1d and e2 =

x2 − x2d, e =
[
e1 e2

]T
. As ẋ1d = x2d, from (3) it

follows that

ė1 = e2,

ė2 = θTφ+ d(t) + u− ẋ2d.
(10)

Let us denote by θ̂ the adaptive parameters and define the
parameter estimation error by

θ̃ = θ − θ̂. (11)

The proposed control is

u = a1e1 + a2e2 − θ̂Tφ+ ud + ẋ2d. (12)

The parameters a1 and a2 are selected so that the matrix

A =

[
0 1
a1 a2

]
(13)

is stable and ud is an additional control component to be
designed soon. The application of the proposed control
results in

ė = Ae+

[
1

θ̃Tφ

]
+

[
0
1

]
(d(t) + ud). (14)

As the matrix A is stable, for any positive definite
matrix Q there exists a positive definite matrix P , which
is the solution of the Lyapunov equation

ATP + PA = −Q. (15)

The matrix P is used to construct the Lyapunov function

V (e, θ̃) =
1

2
(eTPe+ θ̃TΓ−1θ̃), (16)

where the matrix of design parameters Γ is positive
definite. The derivative of the Lyapunov function along
the system trajectories can be transformed as follows:

V̇ =− 1

2
eTQe+ θ̃T {(eTP

[
0
1

]
)φ− Γ−1 d

dt
θ̂}

+ eT
[
0
1

]
(d(t) + ud).

(17)

If the additional control is not applied (ud = 0),
then a robust adaptive law must be used. Among many
possibilities, such as σ-modification or projection, the
so-called e-σ modification is applied (Ioannou and Sun,
1989):

d

dt
θ̂ = Γ{(eTP

[
0
1

]
)φ− ‖e‖σθ̂}, (18)

where σ > 0 is a design parameter. The adaptive law
yields

V̇ = −1

2
eTQe+ e2d(t) + ‖e‖σθ̃T θ̂. (19)

Making use of the following inequalities:

e2d(t) ≤ |e2| δ ≤ ‖e‖ δ, (20)

θ̃T θ̂ =
1

2

[
−∥∥θ̃

∥∥2 +
∥∥θ

∥∥2 − ∥∥θ̂
∥∥2

]
, (21)

− 1

2
eTQe ≤ −1

2
λmin{Q} ‖e‖2 , (22)

where λmin{Q} denotes the minimal eigenvalue of Q and
k := 1

2λmin{Q}, we get

V̇ ≤ −‖e‖
{
k ‖e‖ − δ +

1

2
σ‖θ̃‖2 − 1

2
σ‖θ‖2

+
1

2
σ‖θ̂‖2

}

≤ −‖e‖{k‖e‖− δ +
1

2
σ‖θ̃‖2 − 1

2
σ‖θ‖2}.

(23)

Therefore, V̇ ≤ 0 if k‖e‖ − δ + 1
2σ‖θ̃‖2 − 1

2σ‖θ‖2 ≥
0. The derivative of the Lyapunov function is negative
outside the set

De := {e : ‖e‖ ≤ 1

k
(δ +

1

2
σ ‖θ‖2)} (24)

in spite of ‖θ̃‖, and outside the set

Dθ := {θ̃ : ‖θ̃‖2 ≤ 2

σ
(δ +

1

2
σ ‖θ‖2)} (25)

in spite of ‖e‖.
From the well-known theorem due to LaSalle and

Leftschetz (1961) it follows that the trajectories e and
θ̃ are uniformly, ultimately bounded (UUB) (Khalil,
2015). The sets De and Dθ which ultimately limit
the evolution of e and θ̃ are bounded (as δ, σ, ‖θ‖ are
bounded constants); moreover, the design parameter k =
1
2λmin{Q} can be used to reduce the volume of the limit
set De.

If we decide to cope with the disturbance d(t)
directly, an additional control term must be applied, such
that e2(d(t) + ud) is negative. If the selected control is

ud = −δ sign(e2), (26)
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Fig. 1. Trajectories of the Arneodo system (a) and the canonical projection (b).

−4 −2 0 2 4

−10

0

10

−2

0

2

4

 x
1d

 x
2d

 x
3d

−4 −2 0 2 4
−10

−5

0

5

10

 x
1d

 x
2d

(a) (b)

Fig. 2. Trajectories of the Chua system (a) and the canonical projection (b).

we get

e2(d(t) + ud) = e2(d(t) − δ sign(e2))

= −|e2|[δ + sign(e2)d(t)] ≤ 0.
(27)

The control ud is singular if e2 = 0; hence chattering can
be expected. To obtain Lyapunov stability, it is sufficient
to apply the regular adaptive law

d

dt
θ̂ = Γφ(eTP

[
0
1

]
) (28)

which, together with the control ud, provides

V̇ = −1

2
eTQe. (29)

From the LaSalle–Yoshizawa theorem (Krstic et al.,
1995; Khalil, 2015) it follows that all trajectories are
globally bounded and e → 0.

4. Adaptive backstepping control

Adaptive backstepping is a systematic, recursive design
procedure. The design process is conducted step by step,
and each stage concerns a one-dimensional system. For
the first step, the tracking error

z1 = e1 = x1 − x1d (30)

is considered. The motion of e1 is given by

ż1 = ẋ1 − ẋ1d = x2 − x2d. (31)

Let α denote the desired value of the “virtual control” x2

to be defined. The change of coordinates

z2 = x2 − α (32)

yields
ż1 = z2 + α− x2d. (33)

Therefore, selecting
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Fig. 3. Trajectories of the Duffing oscillator.

α = −K1z1 + x2d, (34)

where K1 > 0 is the design parameter, results in

ż1 = z2 −K1z1, (35)

so it stabilizes the system if z2 → 0. The dynamics of z2
are given by

ż2 = θTφ+ d(t) + u− α̇, (36)

where θ and φ are defined in (4) and (5).
The second step of adaptive backstepping requires

calculation of the derivative of the stabilizing function α̇.
The way of obtaining such a derivative depends on the
availability of state variables of the master system.

4.1. Available state variables of the drive system.
The derivative α̇ is known and available for the control
system as

α̇ = −K1ż1 + ẋ2d = −K1(x2 − x2d) + ẋ2d. (37)

The proposed control law is

u = −θ̂Tφ+ α̇−K2z2 − z1 + ud, (38)

where K2 > 0 is the design parameter and ud is an
additional control component to be designed later. The
application of control (38) yields

ż2 = θ̃Tφ+ d(t)−K2z2 − z1 + ud. (39)

The Lyapunov function

V (z1, z2, θ̃) =
1

2
(z21 + z22 + θ̃TΓ−1θ̃), (40)

with a positive-definite matrix Γ, is applied to derive the

adaptive law. The derivative of the Lyapunov function is

V̇ =z1(z2 −K1z1) + z2(θ̃
Tφ+ d(t)

−K2z2 − z1 + ud)− θ̃TΓ−1 d

dt
θ̂

=−K1z
2
1 −K2z

2
2 + z2(d(t) + ud)

+ θ̃T (z2φ− Γ−1 d

dt
θ̂).

(41)

If the additional control is not applied (ud = 0), then a
robust adaptive law must be used. In much the same way
as in (18), the so called e-σ-modification is applied, i.e.,

d

dt
θ̂ = Γ{z2φ− ‖z‖σθ̂}, (42)

where σ > 0 is the design parameter and zT =
[
z1 z2

]
.

The adaptive law yields

V̇ = −K1z
2
1 −K2z

2
2 + z2d(t) + ‖z‖σθ̃T θ̂. (43)

Making use of the inequalities

z2d(t) ≤ |z2| δ ≤ ‖z‖ δ, (44)

θ̃T θ̂ =
1

2

[
−‖θ̃‖2 + ‖θ‖2 − ‖θ̂‖2

]
, (45)

−K1z
2
1 −K2z

2
2 ≤ −K ‖z‖2 , (46)

K = min {K1,K2}, leads to

V̇ ≤ −‖z‖
{
K ‖z‖ − δ +

1

2
σ‖θ̃‖2 − 1

2
σ ‖θ‖2

}
. (47)

Therefore, V̇ < 0 if K ‖z‖− δ+ 1
2σ‖θ̃‖2− 1

2σ ‖θ‖2 > 0.
The derivative of the Lyapunov function is negative

outside the set

‖z‖ ≤ 1

K

(
δ +

1

2
σ ‖θ‖2

)
(48)

irrespective of ‖θ̃‖, and for

‖θ̃‖2 >
2

σ

(
δ +

1

2
σ ‖θ‖2

)
(49)

irrespective of‖z‖.
It follows (similarly to (24) and (25)) from the

previously cited theorem due to LaSalle and Leftschetz,
that the trajectories z and θ̃ are uniformly, ultimately
bounded (UUB) and the design parameter K can be used
to reduce the size of the limit set for z.

If we decide to cope with the disturbance d(t)
directly, an additional control term, such that z2(d(t)+ud)
is negative, must be applied. One can select

ud = −δ sign(z2) (50)
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to get

z2(d(t) + ud) = z2(d(t) − δsign(z2))

= −|z2|[δ + sign(z2)d(t)] ≤ 0.
(51)

The control ud is singular if z2 = 0, so chattering can be
expected. If the control ud is applied, the regular adaptive
law

d

dt
θ̂ = Γz2φ (52)

provides
V̇ ≤ −K1z

2
1 −K2z

2
2 . (53)

From the LaSalle–Yoshizawa theorem it follows that all
trajectories are globally uniformly bounded and z → 0.

4.2. Unavailable state variables of the drive system.
If only the first two state variables of the drive system are
available, a filter is used to calculate the derivative α̇ of
α = −K1z1 + x2d. The first-order filter

β̇ = −Ω(β − α) (54)

with the state variable β and the design parameter Ω > 0
assures that, when the filter transient is over, β ≈ α, and
hence α̇ ≈ −Ω(β − α). It is well known that, if |α̇| <
c < ∞ and β(0) = α(0), then for all t > 0 we have
|β(t) − α(t) ≤ c/Ω. Therefore, if ρ(t) := β(t) − α(t), it
can be assumed that, for some ε > 0,

|ρ| ≤ ε, ∀t > 0. (55)

Define

z2f := x2 − β = x2 − α+ α− β = z2 − ρ. (56)

This leads to

ż1 = z2f + ρ−K1z1. (57)

The dynamics of the “filtered error” z2f are described by

ż2f = ẋ2 − ˙(β) = θTφ+ d(t) + u+Ω(β − α), (58)

so the control

u = −θ̂φ− Ω(β − α)−K2z2f − z1 + ud (59)

implies

ż2f = θ̃Tφ+ d(t)−K2zef − z1 + ud. (60)

In this case, the Lyapunov function is

V (z1, z2f , θ̃) =
1

2
(z21 + z22f + θ̃TΓ−1θ̃). (61)

The derivative of the Lyapunov function is

V̇ = z1(z2f + ρ−K1z1)

+ z2f

(
θ̃Tφ+ d(t)−K2zef − z1 + ud

)

− θ̃TΓ−1 d

dt
θ̂

= −K1z
2
1 −K2z

2
2f + z1ρ+ z2f (d(t) + ud)

+ θ̃T
(
z2φ− Γ−1 d

dt
θ̂

)
.

(62)

The “disturbance” ρ(t) is not matched, so the control ud

is not able to compensate the component z1ρ. Therefore,
ud = 0 and the following robust adaptive law is
considered:

d

dt
θ̂ = Γ{z2fφ− ‖zf‖ σθ̂}, (63)

where σ > 0 is a design parameter and zTf =
[
z1 z2f

]
.

The selected adaptive law yields

V̇ = −K1z
2
1−K2z

2
2f+z1ρ+z2fd(t)+‖zf‖ σθ̃T θ̂. (64)

The inequality (45) and

z1ρ+ z2fd(t) ≤ |e1|ε+ |z2f |δ
≤ ‖zf‖μ, μ = max{ε, δ} (65)

allow us to write

V̇ ≤ −‖zf‖
{
K ‖zf‖ − μ+

1

2
σ‖θ̃‖2 − 1

2
σ ‖θ‖2

}
,

(66)
where K = min{K1,K2}. In much the same way,
from the cited theorem due to LaSalle and Leftschetz it
follows that the trajectories zf , θ̃ are uniformly, ultimately
bounded (UUB) and the design parameter can be used to
reduce the size of the limit set for zf .

Of course, the application of the additional control
component

ud = −δ sign(z2f ) (67)

compensates the term z2f (d(t) + ud) and thus helps us to
stabilize the system, but in this case the robust adaptive
law is obligatory because of the component z1ρ in the
Lyapunov function derivative V̇ .

5. Comparison of the proposed controllers

All presented controllers were compared operating with
the Duffing oscillator as the response (slave) system and
the Arneodo and Chua systems as the drive (master)
system—all of them were presented in Section 2.
The initial conditions for the adaptive parameters were
selected 20% higher or lower than the real values. The
disturbance was d(t) = cos(2ωt).



Synchronization of an uncertain Duffing oscillator with higher order chaotic systems 631

0 10 20
0

2

4

6

8

time [s]

N
or

m
 o

f 
e

90 95 100
0

0.02

0.04

0.06

0.08

time [s]

N
or

m
 o

f 
e

0 10 20
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

N
or

m
 o

f 
e

90 95 100
0

0.002

0.004

0.006

0.008

0.01

0.012

time [s]

N
or

m
 o

f 
e

(a) (b)

Fig. 4. Norm of the tracking error ‖e‖ while following the Arneodo system (a) and the Chua system (b), without the disturbance:
d(t) = 0, σ = 0, ud = 0. The adaptive controller—a solid line, the backstepping controller—a dashed line.
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Fig. 5. Norm of the tracking error ‖e‖ while following the Arneodo system (a) and the Chua system (b); the disturbance is active and
only the robust adaptive law is used for compensation: d(t) �= 0, σ = 0, ud = 0. The adaptive controller—a solid line, the
backstepping controller—a dashed line.

Parameters a1 and a2 of the adaptive controller were
selected to place the eigenvalues of matrix A at s1 =
−5, s2 = −5. The remaining parameters of this controller
were Q = 5I(2),Γ = 10I(4), with I(n) being the
n-dimensional identity matrix.

Parameters of the backstepping controller were
selected to obtain comparable dynamics. Therefore,
parameters K1,K2 were chosen to place the eigenvalues
of the matrix [−K1 1

−1 −K2
] (which describes the linear part

of the error dynamics) in the same positions as in the
case of the adaptive controller: s1 = −5, s2 = −5.
To get approximately the same speed of adaptation, the
adaptive law weights are reduced: Γ = I(4), and the
robust adaptive law was applied with σ = 0.1. The filter
parameter is Ω = 300.

The comparison of the adaptive controller and
the backstepping one is presented in Figs. 4–6. The
same controller was applied to synchronize the Duffing
oscillator with the Arneodo and Chua systems. Both
the controllers are almost equivalent. The backstepping
controller offers a slightly faster response during the initial
period of time and slightly smaller steady-state errors.
Both controllers offer fast tracking and are able to keep a
small tracking error forever. The adaptive controller from
Section 3 operates directly on the tracking error e, while
the backstepping controller, described in Section 4.1,
utilizes the error z, which is a linear transformation of e.
Tuning the backstepping controller is more “informative”
and straightforward, as the roles of each design parameters
are clearly visible.
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Fig. 6. Norm of the tracking error ‖e‖ while following the Arneodo system (a) and the Chua system (b) with the disturbance compen-
sated by the robust control law: d(t) �= 0, σ = 0, ud �= 0. The adaptive controller—a solid line, the backstepping controller—a
dashed line.
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Fig. 7. Norm of the tracking error ‖e‖ while following the Arneodo system (a) and the Chua system (b) with disturbance—a dashed
line and without disturbance—a solid line. The adaptive backstepping controller described in Section 4.2.

The effects of the controller presented in Section 4.2
are demonstrated in Fig. 7. In spite of the unavailable
derivative ẋ2d, the closed-loop system is able to track
the Arneodo or Chua system trajectories with sufficient
accuracy. Of course, the use of the filter results in higher
errors than in the case of known state variables. Finally,
the trajectories of the response and the drive system,
for the worst case observed during the experiments, are
presented in Fig. 8.

6. Conclusions

All the presented controllers were able to synchronize
an uncertain Duffing oscillator with a canonical-plane
projection of a higher order chaotic system. The same

controller can be used with different drive (master)
systems—it was tested with the Arneodo and Chua ones.
It is not required to know the drive system parameters, and
only approximate values of the parameters of the Duffing
oscillator are necessary to propose starting values of the
adaptive parameters. The closed-loop system performs
well in the presence of an unstructured and bounded
disturbance. The application of the switching control
component compensating the disturbance is evidently
beneficial, although the chattering of the control signal is
possible. Any standard smooth approximation of the sign
function may be used to eliminate the chattering.

The same adaptive techniques (as presented
here) may be used to synchronize a chaotic Duffing
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Fig. 8. Trajectory of the Duffing oscillator (solid) following the drive system (dotted): the Arneodo system (a) and the Chua system
(b). The worst case observed.

oscillator with a stable limit cycle (chaos suppression)
or a non-chaotic oscillator with a chaotic system
(chaotification) (Kabziński, 2010). The state constraints
may also be taken into account, as done by Kabziński
(2016).
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