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cFaculty of Information Technology
Polish-Japanese Academy of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland

This paper presents a novel approach to the design of explainable recommender systems. It is based on the Wang–Mendel al-
gorithm of fuzzy rule generation. A method for the learning and reduction of the fuzzy recommender is proposed along with
feature encoding. Three criteria, including the Akaike information criterion, are used for evaluating an optimal balance be-
tween recommender accuracy and interpretability. Simulation results verify the effectiveness of the presented recommender
system and illustrate its performance on the MovieLens 10M dataset.
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1. Introduction

In the literature, several types of recommender systems
have been presented (see, e.g., Lops et al., 2011; Wei
et al., 2017; Zhang et al., 2018), and the most popular
techniques are known under the names “content-based
filtering” and “collaborative filtering.”

In the case of content-based filtering, recommender
systems suggest to a user items (e.g., movies or books)
characterized by features similar to those ones that
the user preferred in the past. In this scenario,
recommendations are based on the content of a given item.
In collaborative filtering, items are recommended to a user
by similarities to other users (similar users’ preferences).
In that scenario, recommendations are based on other
users’ rates concerning the items and, e.g., the weighted
average of the rates.

Modern recommender systems are designed with the
use of machine learning algorithms. For an excellent
survey, a reader is referred to the work of Portugal et al.
(2018). The major drawback of the existing techniques
is the lack of explainability. In many applications,
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e.g., medical diagnosis or venture capital investment
recommendations, it is essential to explain the rationale
behind a specific recommendation. Motivated by this
fact, in this paper we propose a novel approach to design
explainable recommenders.

In order to create an explainable recommendation
system, fuzzy IF-THEN rules are employed to represent
knowledge about users’ preferences. Then, the inference
based on fuzzy logic is applied in the Mamdani fuzzy
system (see, e.g., Rutkowska, 2002) to produce the
recommendations. The method of fuzzy rule generation,
proposed by Wang and Mendel (1991), is now combined
with a technique of rule reduction. This approach
is enhanced by three criteria, including the Akaike
information criterion (see, e.g., Söderström and Stoica,
1989), which allow evaluating an optimal balance in terms
of the recommender’s accuracy and interpretability.

The explainability of the proposed recommender is
assured due to the following:

1. Interpretable fuzzy rules with fuzzy sets as linguistic
values of attributes describing items and users’
preferences (fuzzy sets with semantic meanings).
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2. Incorporation of rule weights into the fuzzy system.
The weights can be interpreted with regard to rule
importance.

3. The reduction of the fuzzy rules makes the rule
base simpler, and thus easier to produce explainable
recommenders.

It is worth emphasizing that this approach leads
to a moderate number of interpretable fuzzy rules and,
in consequence, greatly facilities the explanation of the
recommender system.

Moreover, the use of the Akaike information
criterion, as well as the final prediction error and the
Schwartz criterion (see Section 3.3), allows solving the
problem of the compromise between the system error and
the number of rules.

The presented approach greatly improves our
previous attempts (Rutkowski et al., 2018a; 2018b) to
the design of explainable recommender systems. The
paper is organized as follows. Section 2 presents a
short description of the Wang–Mendel rule generation
method for construction of the Mamdani system with rule
weighting factors. This is the background and our starting
point to develop explainable fuzzy recommenders. The
main part of this contribution is given in Section 3 by
describing the proposed method (Algorithm 1) and feature
encoding along with model evaluation criteria. Simulation
results illustrating the performance of the system are
described in Section 4. Finally, Section 5 contains the
main conclusions and remarks.

2. Interpretable fuzzy rules

In order to employ fuzzy IF-THEN rules in the
recommender system proposed in this paper, we recall
the idea of the Wang–Mendel algorithm (see Wang and
Mendel, 1991) for fuzzy rule generation.

It should be emphasized that the material which we
present below is perhaps the first mathematically precise
description of that method in the multidimensional case.
Now, we introduce the notation that will be useful in
describing a recommendation system and its features’
encoding (see Section 3.2).

We consider a fuzzy system with n inputs and one
output. Let x1, x2, . . . , xn and y be linguistic variables
corresponding to input and output variables, respectively,
of the fuzzy system.

The input vector x = [x1, x2, . . . , xn]
T in the space

X = X1 × X2 × · · · × Xn, as well as y ∈ Y , can
take crisp values, denoted as x = [x1, x2, . . . , xn]

T and
y, respectively; in this case, each universe of discourse
can be the space of real numbers.

With regard to fuzzy sets in fuzzy IF-THEN rules,
it should be noted that generally different numbers of
linguistic values (fuzzy sets) can be defined for particular

linguistic variables. Denote byNi the number of linguistic
fuzzy sets for xi, i = 1, 2, . . . , n, and by Ny the number
of fuzzy sets for y.

Assume that the input fuzzy sets, denoted by Ail,
are defined by membership functions μAil

(xi), i =
1, 2, . . . , n, and l = 1, 2, . . . , Ni, in the universes of
discourse X1, X2, . . . , Xn, and analogously the output
fuzzy sets, Bl, are defined by membership functions
μBl

(y), l = 1, 2, . . . , Ny , in Y .
We can assign linguistic values for the inputs and

output as follows:

x1 : A11, A12, . . . , A1N1 ,

x2 : A21, A22, . . . , A2N2 ,

...

xn : An1, An2, . . . , AnNn ,

y : B1, B2, . . . , BNy .

Suppose that we recorded M input-output data
pairs x(j), y(j), where j = 1, 2, . . . ,M , and x(j) =
[x1

(j), x2
(j), . . . , xn

(j)]T .
The task is to generate a set of fuzzy IF-THEN

rules from the input-output data. The first step of the
Wang–Mendel method is to divide the input and output
spaces into fuzzy regions. Then, in the second step, fuzzy
rules are generated from given data pairs. The number of
fuzzy regions refers to the numbers of linguistic values,
Ni, for i = 1, 2, . . . , n, and Ny .

Having M data pairs x(j), y(j), for j = 1, 2, . . . ,M ,
degrees of membership in different regions are
determined, and every data pair is put into the region of
maximal degree, according to the equations

μAj
i
(x

(j)
i ) = max

l=1,2,...,Ni

{
μAil

(xi
(j))

}
, (1)

for i = 1, 2, . . . , n, and

μBj (y(j)) = max
l=1,2,...,Ny

{
μBl

(y(j))
}
, (2)

Finally, we obtain one rule from one input-output
data pair. In this way, from the second step, we get M
fuzzy IF-THEN rules, Rj , for j = 1, 2, . . . ,M , of the
following form:

IF x1 is A
j
1 AND x2 is A

j
2 AND . . . AND xn is Aj

n

THEN y is Bj . (3)

This means that Aj
i , i = 1, 2, . . . , n, are the fuzzy

sets chosen from Ail, where l = 1, 2, . . . , Ni, which
satisfies Eqn. (1), while Bj equals the fuzzy set from Bl,
where l = 1, 2, . . . , Ny, which satisfies Eqn. (2).
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In the third step, a degree is assigned to each of the
M rules, with the use of (1) and (2), as follows:

D(Rj)

= μAj
1
(x

(j)
1 )μAj

2
(x

(j)
2 ) . . . μAj

n
(x(j)n )μBj (y(j)). (4)

As a matter of fact, the degree is obtained calculating
the value of the rule firing level for the data pair that
generated this rule, multiplied by the membership of the
consequent fuzzy set.

The antecedent matching degree, also called the
degree of activation of the rule Rj or the rule firing level,
is expressed by

τj =

n∏
i=1

μAj
i
(xi) (5)

for j = 1, 2, . . . ,M .
Equations (4) and (5) can also be expressed in a more

general form, by using a T -norm:

D(Rj) = T
{
μAj

1
(x

(j)
1 ), μAj

2
(x

(j)
2 ),

. . . , μAj
n
(x(j)n ), μBj (y(j))

} (6)

and

τj = T
{
μAj

1
(x

(j)
1 ), μAj

2
(x

(j)
2 ), . . . , μAj

n
(x(j)n )

}
. (7)

The product, and the min operation are the most often
used examples of t-norm functions.

The degree, D(Rj), assigned to each rule Rj , j =
1, 2, . . . ,M , allows reducing the number of the rules,
including into the rule base of a fuzzy system only the
rules with the maximal degree in particular regions. In
this way, the problem of conflicting rules, i.e., those that
have the same IF part but different THEN parts, is solved,
resulting in the reduction of the initial number of rules.

Thus, starting from M rules generated by M data
pairs, the Wang–Mendel algorithm produces the rule base
of a fuzzy system composed of the reduced number of N
rules, where N ≤M .

The Mamdani type of a fuzzy system with inference
based on N fuzzy IF-THEN rules, generated by the
Wang–Mendel method, can be described by the following
mathematical model:

y =

∑N
k=1 y

kτk∑N
k=1 τk

, (8)

where yk, k = 1, 2, . . . , N , is is the point in which the
membership function μBk(y) takes the maximal value,
and τk is given by (5), where j is replaced by k and M
by N .

It should be noted that τ1, τ2, . . . , τN in Eqn. (8) are
special cases of those determined using (7).

Introducing to the antecedents of the rules (8) their
importance weights, we get

y =

∑N
k=1 wky

kτk∑N
k=1 wkτk

(9)

which can describe the fuzzy recommender studied in this
paper.

Remark 1. Although the formula (9) has been applied
in the literature in various problems of classification and
modeling (see, e.g., Alvarez-Estevez and Moret-Bonillo,
2018; Ishibuchi and Nakashima, 2001; Ishibuchi and
Yamamoto, 2005; Nauck and Kruse, 1998; Rutkowski,
2004), for the first time it will be used in the context of
designing fuzzy explainable recommenders. Moreover,
our approach allows significantly reducing the number of
rules.

Despite the fact that the usefulness of rule weighs
is discussed in the literature (see, e.g., Simiński, 2010;
Nauck and Kruse, 1998), we find this issue interesting
from the interpretability and explainability point of view
with regard to recommender systems. In general, the
weights can be interpreted as the rule importance in the
sense of expressing the number of data items in a dataset
described by this rule. The more data items match the rule,
the more important it is.

3. Description of the proposed method

This section presents the main algorithm proposed for the
design of explainable recommender systems, including
the procedure of rule reduction. The idea of the method
is described in Section 3.1. Then, in Section 3.2,
the procedure of feature encoding, introduced in order
to apply the recommender to the MovieLens data, is
presented in detail. In Section 3.3, three criteria are
used for evaluating an optimal balance between the
recommender’s accuracy and interpretability. Finally, a
short summary is included in Section 3.4.

3.1. Idea of the proposed method. There are various
methods of improving the performance of fuzzy systems,
from introducing weights of the fuzzy rules (see, e.g.,
Ishibuchi and Nakashima, 2001), through reducing the
number of the fuzzy rules (see, e.g., Cpalka, 2017), to
optimizing a fuzzy system, usually by modifying fuzzy set
parameters (see, e.g., Jin, 2000) or rule consolidation (see,
e.g., Riid and Preden, 2017) and using the collaborative
fuzzy clustering (see, e.g., Prasad et al., 2017).

In this paper, a hybrid solution is proposed in which
system optimization is applied after successive reductions
of fuzzy rules (see Algorithm 1). The optimization of
the system, in this case, refers to optimized values of the
weights. The rule reduction procedure should increase the
accuracy of the system.
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In order to reduce the rules, the method of removing
successively the least beneficial fuzzy rules was used. To
find the least beneficial fuzzy rule, particular rules are
turned off and on in the system one by one, and the
system error is calculated after each change. The least
beneficial rule is the one whose RMSE was the lowest
after reduction.

As explained above, during the optimization of the
system, we assume that only the weights (initialized
equally by default) of the rules can be modified. For
this purpose, we use the standard evolutionary strategy
ES (μ + λ) (see, e.g., Rutkowski, 2008). However,
any optimization algorithm can be applied instead. This
approach allows keeping a semantically interpretable form
of fuzzy sets and increasing system accuracy.

Moreover, this approach is more legible than the
interpretation of systems in which fuzzy sets become
uninterpretable after the optimization of their parameters
(see, e.g., Jin, 2000). The optimized system will be
labeled as WO in the remainder of this paper.

Two approaches will be considered: C1, in which
values of the weights are reset each time the fuzzy rule
is removed, and C2, in which the values of the weights are
stored after the optimization and do not reset.

The performance of the system in which the values
of the weights were rounded (to one decimal place) after
the optimization was also tested. The goal was to increase
the transparency of the fuzzy rule notation. The approach
with the rounded weight values is marked in this paper
as WR, while WO denotes the system with optimized
weights (not rounded values).

The idea of the presented approaches is shown in
Algorithm 1. System optimization and evaluation are
repeated after the reduction of each fuzzy rule, with the
goal of finding the best reduction level for which the
weight values give the best system performance. The
evaluation is illustrated in Section 4.

It is worth adding that, as part of the tests, the results
for a given number of rules and a specific reduction level
were saved and then averaged. This is due to the fact that,
in recommendation systems, the datasets for each user are
different so a different number of fuzzy rules is created by
using the WM (Wang–Mendel) method.

3.2. Feature encoding. Objects (items) that can be
recommended are described by attributes (features). In
recommender systems, attribute values can be of different
type, not necessarily crisp (numerical). In general, an
object is characterized by attributes whose values can be
numerical or categorical (nominal), and other data types
can be considered as well.

Denote by a = [a1, a2, . . . , an]
T a vector of

attributes describing an object oj that belongs to O that
is a space of the objects. The vector a corresponds to

Algorithm 1. Design and reduction of explainable
recommender systems.

1: for all users do
2: Create N fuzzy rules using the WM method
3: Set system weights to equal values
4: while N > 3 do
5: Evaluate system (WM)
6: Optimize system weights using ES
7: Store system weights (only for variant C2)
8: Evaluate system (WO)
9: Round system weights

10: Evaluate system (WR)
11: Reset system weights (only for variant C1)
12: for k = 1 to N do
13: Temporarily remove k-th fuzzy rule
14: Evaluate the system and store the error
15: Include the removed fuzzy rule
16: end for
17: Remove the least beneficial fuzzy rule
18: end while
19: end for

the vector of linguistic variables x = [x1, x2, . . . , xn]
T ,

considered in Section 2.
Now, let us focus our attention on attribute values. In

the case of categorical (nominal, linguistic) values, we can
use symbols Ni, for i = 1, 2, . . . , n, and Ny concerning
both the number of values of attributes (input variables)
and output (decision) variables, respectively. Fuzzy sets
as linguistic values can be viewed as special cases of
categorical values.

Let v = [v1, v2, . . . , vn]
T denote a vector of values

of particular attributes ai, for i = 1, 2, . . . , n, in general,
and let vj = [v1

j , v2
j , . . . , vn

j ]T represent this vector for
the object oj , where j = 1, 2, . . . ,M . It is worth
noticing that the vector vj corresponds to the vector
x(j) = [x1

(j), x2
(j), . . . , xn

(j)]T , considered in Section 2.
However, with regard to recommender systems,

objects may be characterized by attributes that take more
than only one value, and not necessarily values belonging
to the set of reals.

For example, when movies are considered, their
attributes such as genre can be described by categorical
values, e.g., action, comedy, drama, and there are movies
characterized, e.g., as comedy and drama.

Let Vi = {Vi1, Vi2, . . . , ViNi} be a set of values of
the attribute ai, for i = 1, 2, . . . , n. The notation of the
attribute values corresponds to fuzzy linguistic values,
Ail, for i = 1, 2, . . . , n and l = 1, 2, . . . , Ni, presented in
Section 2.

For the above-mentioned example, ai can be genre
and Vi = {action, comedy, drama, . . . }. Of course,
each object oj , j = 1, 2, . . . ,M , which is a movie in this
case, is characterized by attributes with values taken from
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the same set of the attribute values.
Let dj , j = 1, 2, . . . ,M , be the score (rating) of the

object oj , given by a user. With regard to the movies,
users assess chosen movies by using grades from the set
{2, 3, 4, 5} of the user’s preference values that express
how much the user likes a movie.

The rating values, in a movie dataset (e.g., Movie-
Lens), correspond to the output values y(j) in the
input-output data pairs, considered in Section 2, with
regard to the output variable y ∈ Y . The number of output
values, Ny , in the case of discrete values of the grades
{2, 3, 4, 5} equals 4.

Let us define the set of matrices C(i) = [cjl
(i)]M×Ni ,

for i = 1, 2, . . . , n, where cjl
(i), for j = 1, 2, . . . ,M

and l = 1, 2, . . . , Ni, are determined according to the
following equation:

cjl
(i) =

{
dj if Vil is in object oj ,
0 otherwise.

(10)

It should be explained that each matrix C(i),
i = 1, 2, . . . , n, includes M rows corresponding to M
objects (items), e.g., movies, and Ni columns labeled
by the values Vi1, Vi2, . . . , ViNi of the attribute ai. The
elements cjl(i) of the matrix C(i), for j = 1, 2, . . . ,M and
l = 1, 2, . . . , Ni, equal dj if the attribute value Vil occurs
in an object oj , and zero otherwise. With regard to the
example of the movie characterized as comedy and drama,
every element in the row assigned to this movie equals
zero except for those referring to comedy and drama.

In order to apply the fuzzy system described
in Section 2 as the recommender, we need M
input-output data pairs x(j), y(j), j = 1, 2, . . . ,M ,
and x(j) = [x1

(j), x2
(j), . . . , xn

(j)]T . As mentioned
earlier, this corresponds to the pairs vj , dj , where
vj = [v1

j, v2
j , . . . , vn

j ]T represents single numerical
values referring to particular attributes aji , i = 1, 2, . . . , n,
of an object oj , j = 1, 2, . . . ,M .

We call the single values that characterize the
attributes the attribute preferences, and determine them
based on the attribute value preferences in the following
way:

ψ(Vil) =

∑M
j=1 cjl

(i)

ml
(i)

, (11)

where ψ means the preference and ml
(i) denotes the

number of non-zero elements in the l-th column of the
matrix C(i), i = 1, 2, . . . , n.

Then, the attribute preference, vij , is determined as

vi
j =

∑αj
(i)

l=1 ψ∗(Vil)
αj

(i)
, (12)

Examples from the database, for a user:
movie 1 - genre {action, comedy}, ..., user rate = 5.0

movie 2 - genre {drama, comedy}, ..., user rate = 4.0

movie 3 - genre {drama}, ..., user rate = 2.0

movie 4 - genre {action, drama}, ..., user rate = 3.0

Preference of attribute values for genre:
action - preference = (5.0 + 3.0) / 2 = 4.0

comedy - preference = (5.0 + 4.0) / 2 = 4.5

drama - preference = (4.0 + 2.0 + 3.0) / 3 = 3.0

Dataset prepared for the fuzzy system:
movie 1 - genre preference {4.25}, ..., user rate = 5.0

movie 2 - genre preference {3.75}, ..., user rate = 4.0

movie 3 - genre preference {3.00}, ..., user rate = 2.0

movie 4 - genre preference {3.50}, ..., user rate = 3.0

Fig. 1. Example of preparation of the dataset for a user.

for i = 1, 2, . . . , n and j = 1, 2, . . . ,M , where ψ∗

denotes the preference of only those attribute values Vil,
l = 1, 2, . . . , Ni, that are included as values of the object
oj , and αj

(i) is the number of ψ∗(Vil).
Figure 1 illustrates the above-described process of

determining the attribute value preferences, according
to Eqn. (11), and the results of the attribute preference
obtained by use of the formula (12). This simple example
refers to M = 4 movies as the objects oj , j = 1, 2, 3, 4,
assessed by a user with the ratings 5, 4, 2, and 3,
respectively. This means that d1 = 5, d2 = 4, d3 =
2, d4 = 3. The attribute genre is considered, and
o1 is characterized by two attribute values, i.e., action
and comedy, object o2 by drama and comedy, object o3
by only one value, i.e., drama, and o4 by action and
drama. Therefore, the attribute value preferences, ψ,
are calculated for action, comedy, and drama as Vil, for
l = 1, 2, 3 and i referring to the genre as the attribute.

It is very easy to present matrix C(i) for this simple
example. The following genre preference values were
obtained in this case: 4.25 for o1, 3.75 for o2, 3.00 for
o3, and 3.50 for o4. In the same way, we calculate the
preference values for other attributes, and all of them
are included in the data pairs vj , dj , for the fuzzy
recommender. It should be emphasized that this example
concerns only one user with regard to the recommendation
system. The same procedure is repeated for other users.

3.3. Solution evaluation. Since the rates of objects
are numerical values, the rules obtained by the WM
method are used in this paper as the base for the Mamdani
type fuzzy system for regression tasks (see, e.g., Cpalka,
2017) with the goal of user rate prediction. This allows
calculating the RMSE (commonly used error definition,
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known as the root mean square error), and also obtaining
more accurate classification of recommended objects.

In addition to the RMSE, the accuracy (ACC) of
predictions of the exact user rate were calculated. To make
this possible, the system’s output values were rounded
to the possible values of the object’s rate and in this
way the standard classification error (ACC) could be
calculated (see, e.g., Kuncheva, 2000). There was also a
classification error (YES/NO), checking whether or not an
item (object) should be recommended (if the value of its
recommendation is more than a half of possible values).
This approach is considered in some other papers.

Because the proposed method allows obtaining a
different system accuracy for a different reduction level
of fuzzy rules, choosing the optimal balance in terms
of accuracy–interpretability is not a trivial task. In this
paper, the use of isocriterial lines and criteria for model
evaluation with regard to their complexity is proposed
(see, e.g., Söderström and Stoica, 1989).

The first criterion considered is the Akaike
information criterion (AIC), which is defined as follows:

AIC =M · lnQ+ 2 · p, (13)

where M stands for the number of dataset samples (in
this paper this value was set to the average number of
the dataset samples generated for all users), Q denotes the
system error, pmeans parameters that are optimized in the
system (equal to the number of weights and analogously
the number of fuzzy rules).

The second criterion used is the final prediction error
(FPE), defined as follows:

FPE = Q ·
(
M · n+ p

M · n− p

)
, (14)

where n denotes the number of system inputs.
The last criterion considered is the Schwarz criterion

which is expressed by the following equation:

S =M · lnQ+ p · lnM. (15)

The isocriterial lines are lines representing fixed
values of the criteria with different values of system
errors and the number of system parameters. This
approach allows solving the problem of a compromise
between the system error and the number of optimized
parameters describing the system. The points located on
the isocriterial lines, with the smallest criterion values,
characterize systems that are called sub-optimal. These
provide the smallest values of statistical criteria within the
examined structures (in this case, differing in the number
of system rules).

3.4. Summary of the proposed method. The
proposed approach (a) is based on the WM method,

which allows generating interpretable and simple fuzzy
rules, (b) uses weights’ optimization and does not modify
fuzzy sets parameters in order to keep interpretable fuzzy
sets, (c) applies fuzzy rule reduction not only to simplify
the system but also to decrease the system error, (d)
allows checking how the optimization of system weights
works with a different level of rule reduction, (e) employs
the standard ES for weight optimization, (f) includes a
version that rounds fuzzy rules weights to increase the
system’s interpretability, and (g) uses isocriterial lines in
order to keep the optimal balance between the system
interpretability and system error.

4. System performance evaluation

Simulations that illustrate the performance of the
system proposed for recommendation are described in
this section. The results of the simulations verify
the effectiveness of the recommender system for the
MovieLens 10M dataset. The datasets are available on
the Internet as versions of different sizes (see Harper and
Konstan, 2015). These datasets contain user ratings for
movies.

4.1. Description of computer simulations. In the
simulations, the cases described in Section 3.1 and
presented in Table 1 were tested. In case C1, the weight
values are reset after each reduction of a fuzzy rule, while
in case C2, weight, the values are stored after optimization
and do not reset (see Algorithm 1).

Table 1. Simulation cases.
Case Variant Weight values

WM – not optimized
WO-C1 C1 optimized and reset
WR-C1 C1 optimized, rounded, and reset
WO-C2 C2 optimized and do not reset
WR-C2 C2 optimized, rounded, do not reset
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Fig. 2. Histogram of the initial number of rules generated with
the use of the WM method.
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The number of fuzzy sets (linguistic values), Ni, for
each attribute corresponding to linguistic variables xi, i =
1, 2, . . . , n, was chosen as Gaussian-type fuzzy sets, for
Ni = 5. The following parameters of the ES algorithm
were set: population size = 32, number of iterations =
100, evaluation function = RMSE.

For the simulations, the MovieLens 10M database
is used, and three inputs, n = 3, are considered:
genre preference (explained in Section 3.2), year (numeric
values), and keywords preference. Moreover, datasets
were prepared for the first 100 users who rated more than
30 movies from the database.

As a testing method, 10-fold cross-validation was
applied, and only learning dataset samples were taken for
creating fuzzy rules with the WM method (the remaining
dataset samples are used as testing samples).

Since rating predictions for unknown samples is
important in recommendation systems, the error values for
testing samples are crucial while comparing the results.
Therefore, most of the conclusions in this paper are
focused on this analysis (see Tables 2–4).

4.2. Simulation results. The histogram of the initial
number of rules generated by using the WM method is
shown in Fig. 2. Depending on a user and the number
of rated objects, the WM generates different numbers of
fuzzy rules, with an average of 24 rules for the proposed
feature encoding. The number of rules for particular users
differs from 12 to 37.

Detailed simulation results are presented in Tables 2
(RMSE), 3 (ACC) and 4 (YES/NO). The values of the
criteria are included in Tables 5 and 6. The isolines, for the
AIC, FPE and Schwarz criteria, are illustrated in Figs. 4
and 5.

A comparison of the WM, WO-C1, WR-C1, WO-C2
and WR-C2 cases is shown in Figs. 6, 7 and 8. The
optimization process of weights for different numbers
of fuzzy rules is presented in Fig. 9, and the histogram
of accuracy obtained for different users is portrayed in
Fig. 3. In addition, examples of fuzzy sets and fuzzy
rules obtained for the presented methods are shown in
Tables 7 (according to the reduction level of fuzzy rules
considering obtained accuracy) and 8 (according to the
reduction in fuzzy rules for the AIC, FPE and Schwarz
criteria).

Analyzing Tables 2 and 3, we see that 32%–36% of
the rules generated by the WM method can be removed,
resulting in better performance of the system on both
learning and testing data samples, with regard to the
average RMSE and ACC, although in Table 4, where the
YES/NO classification error is considered, the same result
is obtained only for the learning samples but not for the
testing samples. It is worth noticing that the value of the
YES/NO error in the case of 36% rule reduction does not
differ much from the value of this error for the case of 0%,

i.e., no rule reduction. This means that 36% of the rules
can be removed, but not more in all the cases of the WM
system.

Similar results were obtained for the WO-C2 system,
which is the best case compared with WO-C1, WR-C1,
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Fig. 3. Histogram of accuracy (ACC) obtained for different
users.
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Fig. 4. Isolines lines for the learning samples, where circles and squares represent the WO-C1 and WO-C2 systems, respectively.

Fig. 5. Isolines lines for the testing samples, where circles and squares represent the WO-C1 and WO-C2 systems, respectively.

and WR-C2. Figures 4 and 5, as well as Figs. 6, 7 and
8, show the best performance of the WO-C2 system. In
addition, Fig. 3 illustrates better accuracy of the WO-C2
system than WO-C1, and the best for 25% rule reduction
(or probably more) but less than 50%.

Figure 9 also portrays better performance of the
WO-C2 system than that of WO-C1. However, with
regard to the RMSE, it shows that about 20 rules give a
good result for both learning and testing data samples but
more (30 rules) are worse for the learning samples, but
best for the testing data samples. It seems obvious that it
is possible to obtain better results by reducing the number
of rules for learning data, yet the reduced number of rules
may not always be sufficient for testing data.

Looking at Fig. 4 and Table 5, we see that the value of
parameter p, which corresponds to the number of weights
(and hence the number of fuzzy rules), equals 11 for the
AIC, 14 for the FPE, and 9 for the Schwarz criterion.
Thus, these criteria indicate the number of rules that can
be removed with an optimal balance in terms of system
accuracy and interpretability.

The obtained fuzzy rules are semantically
interpretable. For example, rule number 5 from
Table 7: “IF genre pref. is high and year is medium
and keywords pref. is high THEN user rate is high”
can be used as an explanation, as the antecedents of the
rule are direct reasons for the recommendation. With
this approach, it is also possible to refer the user to the
visualization of the particular fuzzy set describing the
meaning of the following terms: “high genre pref.”,
“medium year" and “high keywords pref.”. The number
of rules is low, and sufficient for good accuracy of the
recommender system. Moreover, such a rule base allows
explaining the performance of the system with regard to
the recommendations (see Tables 7 and 8, with Figs. 10
and 11, which illustrate the fuzzy rules for two users).

5. Conclusions and final remarks

The most important issue in this paper is the explainable
fuzzy recommender. The explainability is realized by
using semantically interpretable fuzzy IF-THEN rules.
Examples of such rules are presented in Tables 7 and 8,
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Table 2. Average RMSE for all users in terms of the percentage of reduced rules (RR).
% of learning samples testing samples
RR WM WO-C1 WR-C1 WO-C2 WR-C2 WM WO-C1 WR-C1 WO-C2 WR-C2
0% 0.2199 0.1425 0.1485 0.1423 0.1472 0.3096 0.2670 0.2688 0.2677 0.2701
4% 0.2302 0.1605 0.1637 0.1513 0.1580 0.3023 0.2641 0.2669 0.2619 0.2648
8% 0.2106 0.1518 0.1582 0.1408 0.1560 0.2980 0.2674 0.2698 0.2658 0.2719

12% 0.1915 0.1395 0.1470 0.1283 0.1465 0.2910 0.2670 0.2706 0.2635 0.2724
16% 0.1908 0.1448 0.1511 0.1316 0.1534 0.2890 0.2688 0.2713 0.2638 0.2734
20% 0.1876 0.1462 0.1535 0.1329 0.1595 0.2876 0.2693 0.2713 0.2662 0.2765
24% 0.1807 0.1421 0.1497 0.1282 0.1576 0.2858 0.2669 0.2701 0.2600 0.2731
28% 0.1801 0.1429 0.1527 0.1279 0.1638 0.2932 0.2755 0.2791 0.2682 0.2863
32% 0.1789 0.1438 0.1531 0.1290 0.1684 0.2914 0.2748 0.2777 0.2683 0.2906
36% 0.1775 0.1435 0.1540 0.1285 0.1716 0.2843 0.2698 0.2741 0.2637 0.2848
40% 0.1801 0.1463 0.1580 0.1299 0.1804 0.2896 0.2750 0.2795 0.2692 0.2937
44% 0.1803 0.1465 0.1583 0.1299 0.1794 0.2949 0.2779 0.2823 0.2713 0.2956
48% 0.1797 0.1455 0.1594 0.1278 0.1869 0.2917 0.2739 0.2782 0.2683 0.2958
52% 0.1892 0.1519 0.1663 0.1325 0.1910 0.2971 0.2776 0.2826 0.2721 0.2994
56% 0.1956 0.1561 0.1741 0.1353 0.2002 0.3026 0.2793 0.2858 0.2738 0.3039
60% 0.1993 0.1592 0.1830 0.1375 0.2120 0.3048 0.2845 0.2935 0.2747 0.3057
64% 0.2143 0.1708 0.1955 0.1467 0.2240 0.3209 0.2941 0.3042 0.2802 0.3110
68% 0.2292 0.1826 0.2139 0.1570 0.2429 0.3272 0.2968 0.3067 0.2806 0.3189
72% 0.2442 0.1963 0.2321 0.1691 0.2582 0.3291 0.2980 0.3127 0.2813 0.3280
76% 0.2691 0.2179 0.2585 0.1886 0.2902 0.3532 0.3192 0.3364 0.2932 0.3448
80% 0.3025 0.2453 0.2967 0.2168 0.3166 0.3715 0.3305 0.3532 0.2978 0.3538
84% 0.3450 0.2826 0.3513 0.2465 0.3504 0.3892 0.3415 0.3758 0.3024 0.3638
88% 0.3945 0.3289 0.3950 0.2815 0.3776 0.4229 0.3680 0.4089 0.3233 0.3830
92% 0.4406 0.3642 0.4229 0.3045 0.4021 0.4685 0.3943 0.4311 0.3344 0.4035

Table 3. Average ACC for all users in terms of the percentage of reduced rules (RR).
% of learning samples testing samples
RR WM WO-C1 WR-C1 WO-C2 WR-C2 WM WO-C1 WR-C1 WO-C2 WR-C2
0% 77.699 91.091 90.600 91.019 90.607 67.149 76.721 76.469 76.463 75.903
4% 76.523 89.049 88.595 90.213 89.533 67.095 75.701 75.783 76.087 75.969
8% 79.674 89.838 89.337 91.279 90.114 68.622 75.684 75.424 76.433 75.760

12% 82.977 91.313 90.892 92.679 91.370 70.778 76.154 75.830 76.810 75.908
16% 83.371 90.870 90.444 92.481 90.734 71.440 75.601 75.407 76.254 75.303
20% 83.562 90.565 90.018 92.221 90.126 71.341 75.424 75.047 76.408 75.142
24% 84.641 90.913 90.450 92.629 90.446 71.924 76.007 75.488 77.361 76.089
28% 85.113 91.018 90.458 92.871 90.215 72.212 75.628 75.451 76.992 75.490
32% 85.344 90.832 90.217 92.753 89.784 72.393 75.514 75.222 76.691 74.724
36% 85.340 90.644 89.970 92.654 89.499 72.715 75.504 75.011 76.682 74.880
40% 84.921 90.408 89.694 92.568 88.833 72.458 75.258 74.652 76.504 74.453
44% 84.882 90.415 89.615 92.602 88.959 71.478 74.953 74.275 76.147 73.934
48% 84.744 90.372 89.512 92.774 88.731 72.012 75.177 74.604 76.137 73.853
52% 83.361 89.594 88.683 92.266 88.184 71.875 75.049 74.671 76.568 74.182
56% 82.466 89.009 87.846 91.903 87.524 70.927 75.035 74.588 76.575 74.082
60% 81.833 88.428 87.055 91.445 86.700 70.369 74.356 73.855 76.099 73.787
64% 80.098 87.106 85.554 90.440 85.515 68.854 73.377 72.607 75.521 72.940
68% 78.280 86.052 84.154 89.407 83.852 68.518 73.879 73.221 75.819 73.069
72% 76.838 84.565 82.632 88.170 82.539 68.159 73.075 72.258 75.639 72.642
76% 74.454 82.450 80.187 86.261 80.290 65.625 71.480 70.541 74.488 71.682
80% 71.005 79.897 77.270 83.562 78.153 64.340 70.986 69.363 74.530 71.608
84% 67.335 75.982 72.789 80.602 74.940 62.052 68.947 67.010 73.520 70.176
88% 62.994 71.200 68.071 77.023 71.904 58.543 66.360 64.570 71.274 67.985
92% 59.315 68.213 65.502 74.907 70.161 54.622 64.517 62.078 70.704 66.941
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Table 4. Average YES/NO for all users in terms of the percentage of reduced rules (RR).
% of learning samples testing samples
RR WM WO-C1 WR-C1 WO-C2 WR-C2 WM WO-C1 WR-C1 WO-C2 WR-C2
0% 98.852 99.387 99.286 99.397 99.316 97.659 97.981 97.961 98.049 97.948
4% 98.988 99.358 99.309 99.370 99.301 98.242 98.541 98.552 98.705 98.649
8% 99.085 99.368 99.288 99.422 99.224 98.146 98.291 98.293 98.382 98.184

12% 99.155 99.399 99.329 99.431 99.193 97.971 97.807 97.789 98.046 97.814
16% 99.121 99.371 99.284 99.399 99.043 98.036 97.986 97.968 98.222 98.005
20% 99.115 99.346 99.217 99.403 98.924 97.962 98.063 98.079 98.170 97.945
24% 99.152 99.350 99.252 99.412 98.998 97.806 97.960 97.940 98.149 97.768
28% 99.147 99.344 99.210 99.414 98.763 97.772 97.884 97.838 98.250 97.794
32% 99.166 99.349 99.224 99.437 98.817 97.792 97.844 97.750 98.310 97.828
36% 99.256 99.419 99.278 99.489 98.809 97.808 97.847 97.769 98.189 97.749
40% 99.188 99.355 99.205 99.430 98.398 97.554 97.811 97.788 98.120 97.424
44% 99.106 99.301 99.167 99.392 98.727 97.599 97.940 97.935 98.224 97.635
48% 99.164 99.345 99.184 99.419 98.511 97.681 97.910 97.839 98.143 97.259
52% 99.133 99.341 99.165 99.428 98.640 97.655 98.036 97.996 98.430 97.504
56% 99.129 99.328 99.088 99.410 98.529 97.647 98.009 97.905 98.364 97.471
60% 99.062 99.264 99.020 99.356 98.163 97.453 97.846 97.595 97.909 97.238
64% 98.907 99.171 98.887 99.302 98.379 97.139 97.525 97.379 98.037 97.544
68% 98.792 99.120 98.624 99.337 98.022 97.152 97.654 97.472 97.948 97.065
72% 98.618 98.980 98.377 99.262 97.851 97.291 97.610 97.165 98.012 96.877
76% 98.150 98.694 98.052 99.091 97.331 96.439 97.159 96.767 97.828 96.400
80% 97.663 98.352 97.428 98.842 96.898 96.199 97.057 96.393 97.573 95.790
84% 96.953 97.760 96.104 98.576 96.211 95.478 96.538 95.407 97.324 95.066
88% 96.563 97.287 95.385 98.422 95.765 95.564 96.459 94.891 97.697 94.976
92% 96.306 97.175 95.482 98.182 95.356 95.588 96.577 95.155 97.478 94.695

as well as Figs. 10 and 11. The fuzzy sets in these rules
are semantically interpretable as very low, low, medium,
high, very high.

The Wang–Mendel method (WM) was applied in
order to generate the rules of this type from the dataset.
However, these rules can be modified by a learning
procedure to achieve better performance of the system;
see the work of Rutkowski et al. (2018b), where
a neuro-fuzzy recommender is presented. It should
be emphasized that there is a trade-off between the
interpretability and accuracy of the system. The learning
procedure changes the fuzzy sets, making them less
interpretable. Therefore, in this paper, we do not want
to modify the rules in this way. Instead, the weights are
assigned to fuzzy IF-THEN rules.

Applying the weights causes modification of
decision boundaries in the attribute space, as Ishibuchi
and Nakashima (2001) explained in their paper. Thus,
the rules are better adjusted to the data, resulting in better
performance of the system. It is worth adding that Nauck
and Kruse (1998) show that by introducing the weights we
obtain the same effect as by modification of fuzzy sets in
the rules. As Ishibuchi and Nakashima (2001) illustrated,
the rule weights also change the decision boundaries to
achieve better performance of a classifier.

It should be emphasized that, when a rule is missing
in the Wang–Mendel table, the decision boundaries are
also different, as Ishibuchi and Nakashima (2001) showed.

Thus, removing a rule from the rule base changes the
performance of the system. Therefore, in Algorithm 1
proposed in this paper, the recommender is evaluated after
the removal of the least beneficial fuzzy rule.

With regard to Algorithm 1, several variants of the
system are considered: WM, WO-C1, WR-C1, WO-C2,
WR-C2 (see Tables 1–4). The first one (WM) is a system
with the rules generated by the WM method, without the
rule weights. Analyzing the results included in these
tables, we observe that the systems with the weights
perform better than the WM recommender.

Compared the different variants of the system with
the weights, we see, as concluded in Section 4.2, that,
generally, WO-C2 gives better results. This is a system
with optimized weights (and not rounded) in the case
when the weights have not been reset. This means that
the procedure of reducing the rules always concerns the
same system (not changed by resetting the values of the
weights).

It also seems obvious that better performance is
obtained for the system with optimized weights and not
rounded values. However, this is also a compromise
between accuracy and interpretability.

The approach proposed in this paper, as mentioned
in Section 1, is enhanced by the criteria (AIC, FPE,
Szwarz) for evaluating an optimal balance in terms of the
recommender’s accuracy and interpretability.

In future work, it would be worth applying other
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Table 5. AIC, FPE and Schwarz criteria for different numbers of fuzzy rules (p is equal to the number of fuzzy rules and thus the
number of weights, Q stands for the RMSE of learning samples for the WO method).

p
WO-C1 WO-C2

Q AIC FPE Szwarz Q AIC FPE Szwarz
36 0.209 -7.927 0.337 61.619 0.198 -10.650 0.319 58.896
35 0.204 -11.108 0.325 56.506 0.193 -14.007 0.307 53.607
34 0.199 -14.378 0.312 51.304 0.188 -17.250 0.295 48.432
33 0.193 -17.810 0.300 45.940 0.182 -21.027 0.281 42.723
32 0.186 -21.873 0.284 39.946 0.174 -25.159 0.266 36.659
31 0.181 -25.184 0.273 34.702 0.169 -28.662 0.255 31.225
30 0.176 -28.475 0.263 29.480 0.165 -31.851 0.246 26.104
29 0.172 -31.919 0.252 24.104 0.160 -35.370 0.235 20.653
28 0.169 -34.766 0.244 19.325 0.157 -38.293 0.228 15.798
27 0.166 -37.447 0.238 14.712 0.155 -41.215 0.221 10.944
26 0.164 -40.245 0.231 9.982 0.152 -44.120 0.214 6.108
25 0.160 -43.477 0.222 4.818 0.148 -47.511 0.206 0.784
24 0.156 -46.688 0.214 -0.324 0.144 -51.000 0.197 -4.636
23 0.154 -49.434 0.208 -5.002 0.141 -53.811 0.191 -9.379
22 0.152 -52.208 0.203 -9.707 0.138 -56.835 0.185 -14.335
21 0.148 -55.310 0.196 -14.742 0.135 -59.978 0.178 -19.410
20 0.146 -58.138 0.190 -19.501 0.133 -62.931 0.173 -24.295
19 0.144 -60.752 0.185 -24.047 0.131 -65.756 0.168 -29.051
18 0.142 -63.454 0.180 -28.681 0.128 -68.664 0.163 -33.891
17 0.141 -65.943 0.176 -33.102 0.126 -71.619 0.158 -38.778
16 0.141 -67.811 0.174 -36.902 0.125 -73.909 0.155 -43.000
15 0.142 -69.412 0.173 -40.435 0.125 -75.875 0.153 -46.898
14 0.144 -70.893 0.173 -43.848 0.126 -77.662 0.151 -50.617
13 0.146 -71.969 0.174 -46.855 0.127 -79.091 0.151 -53.977
12 0.150 -72.770 0.175 -49.588 0.130 -80.194 0.152 -57.012
11 0.155 -73.184 0.179 -51.934 0.133 -80.806 0.154 -59.556
10 0.162 -72.892 0.184 -53.574 0.139 -80.701 0.158 -61.383
9 0.172 -71.723 0.194 -54.336 0.148 -79.608 0.166 -62.221
8 0.187 -69.512 0.208 -54.057 0.161 -77.127 0.179 -61.673
7 0.207 -66.410 0.226 -52.887 0.179 -73.725 0.196 -60.203
6 0.234 -62.152 0.253 -50.561 0.202 -69.562 0.219 -57.971
5 0.272 -56.470 0.290 -46.811 0.235 -63.937 0.250 -54.278
4 0.319 -50.329 0.336 -42.601 0.276 -57.706 0.291 -49.979

rule-based techniques (see, e.g., Bologna and Hayashi,
2017; Liu et al., 2017) to design explainable recommender
systems.

Acknowledgment

This research was supported by the Polish National
Science Center under the grant 2015/19/B/ST6/03179.

References

Alvarez-Estevez, D., Moret-Bonillo, V. (2018). Revisiting the
Wang–Mendel algorithm for fuzzy classification, Expert Sys-
tems 35(4): 35:312268.

Bologna, G. and Hayashi, Y. (2017). Characterization of
symbolic rules embedded in deep DIMLP networks: A
challenge to transparency of deep learning, Journal of
Artificial Intelligence and Soft Computing Research 7(4):
265–286.

Cpalka, K. (2017). Design of Interpretable Fuzzy Systems,
Studies in Computational Intelligence 684, Springer Verlag,
Cham.

Harper, F.M. and Konstan, J.A. (2015). The MovieLens datasets:
History and context, ACM Transactions on Interactive Intel-
ligent Systems 5(4):19:1–19:19.

Ishibuchi H. and T. Nakashima (2001). Effect of rule weights
in fuzzy rule-based classification systems, IEEE Transactions
on Fuzzy Systems 9(4): 506–515.

Ishibuchi H. and T. Yamamoto (2005). Rule weight specification
in fuzzy rule-based classification systems, IEEE Transactions
on Fuzzy Systems 13(4): 428–435.

Jin, Y. (2000). Fuzzy modeling of high-dimensional systems:
Complexity reduction and interpretability improvement,
IEEE Transactions on Fuzzy Systems 8(2): 212–221.

Kuncheva, L. (2000). Fuzzy Classifier Design, Studies in
Fuzziness and Soft Computing, Vol. 49, Springer Verlag,
New York, NY.



On explainable fuzzy recommenders and their performance evaluation 607

Fig. 9. Optimization of weights for different numbers of fuzzy rules.
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Fig. 10. Fuzzy sets in fuzzy rules from Table 7.
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Fig. 11. Fuzzy sets in fuzzy rules from Table 8.
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Table 6. AIC, FPE and Schwarz criteria for different numbers of fuzzy rules (p is equal to number of fuzzy rules and thus the number
of weights, Q stands for the RMSE of testing samples for the WO method).

p
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36 0.261 3.529 0.422 73.075 0.258 2.977 0.417 72.523
35 0.248 -1.097 0.395 66.517 0.248 -1.205 0.394 66.409
34 0.244 -3.937 0.383 61.745 0.245 -3.678 0.385 62.004
33 0.252 -4.352 0.390 59.398 0.250 -4.720 0.387 59.031
32 0.261 -4.448 0.399 57.370 0.259 -4.969 0.395 56.850
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30 0.264 -7.955 0.393 50.000 0.261 -8.564 0.388 49.391
29 0.261 -10.490 0.383 45.533 0.257 -11.338 0.377 44.685
28 0.260 -12.640 0.377 41.451 0.258 -13.185 0.373 40.906
27 0.264 -13.922 0.377 38.237 0.260 -14.710 0.371 37.449
26 0.264 -15.828 0.373 34.399 0.260 -16.672 0.367 33.556
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Table 7. Examples of fuzzy rules for the user with id = 7 and optimal reduction of fuzzy rules considering the obtained accuracy.
IF THEN rule weight

k genre year keywords user rate
WM WO-C2 WR-C2

pref. is is pref. is is

1 high v.high medium medium 0.500 0.543 0.500
2 high high v.high v.high 0.500 0.076 0.100
3 v.high v.high v.high v.high 0.500 0.917 0.900
4 high medium v.high v.high 0.500 0.604 0.600
5 high medium high high 0.500 0.228 0.200
6 high low v.high v.high 0.500 0.620 0.600
7 medium v.high low v.low 0.500 0.591 0.600
8 v.high v.high high high 0.500 0.465 0.500
9 high v.high low v.low 0.500 0.580 0.600

10 high low medium low 0.500 0.443 0.400
11 high medium medium medium 0.500 0.296 0.300
12 high high low v.low 0.500 0.149 0.100
13 high low high high 0.500 0.516 0.500
14 medium v.high v.high v.high 0.500 1.000 1.000
15 v.low v.high low low 0.500 0.642 0.600
16 medium v.high medium medium 0.500 0.345 0.300

system errors

RMSE
learning 0.247 0.210 0.212
testing 0.344 0.330 0.328

ACC
learning 75.1 82.0 80.1
testing 57.1 65.8 61.9

YES/NO
learning 99.4 99.4 99.4
testing 100.0 100.0 100.0

Table 8. Examples of fuzzy rules for the user with id = 2 and optimal reduction of fuzzy rules considering the AIC, FPE and Schwarz
criteria.

IF THEN rule weight
k genre year keywords user rate

WM WO-C2 WR-C2
pref. is is pref. is is

1 medium medium v.high v.high 0.500 0.310 0.300
2 medium v.high medium low 0.500 0.156 0.200
3 low v.high v.low v.low 0.500 1.000 1.000
4 low v.high low v.low 0.500 0.073 0.100
5 medium v.high v.high v.high 0.500 1.000 1.000
6 medium high v.high v.high 0.500 1.000 1.000
7 low high medium low 0.500 0.108 0.100
8 low v.low v.high v.high 0.500 0.450 0.500
9 medium v.high high high 0.500 0.266 0.300

10 low medium high high 0.500 0.050 0.100
11 low v.high medium high 0.500 0.273 0.300
12 medium low low low 0.500 0.056 0.100

system errors

RMSE
learning 0.171 0.113 0.141
testing 0.188 0.173 0.159

ACC
learning 86.7 88.9 88.9
testing 100.0 100.0 100.0

YES/NO
learning 97.7 100.0 100.0
testing 100.0 100.0 100.0
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