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The purpose of this study is to apply the distribution function formalism to the problem of electronic transport in open
systems, and to numerically solve the kinetic equation with a dissipation term. This term is modeled within the relaxation
time approximation and contains two parts, corresponding to elastic or inelastic processes. The collision operator is ap-
proximated as a sum of the semi-classical energy dissipation term and the momentum relaxation term, which randomizes
the momentum but does not change the energy. As a result, the distribution of charge carriers changes due to the dissipa-
tion processes, which has a profound impact on the electronic transport through the simulated region discussed in terms of
the current–voltage characteristics and their modification caused by the scattering. Measurements of the current–voltage
characteristics for titanium dioxide thin layers are also presented, and compared with the results of numerical calculations.
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1. Introduction

Transport processes pose a wide variety of problems
which are interesting for fundamental research in different
branches of physics and engineering. Particularly, a
lot of attention is devoted to electronic transport in
solid state systems because they are used as elements
of common electronic devices that are subject to
progressive miniaturization. Simultaneously, more and
more functionality of these devices is expected. These
needs stimulate the search for new materials, as well as the
development of theoretical and computational techniques
or simulations for exploring transport phenomena of
particular relevance in these systems.

A full theoretical description of electronic transport
in the systems considered should be based on the methods
of non-equilibrium statistical mechanics, but such
description is an extremely complicated problem (Fujita,
1966; Danielewicz, 1984; Rammer, 2007; Schieve and
Horwitz, 2009). Therefore, some physical assumptions
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and approximations are usually applied to simplify this
issue (Di Ventra, 2008; Ferry et al., 2009). One of the
most common assumptions is to treat the studied system
as an active element of the device connected to large
electrodes, which play the role of reservoirs of charge
and heat. Each of these electrodes is characterized by its
own equilibrium distribution function in the Fermi–Dirac
form that is specified through the temperature and the
chemical potential. For a fixed temperature, the difference
between the chemical potentials associated with reservoirs
is proportional to the bias voltage which produces the
electric field across the studied system and the current of
electrons flowing through the system is generated. The
real structure of the system can be defected or can contain
dopants; moreover, a collective thermal vibration of ions
generates phonons which interact with the conduction
electrons.

All these factors have a significant impact on the
electronic transport, and separation of contributions from
the different scattering mechanisms is the first step to
understand the transport properties of the system. In many
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interesting cases, it is difficult to find some analytical
solution for the transport problem considered in solid
state nanostructures. Hence, great effort is focused
on numerical solutions. For example, considerable
attention has been devoted to improving the numerical
methods of solving the classical as well as the quantum
kinetic equation. Efficient numerical schemes based
on non-uniform meshes are developed for deterministic
discretization method (Kim, 2007; Costolanski and
Kelley, 2010; Kim and Kim, 2015; Schulz and Mahmood,
2016) or techniques based on the fast Fourier transform
via the split-operator method. (Gómez et al., 2014;
Spisak et al., 2015; Cabrera et al., 2015; Thomann
and Borz, 2017). Besides, stochastic methods based
on different variants of the Monte Carlo techniques are
available (Jacoboni et al., 2001; Nedjalkov et al., 2004;
Querlioz and Dollfus, 2010; Muscato and Wagner, 2016).
On the other hand, numerical solutions for the Boltzmann
equation are well established and documented (Nedjalkov
and Vitanov, 1989; Nedjalkov et al., 2013; Hong et al.,
2011; Hong and Jang, 2018; Jacoboni et al., 1988;
Chatterjee et al., 2014; Sellier et al., 2014; Sellier and
Dimov, 2014; Ben Abdallah et al., 1996).

The aim of this paper is to study the influence
of scattering processes of carriers in a highly defected
semiconductor device on its transport characteristics. In
such systems, the momentum of the carriers is randomized
due to scattering processes and their energy can be
changed as a result of interaction with phonons. For this
reason we solve the kinetic equation with a dissipation
term modeled with the relaxation time approximation.
Within this approximation we take into account that the
dissipation term consists of two parts. One describes the
momentum relaxation due to elastic scattering, and the
other describes the momentum and energy relaxation due
to inelastic scattering processes.

The paper is organized as follows. In Section 2
we present the derivation of the kinetic equation for the
distribution function, starting from the modified form of
the von Neumann equation for the density operator. The
intermediate step for deriving the kinematic equation is
based on the Weyl transform and the Wigner function.
Therefore, we briefly present selected properties of the
Wigner function, which is usually interpreted as the
quasi-distribution function. It is closely related to
the classical distribution function through the averaging
procedure, which destroys the quantum interference.
Further, we discuss different approximations which are
usually made for simplification of full quantum theory
of electronic transport. Section 3 contains a model of
the semiconductor defected system and the discussion
of the numerical method that is used to solve the
presented problem. In turn, in Section 4 we present the
results of numerical calculations and measurements which
support our theoretical analysis of transport properties

of the model system. The measurements of transport
characteristics of films made of titanium dioxide, i.e.,
the current–voltage characteristics, are performed at room
temperature. In addition, a discussion of the obtained
theoretical as well as experimental results is included
here. This report is concluded in Section 5, where we
summarize the presented results.

2. Theory

It is widely recognized that the starting point for quantum
theory of electronic transport in solid-state systems is the
von Neumann equation (e.g., Kohn and Luttinger, 1957;
Luttinger and Kohn, 1958),

i�
dρ̂(t)

dt
=

[
Ĥ0, ρ̂(t)

]
, (1)

where Ĥ0 is the one-particle Hamiltonian of the
unperturbed system in the form

Ĥ0 = p̂2/2m+ U(x̂); (2)

here p̂ denotes the momentum operator and U(x̂) is the
potential energy operator of carriers with the effective
mass m. In turn, ρ̂(t) is the one-particle density operator
defined by the formula (Ter Haar, 1961)

ρ̂(t) =
∑
n

pn |φn(t)〉 〈φn(t)| , (3)

where pn corresponds the probability of finding the
system in the pure state |φn(t)〉. The density operator can
be characterized by its own matrix elements which form
the density matrix. For example, the density operator in
the position representation is

ρ(ξ, ξ′) = 〈ξ| ρ̂(t) |ξ′〉 . (4)

The diagonal elements of the density matrix
represent the electron’s density whereas its off-diagonal
elements are responsible for the phase correlations
of electrons. Let us note that the application of
the von Neumann equation to the description of the
conduction electrons dynamics in the systems considered
is equivalent to the assumption that the electronic
transport is coherent, i.e., quantum interference becomes
an important ingredient of the dynamical process
description. On the other hand, this coherent dynamics
of conduction electrons are often perturbed by different
kinds of uncontrollable interactions which destroy the
phase coherence of the carriers. One of the examples
of this situation in real systems is the interaction of the
carriers gas with the phonon gas. In such a case, one
can observe the transfer of energy or momentum between
these subsystems. This transfer is expressed in terms of
an inelastic or elastic scattering ratio, depending on the
responsible physical mechanism.
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In fact, this is a statistical process which introduces
some kind of irreversibility to the system, resulting in
dissipation. These considerations lead to the conclusion
that Eqn. (1) should contain an additional term which
introduces dissipation. On this basis, the von Neumann
equation is transformed to the form

i�
dρ̂(t)

dt
=

[
Ĥ0, ρ̂(t)

]
+ D̂ [ρ̂(t)] , (5)

where the operator D̂ [ρ̂(t)] represents the dissipative
term. The form of this term is a matter of wide
dispute, and several discussions have been reported for
this approach (e.g., Chruściński and Pascazio, 2017).

The phase space representation of Eqn. (5) can be
derived in two steps. First of all, we write Eqn. (5) in the
position representation [ξ − ξ′], namely,

∂

∂t
ρ(ξ′, ξ, t)

= − �

2mi

(
∂2

∂ξ′2
− ∂2

∂ξ2

)
ρ(ξ′, ξ, t)

+
1

i�
[U(ξ′)− U(ξ)]ρ(ξ′, ξ, t) + 〈ξ′| D̂ [ρ̂(t)] |ξ〉 .

(6)

Then we introduce an auxiliary position representation
[x − X ] using the canonical variables transformation in
the form {

x = 1
2 (ξ

′ + ξ),

X = ξ′ − ξ.
(7)

New variables x and X are introduced as the
center-of-mass and relative position coordinates,
respectively. Straightforward application of the
coordinate transformation given by Eqn. (7) to Eqn. (6)
leads to the following form of the equation of motion for
the density matrix:

∂

∂t
ρ

(
x+

1

2
X, x− 1

2
X, t

)

= − �

mi

∂2

∂x∂X
ρ

(
x+

1

2
X, x− 1

2
X, t

)

+
1

i�

[
U

(
x+

1

2
X

)
− U

(
x− 1

2
X

)]

× ρ

(
x+

1

2
X, x− 1

2
X, t

)

+

〈
x+

1

2
X

∣∣∣∣ D̂ [ρ̂(t)]

∣∣∣∣x− 1

2
X

〉
. (8)

The mixed position-momentum representation [x−p]
is obtained by the application of the Fourier transform

g(X) =
1

2π�

∫
dp g(p) exp

[
i

�
pX

]
, (9a)

g(p) =

∫
dX g(X) exp

[
− i

�
pX

]
(9b)

to Eqn. (8), and the definition of the Wigner
function (Wigner, 1932; Tatarskiı̆, 1983; Lee, 1995;
Schleich, 2001),

�(x, p, t)

=
1

2π�

∫
dX ρ

(
x+

X

2
, x− X

2
, t

)

× exp

[
− ipX

�

]
. (10)

This is a special form of the inverse Weyl transform (Leaf,
1968). The Wigner function plays a similar role as the
distribution function in the classical statistical mechanics,
in the sense that the WDF can be used to calculate the
expectation value of any dynamical variable as follows:

〈A(t)〉 =
∫

dxdp AW (p, x)�(x, p; t), (11)

where AW (p, x) is the Weyl symbol of the
quantum-mechanical operator of a dynamical variable Â
in the position representation,

AW (p, x) =

∫
dX

〈
x+

X

2

∣∣∣∣ Â(p̂, x̂)
∣∣∣∣x− X

2

〉

× exp

[
− ipX

�

]
. (12)

Furthermore, the Wigner function is a real and
normalized function,

∫
dx �(x, p; t) = 1, (13)

and its marginals

n(x, t) =

∫
dp �(x, p; t) (14)

and

η(p, t) = 2π�

∫
dx �(x, p; t) (15)

are interpreted as position and momentum distributions,
respectively. The Wigner function cannot take on
arbitrarily large values, i.e., there exists an upper bound
for this function in the form

|�(x, p; t)| = 1

π�
. (16)

There is another interesting property of the Wigner
function, namely, it can take on negative values in some
region of the phase space. This property makes it
impossible to interpret the Wigner function as a classical
probability distribution. From the physical standpoint this
is evident because the position and momentum cannot
have simultaneously defined values, due to the uncertainty
principle. Nevertheless, the negative values of the Wigner



430 K. Kulinowski et al.

function are a hallmark of non-classical properties of the
state which is represented by the function. The classical
limit of the Wigner function should be consistent with the
classical distribution function f(x, p, t). This expectation
can be realized owing to the averaging procedure of the
Wigner function over the phase-space area ΔxΔp larger
than the elementary quantum cell 2π�. This guarantees
that the quantum interference effects which are coded
in the negative part of the Wigner function vanish and
the corresponding function is always non-negative in the
phase space. In this sense the expression

∫

ΔxΔp

dxdp �(x, p, t)

=

∫

ΔxΔp

dxdp f(x, p, t) + O

[(
2π�

ΔxΔp

)2
]

(17)

illustrates the fact that the Wigner function in the classical
limit ΔxΔp � 2π� can be regarded as the classical
distribution function.

Returning to the kinetic equation, we can express the
equation of motion corresponding to Eqn. (8) in the mixed
representation as follows:

∂�(x, p, t)

∂t
+

p

m

∂�(x, p, t)

∂x

=
1

�2

∫
dp′ W (x, p− p′)�(x, p′, t)

+DW [�(x, p, t)] , (18)

where DW [�(x, p, t)] is the Weyl symbol of the
dissipation term and the integral kernelW (x, p−p′) is the
so-called Wigner potential. Its explicit form for a given
potential energy U(x) is given by the formula

W (x, p− p′)

=
1

2πi

∫
dX

[
U

(
x+

X

2

)
− U

(
x− X

2

)]

× exp

[
− i(p− p′)X

�

]
. (19)

The Wigner potential is a real-valued function,
anti-symmetric with respect to the momentum. We note
that the potential at the point x is defined by the Fourier
transform of the central difference of the potential energy
around x. In fact, this means that the Wigner potential
represents the non-local potential which incorporates the
quantum-mechanical effects such as quantum interference
into the dynamics of the Wigner function, making it
negative in some regions of the phase space. Assuming
that the potential energy is a slowly varying function
in the real space, we can develop the potential energy
U(x±X/2) into the power series around x up to the linear

order,

U

(
x± 1

2
X

)
≈ U(x) ± 1

2

d

dx
U(x)X, (20)

which is equivalent to the gradient approximation (Mahan,
2000; Di Ventra, 2008). This kind of approximation
is consistent with the general request that the kinetic
equation for the classical distribution function should
take into account only the slow component of the spatial
variations due to the perturbation while its fast component
should be eliminated by an adequate procedure (Mahan,
2000). Using this result for the energy potential difference
appearing in Eqn. (19), we obtain

U

(
x+

1

2
X

)
− U

(
x− 1

2
X

)
≈ d

dx
U(x)X. (21)

Hence, the Wigner potential takes on the form

W (x, p− p′) =
1

2πi

∫
dX

d

dx
U(x)Xe−i/�(p−p′)X .

(22)
One might notice that

1

i
Xe−i/�(p−p′)X = �

∂

∂p

[
e−i/�(p−p′)X

]
, (23)

and after some manipulations the Wigner potential can be
written in the form

W (x, p− p′) = �
d

dx
U(x)

∂

∂p
[δ(p− p′)]. (24)

This form of the non-local Wigner potential is then
substituted into the first term on the right-hand side of
Eqn. (18), i.e., into the so-called drift-term, which in the
classical limit can be identified as a classical force. As a
result, we obtain

1

�2

∫
dp′�(x, p′, t)W (x, p− p′)

≈ 1

�2

∫
dp′�(x, p′, t)�2

d

dx
U(x)

∂

∂p
[δ(p− p′)]

=
d

dx
U(x)

∂

∂p

[∫
dp′�(x, p′, t)δ(p− p′)

]

=
d

dx
U(x)

∂

∂p
�(x, p, t). (25)

The resulting formula has exactly the same form as the
driving term in the Liouville equation, i.e., the factor

− d

dx
U(x) = F (x) (26)

can be interpreted as a force in classical mechanics.
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3. Model and the method of calculation

We consider a model of thin film which is connected to
the source and drain electrodes as shown in Fig. 1. We
assume that the simulation domain of the nanosystem,
which includes the whole region of the thin film between
the electrodes, is structurally defected, so that it can be
described as a disordered system within the Gaussian
model (Lifshits et al., 1987). This means that the
average disorder potential is equal to zero, and the second
cumulant of the potential is a function of the relative
position of x and x′, i.e.,

〈U(x)〉 = 0 and 〈U(x)U(x′)〉 = K(x− x′), (27)

where the symbol 〈 · 〉 stands for the space average, and
K(x−x′) is the potential correlator which corresponds to
a macroscopically homogeneous and isotropic system.

As stems from Eqn. (21), the central difference of the
energy potentials is proportional to the gradient. Using
this gradient approximation, we can write the drift term in
the classical limit as follows:

1

�2

∫
dp′ W (x, p− p′)�(x, p′, t) ≈ dU(x)

dx

∂

∂p
f(x, p, t).

(28)

Therefore, the classical limit of the Wigner equation (18)
takes on the Boltzmann-like form, namely,

∂f(x, p, t)

∂t
+

p

m

∂f(x, p, t)

∂x

− ∂U(x)

∂x

∂f(x, p, t)

∂p
= DW [f(x, p, t)] . (29)

The Weyl symbol of the dissipation term, DW [f(x, p, t)],
is still a difficult issue, because its explicit form is
unknown, although some results for the Caldeira–Leggett
model (Caldeira and Leggett, 1981) were already
discussed (Zurek, 2003).

In this report, we consider the stationary solution
f(x, p) of Eqn. (29) in the limit of a slowly-varying
potential. For this purpose we apply the simplest model
for the dissipation term which is known as the relaxation
time approximation (Di Ventra, 2008; Ferry et al., 2009).
In accordance with the work of Jonasson and Knezevic
(2015), we choose this term to be approximately equal,

DW [f(x, p)] ≈ −γR [f(x, p)− feq(p)]

−γM [f(x, p)− f(x,−p)] , (30)

where γR and γM are the strengths of inelastic and elastic
scattering, respectively, and feq(p) is the equilibrium
distribution function.

The first term on the right-hand side of Eqn. (30)
describes relaxation processes in which the momentum
as well as energy are changed during the scattering. In

Fig. 1. Scheme of the thin film of length L = 60 nm (simula-
tion domain) which is characterized by the rate of inelas-
tic and elastic scattering processes, γR and γM , respec-
tively, and connected to the source (left) and drain (right)
electrodes.

turn, the second term describes situations in which only
the carrier’s momentum is changed, whereas the energy is
conserved. Taking into account all the above assumptions,
we can finally write the kinetic equation in the following
form:

p

m

∂f(x, p)

∂x
= −γR [f(x, p)− feq(p)]

−γM [f(x, p)− f(x,−p)] . (31)

This equation is solved numerically with the boundary
condition which assumes that the states of conduction
electrons inflowing to the nanosystem depend on the states
of the charge reservoirs as follows (Frensley, 1990):

f(0, p)
∣∣
p>0

= fL(E(p)) ,

f(L, p)
∣∣
p<0

= fR(E(p)) , (32)

where fL(R)(E(k)) are the supply functions for the
left (L) and right (R) contact in the form

fL(R)(E(k))

=
m

π�2β
ln

{
exp

[
−
(
�
2k2

2m
− μ

L(R)
F

)
β

]
+ 1

}
,

(33)

p = �k, β = 1/kBT , kB being the Boltzmann constant

and T the temperature, while μ
L(R)
F is the Fermi level in

the left (right) contact and μL
F = μR

F + eVB , where VB is
the applied bias voltage.

Solving the kinetic equation in the form given
by Eqn. (31) with the boundary condition (32) allows
determining the distribution function for a given value
of the employed bias voltage VB . Then the electronic
current, I , as a function of the bias voltage, is calculated
in accordance with the formula

I(VB) =
e

2π�L

∫
dx

∫
dp

p

m
f(x, p;VB). (34)
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Fig. 2. Discretization scheme for the kinetic equation. Closed
circles correspond to the sites at which the fixed bound-
ary condition based on the supply function is applied.

Fig. 3. Illustration of the convergence of the self-consistent pro-
cedure used for solving the kinetic equation, in terms
of the relative change of the current value between the
consecutive iterations, calculated for VB = 0.2 V and
γM = 1012, 5 · 1012, 1013 s−1 (a), γM = 5 · 1012 s−1

and VB = 0.1, 0.2, 0.4 V (b). In both cases, γR = 0.

The kinetic equation (31) is solved numerically using
the implicit Euler method, with all the following equations

written in the atomic units (a.u.) for which it is assumed
that

� = e = me = 1, (35)

and therefore p = k. The phase space is discretized into
Nx×Nk cells, each of them having volume ΔxΔk, where

Δx =
L

Nx
, Δk =

2kmax

Nk
. (36)

In the first step, this procedure requires substituting
the derivatives of the distribution function with their
three-point discrete approximations resulting from the
finite difference method,

d

dx
f(x, k) ≈ 1

2Δx
(−3fi,j + 4fi+1,j − fi+2,j)

for kj > 0, (37)

d

dx
f(x, k) ≈ 1

2Δx
(3fi,j − 4fi−1,j + fi−2,j)

for kj < 0, (38)

where fi,j = f(xi, kj) with
{
xi = iΔx, i = 0, . . . , Nx − 1,

kj =
(
j − Nk−1

2

)
Δk, j = 0, . . . , Nk − 1.

(39)

It should be noted that the above equations take
the asymmetric form, which is a result of the assumed
boundary condition, i.e., the right-hand or the left-hand
form is chosen depending on the sign of k since the
boundary condition is defined at x = 0 for k > 0 and at
x = L for k < 0. Additionally, Nk must be even, so that
the mesh points are defined only for positive or negative
values of k, and k = 0 is omitted as shown in Fig. 2. This
also means that, if fi,j corresponds to a certain f(x, k),
then fi,Nk−j−1 corresponds to f(x,−k). As a result, we
obtain the following equations,

fi,j

=
4fi−1,j − fi−2,j + 2mΔx

�kj
(γRf

eq
j + γMfi,Nk−j−1)

3 + 2mΔx

�kj
(γR + γM )

for kj > 0, (40)

fi,j

=
4fi+1,j − fi+2,j − 2mΔx

�kj
(γRf

eq
j + γMfi,Nk−j−1)

3− 2mΔx

�kj
(γR + γM )

,

for kj < 0. (41)

They are solved recursively, assuming that fi,Nk−j−1 is
initially equal to the value of the equilibrium distribution
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function, feq
Nk−j−1. After finding the values of the

distribution function at all sites, the whole procedure is
repeated in the self-consistent manner until the solution
converges, which is verified in terms of the relative change
of the current value calculated at the consecutive steps
n− 1 and n,

ΔI(n) = |I(n)− I(n− 1)|, (42)

with ΔI(n)/I(n) required to be less than 10−5. Typically
no more than 20 steps are needed for the solution to
converge, as illustrated in Fig. 3.

4. Results and a discussion

The numerical calculations were performed for a system
of length L = 60 nm and at temperature T = 10 K. The
Fermi level at the right contact was assumed to be equal
to μR

F = 0.08 eV. All calculations were conducted on a
computational grid of size Nx × Nk with Nx = 60 and
Nk = 60, while Δx = 1 nm and Δk = 0.04 nm−1.

The scattering rate provides us with information
how frequently electrons participate in the elastic or
inelastic scattering processes. The higher scattering
rate results therefore in higher resistance of the system,
which reduces the measured electronic current. This
dependence, calculated for the system considered, is
presented in Fig. 4, which shows how the current–voltage
characteristics of the simulated structure react to the
change of the scattering rates.

These results show that both types of scattering have
noticeable impact on the current, while the influence of
elastic scattering is clearly stronger. This kind of transport
characteristics can be observed in defected semiconductor
thin films at higher temperatures. One of the examples
of such materials is titanium dioxide, which belongs to
a class of wide-band gap insulators. The progressive
transition from an insulator to semiconductor can be
accomplished by introduction of point defects which are
responsible for semiconducting properties of TiO2−x. In
an atmosphere of low oxygen activity, titanium dioxide
becomes an oxygen-deficient semiconductor due to the
electronic disorder related to nonstoichiometry x: TiO2

↔ x/2O2+TiO2−x. The point defects proposed in the
literature are oxygen vacancies, titanium interstitials or
a combinations of these. All of them form shallow
donor levels (Stashans et al., 1996; Nowotny et al., 1997;
Bak et al., 2006). Their ionization provides electrons
to conduction band necessary for electrical conduction,
which can be observed even at room temperature for
nonstoichiometric TiO2−x. Figure 5 displays results of
current–voltage characteristics measurements for TiO2 at
T = 300 K and different intensity ratios I/I0.

The nonstoichiometric TiO2−x thin films were
deposited by dc-pulsed magnetron sputtering from a
metallic Ti target in the reactive Ar + O2 atmosphere with

Fig. 4. Current voltage characteristics for different inelastic
scattering rates dissipating energy (a) and various elas-
tic scattering rates responsible for momentum random-
ization (b).

0.0
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I/I0 = 0.16 d= 42 nm
I/I0 = 0.20 d= 47 nm
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T = 300 K

Fig. 5. Current–voltage characteristics measured for TiO2 at
different intensity ratios I/I0 and thin film thick-
nesses d.

optical control. The optical control system is based on
plasma emission and uses the relative ratio of the intensity
I/I0 of the Ti emission line as the parameter that controls
the departure from stoichiometry x in TiO2−x. The line
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(a)

(b)

(c)

Fig. 6. Normalized distribution function f(x, k) for γR = γM = 0 at the bias voltage VB = 0.2 V and VB = 0.4 V (a), γM = 0 s−1,
γR = 1012 s−1 and γR = 1013 s−1 at the bias voltage VB = 0.4 V (b), and γR = 0 s−1, γM = 1012 s−1 and γM = 1013 s−1

at the bias voltage VB = 0.4 V (c).

intensity I0 corresponds to pure metallic deposition mode
at 100% Ar. The intensity I of the Ti emission line at
λ = 500 nm at a given Ar +O2 reflects the oxidation state
of the titanium target. The increase in I/Io is followed
by an increasing departure from stoichiometry. Thin films
with a thickness of 40–80 nm were deposited onto ITO
glass at the substrate temperature 523 K. These results are
consistent with the present calculations. Defects in the
systems considered can be treated as the scattering centers
for conduction electrons. Because the number of defects
increases with the ratio of the intensity I/I0, the scattering
processes are more efficient and lead to the decrease of
the relaxation time, thereby the resistance of the thin layer
increases.

The source of this behavior is a big change in the

distribution function due to the dissipation processes.
Examples of the calculated distribution functions are
presented in Fig. 6, which shows the functions f(x, k)
that are solutions of the kinetic equation (31). Analysis
of those distribution functions clearly shows that larger
values of the current are related to bigger carrier density
in the upper half of the phase space, i.e., for k > 0.
When the non-zero scattering rates are introduced, the
distribution function for both types of scattering is mostly
affected for carriers with a positive momentum. For
inelastic scattering, the distribution function changes only
for k > 0, and its values decrease until reach the same
values as for k < 0, which are equal to the distribution
function in an equilibrium. For elastic scattering, values
of distribution function decrease for k > 0, and increase
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Fig. 7. Relative change of the current (solid lines) and differen-
tial resistance (dashed lines) due to the influence of the
dissipation processes calculated for different scattering
rates and the bias voltage VB = 0.4 V.

Fig. 8. Relative change of the current caused by different dissi-
pation processes calculated for different scattering rates
and the bias voltage VB = 0.4 V.

for k < 0, which causes a drop in the current bigger than
for inelastic scattering. As a result, the introduction of
scattering changes the value of the current, and modifies
the shape of the distribution function which changes in a
much smoother way around k = 0.

The influence of scattering processes on the
behaviour of the analyzed system can be also illustrated
by the relation between the scattering rate and the relative
difference between the current flowing in absence of
any dissipation processes and the current calculated in
presence of elastic or inelastic scattering. Figures 7 and 8
confirm that the relative change in the current due to the
dissipation processes depends on the type of scattering
which is taken into account. The relative change in
the current resulting from elastic scattering, presented in
Fig. 7, was calculated as ΔI(γM )/I(γM = 0), where
ΔI(γM ) = I(γM ) − I(γM = 0), with γR treated as a
constant and non-zero parameter different for each line in

Fig. 7. It shows that the increase in γM reduces the current
flowing through the system, but this change is noticeably
smaller if a larger value of γR is assumed. This impact of
γR on the change in the current indicates that it suppresses
the impact of γM on transport characteristics. Also the
differential resistance, Rd = dVB/dI , is sensitive to the
scattering, as shown for VB = 0.4 V in Fig. 7. Its
value increases linearly with increasing γM , and at all
points is slightly larger for greater γR. In Fig. 8 it is
shown that the relative current change due to inelastic
and elastic scattering is a nonlinear, increasing function
of the scattering rate equal up to approximately 30% for
γR = 1013 s−1, over 45% for γM = 1013 s−1 and over
55% for γR = γM = 1013 s−1.

5. Conclusions

We solved numerically the kinetic equation with the
dissipative term which is modeled by the relaxation
time approximation, with separate terms describing the
relaxation of the momentum and the relaxation of
the energy. The numerical solution of the kinetic
equation allowed us to find the distribution function.
We investigated the modification of the shape of this
function due to those two types of scattering. Owing
to the knowledge of the distribution functions, also
the electronic current was calculated as a function of
the bias voltage for different values of scattering rates
corresponding to the term which dissipates energy and to
the momentum-relaxation term. Our calculations show
that the current–voltage characteristics are considerably
modified by elastic and inelastic scattering, and the
results of the experiments which we performed for
defected semiconductor thin films exhibit the same shape
of the current–voltage characteristics as the numerical
results. Furthermore, the comparison of the experimental
data and the results of the calculations proves that the
changes in the intensity ratio and the film thickness have
similar impact on the current-voltage characteristics as
the elastic/inelastic scattering rates used in our theoretical
model.
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