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With the advent of 3D cameras, getting depth information along with RGB images has been facilitated, which is helpful
in various computer vision tasks. However, there are two challenges in using these RGB-D images to help recognize
RGB images captured by conventional cameras: one is that the depth images are missing at the testing stage, the other
is that the training and test data are drawn from different distributions as they are captured using different equipment. To
jointly address the two challenges, we propose an asymmetrical transfer learning framework, wherein three classifiers are
trained using the RGB and depth images in the source domain and RGB images in the target domain with a structural risk
minimization criterion and regularization theory. A cross-modality co-regularizer is used to restrict the two-source classifier
in a consistent manner to increase accuracy. Moreover, an L2,1 norm cross-domain co-regularizer is used to magnify
significant visual features and inhibit insignificant ones in the weight vectors of the two RGB classifiers. Thus, using the
cross-modality and cross-domain co-regularizer, the knowledge of RGB-D images in the source domain is transferred to
the target domain to improve the target classifier. The results of the experiment show that the proposed method is one of
the most effective ones.
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1. Introduction

Object recognition as an important application has been
widely researched (Donahue et al., 2013; LeCun et al.,
2015); typically, a classifier is trained using the labeled
images given to recognize a query object in a novel image.
With the development of RGB-D sensors such as the
Microsoft Kinect camera, RGB-D datasets are emerging
(Hadfield and Bowden, 2013; Huynh et al., 2012; Janoch
et al., 2013) containing labeled images paired with depth
information. The latter points to the distance between an
object and the camera, and is unperturbed by changes in
illumination, color and background. Many researchers
have successfully used depth information for various
computer vision tasks, such as action recognition (Yu and
Fu, 2016), face recognition (Goswami et al., 2014), and
object recognition (Nuricumbo et al., 2015). However,
these methods are not suitable for recognizing images
captured by a conventional camera for two main reasons.
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The first problem is asymmetry, because depth
information is missing at the testing stage. In
this situation, most existing RGB-D object recognition
methods may not work as depth information is required
at both the training and testing stages. The other issue
is that training RGB-D images and test RGB images have
different visual characters as they are captured by different
cameras, which cause a distribution mismatch between
training and test data. Therefore, the performance of
most existing visual recognition approaches based on the
independent and identically distributed assumption will
degrade significantly.

To deal with the asymmetry, learning using
privileged information (LUPI) methods (Feyereisl and
Aickelin, 2012; Sharmanska et al., 2013; Vapnik and
Vashist, 2009) were proposed. While these can achieve
better performance by utilizing additional information
(i.e., privileged information) that is not available at the
testing stage, they assume that the training and test images
are drawn from the same data distribution. On the
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other hand, many transfer learning (TL) methods (Kulis
et al., 2011; Li et al., 2014) were proposed to address the
distribution mismatch problem and achieved promising
results. However, TL methods do not use additional depth
information, which is helpful for object recognition.

In this paper, we propose a framework called
asymmetrical transfer learning (ATL) to jointly address
the asymmetry and distribution mismatch problems,
wherein the abundance in labeled RGB-D images in the
source domain contrasts with the scarcity in labeled RGB
images in the target domain (see Fig. 1). Our goal is to
recognize the unlabeled RGB images in the target domain.
Thus, we directly learn a target classifier using the labeled
target images. It will not accurately classify the test
images because of insufficient training data. Fortunately,
there are relevant RGB-D images in the source domain
that can be used to improve the performance of the target
classifier. To make use of RGB-D images, we learn two
classifiers with RGB images and depth images in the
source domain. The predictions of the two classifiers
are restricted in a consistent way to improve accuracy
simultaneously. Moreover, to leverage the knowledge
from the source domain, we borrow the significant visual
features to assist us in constructing the weight vector
of the target classifier. This is achieved by minimizing
an L2,1 norm co-regularizer on source and target RGB
classifiers. The parameters of the three classifiers are all
optimized in a unified objective function by alternating
and iteration. The results of the object recognition
experiment on the four datasets show the effectiveness of
the proposed method. The contributions are summarized
as follows:

• An asymmetrical transfer learning algorithm is
proposed that can utilize the labeled RGB-D images
from the source domain to learn a robust classifier to
recognize the RGB images in the target domain. This
algorithm can simultaneously address the asymmetry
and the distribution mismatch problem between
RGB-D and RGB images.

• The proposed algorithm only contains a unified
objective function, and the optimal solution can be
obtained through several iterations.

• Our comprehensive experimental results on several
visual datasets show that our method can outperform
other state-of-the-art techniques in most cases.

The rest of this paper is organized as follows. Related
work is introduced in Section 2. In Section 3, we
describe the proposed framework and a concrete learning
algorithm. Comprehensive experiments are conducted to
evaluate effectiveness in Section 4. Finally, we conclude
this work and discuss potential future research.
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Fig. 1. Asymmetrical transfer learning: there are abundant la-
beled RGB images in the source domain while only a
few labeled RGB images in the target domain.

2. Related work

Our work is related to transfer learning, also named
domain adaptation, where the performance of a target
classifier is improved by exploiting knowledge from a
relevant domain (Weiss et al., 2016). In particular,
inductive transfer learning (Pan and Yang, 2010) requires
some labeled data in the target domain to induce an
objective predictive model, and is the closest to our
work. Based on “what needs to be transferred”, inductive
transfer learning methods can be divided into four
categories (Pan and Yang, 2010): instance transfer (Dai
et al., 2007; Jiang and Zhai, 2007), feature representation
transfer (Saenko et al., 2010; Kulis et al., 2011; Li et al.,
2014), parameter transfer (Yang et al., 2007; Evgeniou
and Pontil, 2004) and relational knowledge transfer
(Mihalkova et al., 2007). However, most existing transfer
learning methods only handle one type of information,
while we have to contend with RGB and depth images
in the source domain.

Our work is also related to the paradigm of
learning using privileged information (Feyereisl and
Aickelin, 2012; Fouad et al., 2013; Motiian et al.,
2016; Sharmanska et al., 2013), in which the privileged
information provided by a supervisor at the training stage
is used to train a more discriminative prediction model.
However, these LUPI methods assume that both the
training and testing data are independent and identically
distributed (IID). In contrast, our work releases this IID
assumption and can exploit a relevant domain to improve
the learning in another, different, domain.

To the best of our knowledge, the works of Chen
et al. (2014), Li et al. (2018; 2017), as well as
Motiian and Doretto (2016) are the only ones addressing
the same problem as ours. Chen et al. (2014)
proposed the domain adaptation from multi-view to
signal-view (DA-M2S) method to recognize RGB images
by learning from RGB-D data and then extended it (Li
et al., 2018). Motiian and Doretto (2016) proposed
the information bottleneck domain adaptation with
privileged information (IBDAPI) method by extending
the information bottleneck method and combining it with
risk minimization. Both the DA-M2S and IBDAPI
methods represent unsupervised domain adaptation and
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do not use the labels in the target domain that are
helpful for learning the target classifier. Li et al. (2017)
proposed the domain adaptation from RGB-D images to
RGB images (DARDR) method, which can use abundant
labeled RGB-D images and scarce labeled RGB images
simultaneously. However, the target classifier learned in
DARDR is linear, which may not work well for non-linear
classification problems. In contrast, our method can
learn a more discriminative non-linear classifier using the
kernel trick.

3. Asymmetrical transfer learning for
object recognition

For ease of presentation, vectors and matrices are denoted
by bold lowercase and uppercase letters, respectively.
The transpose of a vector or matrix is denoted by the
superscript ‘T’.

3.1. Problem statement. We are given a source
domain containing many triplets (xi

sv ,x
i
sd, y

i
s), i =

1, . . . , ns, drawn from the joint probability distribution
ps(Xsv,Xsd,Ys), and a target domain containing scarce
labeled data (xi

tv, y
i
t), i = 1, . . . , nt, and some test data

drawn from the joint probability distribution pt(Xtv,Yt).
Here xi

sv,x
i
tv ∈ Xv are visual features in the same

space, but they have a different marginal distribution (i.e.,
p(Xsv) �= p(Xtv)). Furthermore, xi

sd ∈ Xd are the depth
features in a space separate from the visual features. The
quantities yis, y

i
t ∈ {0, 1} are the corresponding labels.

Under these settings, our goal is to learn a prediction
function ft : xtv �→ yt to correctly classify the test images
by utilizing the knowledge of the source domain. Table 1
lists the definitions of the symbols used in this paper.

3.2. General framework. We design the asymmetrical
transfer learning (ATL) framework based on structural
risk minimization and regularization theory. This
framework directly learns the target visual classifier ftv
with the labeled visual features in the target domain,
and learns the source visual classifier fsv and the
source depth classifier fsd with the labeled source
visual and depth features, respectively. The proposed
framework optimizes the following complementary
objective functions simultaneously:

• minimizing the structural risk function on all labeled
data from both domains,

• transferring knowledge from the source visual
classifier to the target visual classifier,

• boosting the performance of the source visual
classifier with additional information.

Thus, the objective function of ATL can be formulated as
follows:

minCs

ns∑

i=1

(
l(fsv,x

i
sv) + l(fsd,x

i
sd)

)

+ Ct

nt∑

i=1

l(ftv,x
i
tv) + σ(fsv, fsd, ftv)

+ μΩcm(fsv, fsd) + βΩcd(fsv, ftv),

(1)

where l is the loss function, Ωcm is the cross-modality
co-regularizer and Ωcd is the cross-domain co-regularizer,
Cs and Ct are the tradeoff parameters to balance the
loss of source and target domain, σ, μ and β are the
regularization parameters.

3.2.1. Structural risk minimization. Our ultimate
goal is to learn a prediction function ft for the target
domain. For the sake of generality, the non-linear
prediction function with the kernel trick f(x) = wTφ(x)
is used. Here w is the vector of classifier parameters and
φ : X �→ H is the feature mapping function that projects
the original feature vector to a Hilbert space H. Thus, the
structural risk of ATL can be formulated as

argmin
wsv ,wsd,wtv

Cs

ns∑

i=1

(
l(fsv,x

i
sv) + l(fsd,x

i
sd)

)

+ Ct

nt∑

i=1

l(ftv,x
i
tv)

+ σ
(
‖wsv‖2F + ‖wsd‖2F + ‖wtv‖2F

)
,

(2)

where wsv, wsd and wtv are the weight vectors of the
corresponding classifiers, ‖wsv‖2F , ‖wsd‖2F , ‖wtv‖2F are
the regularizers and σ is the regularization parameter.

3.2.2. Knowledge transfer. In this paper, we propose
a parameter-based transfer learning method, which
assumes that there are some shared parameters or prior
distributions of the hyperparameters between the source
and target models (Pan and Yang, 2010; Weiss et al.,
2016). By discovering the shared parameters or priors,
knowledge can be transferred across domains (Pan and
Yang, 2010). To achieve this goal, a revised representer
theorem is used to construct the optimal solutions as in
the works of Argyriou et al. (2008), Belkin et al. (2006)
and Long et al. (2014).

Theorem 1. (Representer theorem) The solutions of the
two visual classifiers lie in the span1 of all visual features

1The definition of the span is as follows: The set of all lin-
ear combinations of a list of vectors v1, . . . ,vm in V is called the
span of v1, . . . ,vm, denoted as span(v1, . . . ,vm). In other words,
span(v1, . . . ,vm) = {α1v1 + · · · + αmvm}, where αi are the co-
efficients (Axler, 1997).
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Table 1. Definitions of the symbols used.
Symbols Definitions

Xsv visual features from the source domain
Xsd depth features from the source domain
Xtv visual features from the target domain

Ys, Yt source and target labels
fsv source classifier with visual features
fsd source classifier with depth features
ftv target classifier with visual features

wsv ,wsd,wtv weight vector of the corresponding classifier
αsv , αsd, αtv coefficient vectors of wsv ,wsd,wtv

Ksv , Ksd, Kv, Ktv kernel matrices
ns, nt number of source and target samples
Cs, Ct tradeoff parameters
σ, μ, β regularization parameters

from the source and target domain,

w =

ns+nt∑

i=1

αiφ(x
i
v) (3)

and

f(x) = wTφ(x) =

ns+nt∑

i=1

αik(x
i
v,x), (4)

where φ is the feature mapping function and k(xi,xj) =
〈φ(xi), φ(xj)〉 is the associated kernel function; αi are
coefficients that describe the significance of each sam-
ple in the weight vector w and α = [α1; . . . ;αns+nt ] ∈
R

(ns+nt) is the coefficient vector; xi is the i-th column of
Xv = [Xsv,Xtv] ∈ R

d×(ns+nt), denoting all the visual
features in the source and target domains.

With the revised representer theorem, the classifier
parameters ws and wt can be denoted by a linear
combination of all the visual features in the Hilbert space
H and the corresponding coefficient vectors are αs ∈
R

ns+nt and αt ∈ Rns+nt . Specifically, we assume
that, if a sample is significant in the weight vector of
a source classifier, it is also significant in one of the
target classifiers, and vice versa. To exploit the relevance
between the two visual classifiers, the coefficient vectors
are combined as A = [αs,αt] ∈ R

(ns+nt)×2. Each row
of A reflects the importance of the corresponding sample
in both classifiers. To boost significant samples and inhibit
insignificant ones, an L2,1 norm2 regularizer is used to
restrict A, making it row sparse. Thus, the cross-domain
co-regularizer can be formulated as

Ωcd(fsv, ftv) = ‖A‖2,1. (5)

By minimizing the L2,1 norm, each row of A will
consist of all zeros or non-zeros simultaneously. In this

2The definition of the L2,1 norm as follows: For a matrix W ∈
R
m×n, ‖W‖2,1 =

∑m
i=1 ‖Wi‖2 =

∑m
i=1

√∑n
j=1 w

2
ij .

process, the important samples are selected to construct
the target classifier with the revised representer theorem.

3.2.3. Exploiting depth information. Motivated by
multi-view learning (Sun, 2013), in which different types
of features collaborate to learn more robust classifiers, we
aim to exploit the depth images in the source domain to
further improve the performance of the target classifier.
In fact, the depth and visual features are two different
types of representation of one object, so the two-source
classifiers should offer identical predictions. Therefore, a
cross-modality co-regularizer Ωcm is used as follows to
bring consistency to the two-source classifier and boost
the performance of the sources simultaneously (Li et al.,
2018):

Ωcm(fsv, fsd) =
ns∑
i=1

∣∣fsv(xi
sv)− fsd(x

i
sd)

∣∣2. (6)

By minimizing the cross-modality co-regularizer,
the source depth classifier is connected to the source
RGB classifier. In addition, the source RGB classifier
is connected to the target RGB classifier with the
cross-domain co-regularizer described in Section 3.2.2.
Thus, the source depth classifier is connected to the target
RGB classifier indirectly. Namely, the depth images in
source domain are used to help learn the target RGB
classifier.

3.3. Concrete learning algorithm. Our proposed
ATL is a general framework. It may take various
forms based on various loss functions, such as the least
square loss l = (yi − f(xi))

2 and hinge loss l =
max (0, 1− yif(xi)). In the following, we introduce a
specific learning algorithm using the least-squares loss
function, named ATL-ls. Algorithms that use other loss
functions will be investigated in future works.
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3.3.1. Objective function of ATL-ls. According to the
classical representer theorem, the optimal solution of the
source depth classifier can be written as

wsd =

ns∑

i=1

αi
sdφ(x

i
sd), fsd(x) =

ns∑

i=1

αi
sdk(x

i
sd,x),

(7)
where αsd = [α1

sd; . . . ;α
ns

sd ] ∈ R
ns is the coefficient

vector.
According to the definition of the F -norm, the

regularizer in Eqn. (2) can be rewritten as ‖w‖2F =
tr(αTKα), where ‘tr’ is the trace function and K is the
corresponding kernel matrix. Based on the least square
loss function, the unified objective function of ATL-ls is
obtained by integrating Eqns. (2)–(7),

min
αsv ,αsd,αtv

Cs(‖ys −Ksvαsv‖2F + ‖ys −Ksdαsd‖2F )

+ Ct ‖yt −Ktvαtv‖2F + σ(tr(αsv
TKvαsv)

+ tr(αsd
TKsdαsd)

+ tr(αtv
TKvαtv)) + μ‖A‖2,1

+ β ‖Ksvαsv −Ksdαsd‖2F ,

(8)

where Ksv = k(Xsv,Xv) ∈ R
ns×(ns+nt), Ktv =

k(Xtv,Xv) ∈ R
nt×(ns+nt), Kv = k(Xv,Xv) ∈

R
(ns+nt)×(ns+nt) and Ksd = k(Xsd,Xsd) ∈ R

ns×ns

are kernel matrices constructed using different feature
matrices.

3.3.2. Optimization of ATL-ls. In this section, we
discuss how to solve the overall objective function in
Eqn. (8). The main idea is to calculate αsv , αsd

and αtv alternatively and to repeat this process until
convergence. However, there is a difficulty in that the
L2,1 norm minimization problem cannot be solved in
closed form. Fortunately, some methods exist (Argyriou
et al., 2008; Liu et al., 2009; Xiao et al., 2013) to solve
if. In this paper, the method of Argyriou et al. (2008)
is adapted to transform the L2,1 norm to an equivalent
convex optimization problem as follows:

‖A‖2,1 =

ns+nt∑

i=1

‖Ai‖2 =tr(ATRA), (9)

where Ai is the i-th row vector of A and R is a diagonal
matrix with Rii = 1/‖Ai‖2. Thus, A and R can be
sought alternatively. In each iteration, A is calculated
based on the current R, then A is updated, and then R
is calculated based on the new A.

In each iteration of the optimization of ATL-ls,
the coefficient vectors αsv, αsd and αtv are calculated

Algorithm 1. ATL-ls algorithm.
Require: Labeled source domain visual features Xsv ,

depth features Xsd, target domain visual features
Xtv , and parameters σ, μ, β, Cs, Ct.

1: Initialize αsv ,αsd and αtv randomly.
2: Update A = [αsv,αtv] and calculate R.
3: repeat
4: Calculate αsv via Eqn. (10).
5: Calculate αtv via Eqn. (11).
6: Update A and calculate R.
7: Calculate αsd via Eqn. (12).
8: until convergence
9: return The optimal coefficient matrix αtv of the

target classifier ft.

alternatively by fixing two of them and setting the
derivative of the objective function with respect to another
to zero, thus yielding the following solutions:

αsv = P−1
(
CsKsv

Tys + βKsv
TKsdαsd

)
, (10)

where

P = (Cs + β)Ksv
TKsv + σKv + μR,

αtv =
(
CtKtv

TKtv + σKv + μR
)−1

CtKtv
Tyt, (11)

αsd = Q−1
(
CsKsd

Tys + βKsd
TKsvαsv

)
, (12)

with Q = (Cs + β)Ksd
TKsd + σKsd.

The corresponding ATL-ls algorithm is summarized
in Algorithm 1.

Multi-class extension y ∈ R
c is a row label vector

such that yi = 1 if it belongs to the i-th category,
and yi = 0 otherwise. Thus, the label matrices of
the source and target domains are of the form Y =
[y1; , . . . , ;yn] ∈ R

n×c. Moreover, the coefficient
matrices of each classifier are Asv = [αsv1 , . . . ,αsvc ] ∈
R

(ns+nt)×c, Asd = [αsd1 , . . . ,αsdc ] ∈ R
ns×c and

Atv = [αtv1 , . . . ,αtvc ] ∈ R
(ns+nt)×c, and A =

[Asv,Atv] ∈ R
(ns+nt)×2c. In this way, the learning

algorithm ATL-ls can be extended to deal with a c
categories classification problem.

4. Experiments and performance analysis

In this section, we perform extensive experiments to
evaluate and analyze the ATL-ls algorithm for an object
recognition task on four cross-domain dataset pairs.
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4.1. Baseline approaches. In this paper, the proposed
ATL-ls is compared with the following four types of
methods.

Naive approach. The standard regularization
least-squares (RLS) algorithm is used to train two
classifiers (named RLS-t and RLS-s) using labeled RGB
images in the target and source domains, respectively.

Learning using privileged information. The proposed
method is compared with the LUPI method SVM+
(Vapnik and Vashist, 2009) and rank transfer (RT)
(Sharmanska et al., 2013), in which the depth images in
the source domain are used to train an RGB classifier.

Transfer learning. The compared transfer learning
methods include heterogeneous feature augmentation
(HFA) (Li et al., 2014) and the metric transfer learning
framework (MTLF) (Xu et al., 2017). Both HFA and
the MTLF can learn a target classifier with scarce labeled
target images by transferring knowledge from the source
RGB images.

Domain adaptation with depth images. The DA-M2S
(Chen et al., 2014; Li et al., 2018), IBDAPI (Motiian and
Doretto, 2016) and DARDR (Li et al., 2017) approaches
address the same problem as ours; they can reduce the
distribution mismatch and exploit the depth images in the
source domain simultaneously. In particular, the DA-M2S
and IBDAPI methods do not use the labels in the target
domain.

4.2. Dataset description. We evaluate the proposed
method on the following four cross-domain pairs; the
details are listed in Table.2.

RGB-D(R)→Caltech-256(C). The RGB-D dataset (Lai
et al., 2011) is used as the source domain containing
RGB and depth images in 51 categories. These images
are cropped using the video sequence captured with
the Microsoft Kinect camera. The Caltech-256 dataset
(Griffin et al., 2007) containing 29,780 RGB images from
256 categories is used as the target domain. In the
experiments, ten categories shared across the two datasets
are used, namely, ball, calculator, cereal-box, cup, flash-
light, keyboard, light-bulb, mushroom, soda-can, and
tomato. As the RGB-D dataset is recorded in the form
of video sequences, we uniformly subsample the frames
with an interval of four, leading to a total of 1824 pairs of
RGB and depth images in the source domain.

RGB-D(R)→ImageNet(I). ImageNet (Deng et al., 2009)
is a large-scale dataset including more than 100,000
categories of RGB images organized in accordance with
the WordNet hierarchy structure. In this paper, only
ten common categories across RGB-D and ImageNet,
namely, apple, banana, calculator, cereal-box, coffee-
mug, keyboard, light-bulb, plate, soda-can, water-
bottle, are used to demonstrate the proposed algorithm.

Table 2. Details of the dataset pairs used.
Dataset pair #Instances #Classes

RGB-D/Caltech-256 1824/1132 10
RGB-D/ImageNet 1823/1000 10
B3DO/Caltech-256 1129/776 8
B3DO/ImageNet 1135/800 8

Following the work of Li et al. (2017), we randomly
select 100 images per category in ImageNet as the target
domain. Meanwhile, 1823 pairs of RGB and depth images
subsampled from RGB-D are used as the source domain.

B3DO(B)→Caltech-256(C). The Berkeley 3D Object
(B3DO) dataset (Janoch et al., 2013) contains 849 color
and depth image pairs gathered by a Microsoft Kinect
camera in actual domestic and office environments. Over
50 different object classes are represented in the dataset.
We crop these objects with the provided bounding box and
select eight classes shared across B3DO and Caltech-256.
The images belonging to the eight classes, cup, keyboard,
monitor, mouse, phone, soda-can, spoon, water-bottle, are
used in our experiments. B3DO is as the source domain
and Caltech-256 is used as the target domain.

B3DO(B)→ImageNet(I). To demonstrate the proposed
algorithm, we also conduct experiments on B3DO and the
ImageNet dataset pair, in which the same eight categories,
cup, keyboard, monitor, mouse, phone, plate, spoon,
water-bottle, are used. We use the B3DO as the source
domain and randomly select 100 images per category
in ImageNet as the target domain, similarly to Li et al.
(2017).

4.3. Experimental setup. In the experiments, a joint
cross validation parameter selection approach is applied
to choose the three regularization parameters σ, μ and
β from {0.001, 0.01, 0.1, 1, 10, 100}. The Gauss kernel
function3 is used and its bandwidth δ is set to the average
distance between all the samples, as in the works of Gehler
and Nowozin (2009) and Kovashka and Grauman (2010).
Moreover, because the number of labeled datapoints in the
source domain is much larger than in the target domain,
we set Cs = nt/2(ns + nt) and Ct = ns/(ns + nt) to
balance the loss terms for the source and target domains
in the objective function.

The multipath hierarchical matching pursuit
(M-HMP) method (Bo et al., 2013), which can capture
multiple aspects of discriminative structures by combining
a collection of hierarchical sparse features, is used to
extract visual and depth features from the RGB and depth
images, respectively. Furthermore, the PCA method is
applied to reduce the features’ dimensionality to 500.

3The Gauss kernel function has the form k(xi,xj) =

exp
(
−‖xi − xj‖2

/
2δ2

)
.
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The experiments are all run twenty times and
multi-class classification accuracy is used as the
evaluation metric. Each time, we randomly select 3%
of the samples from the target domain together with all
the samples from the source domain as training data, and
the remainder (i.e., 97%) in the target domain is used as
testing data.

4.4. Experimental results. From the results reported
in Table 3, we can see that the proposed ATL-ls method
outperforms all the others. That proves the effectiveness
of transferring the knowledge of relevant RGB-D images
in the source domain to help recognize RGB images in the
target domain.

Of all the compared methods, the naive approach
RLS-s achieves the worst performance as it neither
exploits the depth images nor considers the divergence
in data distribution between domains. By exploiting
the depth information in the source domain, the LUPI
methods SVM+ and RT perform better than the RLS-s on
all dataset pairs. Although SVM+ and RT can learn a more
robust classifier by using privileged information (i.e.,
depth images), this is not suitable for the classification
of images in the target domain because of the huge
divergency in data distribution. Thus, the performance of
SVM+ and RT is worse than that of the other methods
except RLS-s. The transfer learning methods HFA and
MTLF outperform the naive RLS-t approach as they use
knowledge not only in the target domain but also in
the source domain, and the labeled data in the target
domain are not sufficient to train a robust RLS classifier.
This demonstrates that exploiting knowledge from the
source domain is particularly helpful in improving the
performance for a target task.

All the methods that simultaneously consider the
distribution mismatch and exploit the depth information
perform better than the transfer learning methods. This
again demonstrates the relevance of the depth images in
the source domain. Moreover, DA-M2S and IBDAPI are
worse than DARDR and FADALS. This may be because
DA-M2S and IBDAPI do not use the labels in the target
domain, which would have been helpful for learning a
more robust target classifier. Therefore, it appears that
exploiting the label information in the target domain
is preferable. In addition, our method achieves better
performance than DARDR on all dataset pairs. Indeed,
the target classifier learned in DARDR is a linear least
square classifier, which may not work well for non-linear
classification problems. Our ATL-ls can learn a more
discriminative non-linear classifier by using the kernel
trick and sharing parameters between the source and target
visual classifiers.

4.5. Analysis of the ATL-ls algorithm. Here we
analyze the proposed ATL-ls algorithm in three aspects:
the influence of depth information, the influence of
transfer learning and the convergence.

4.5.1. Influence of depth images. To analyze
the impact of the depth images, we execute a
simplified algorithm based on the ATL framework called
ATL-nodepth, which does not use depth images but keeps
all other aspects of the objective function unchanged. The
comparative results of the experiments on different dataset
pairs are listed in Table 4. From the results we can
see that the proposed FADALS method outperforms the
ATL-nodepth technique on all dataset pairs. The main
reason is that we can learn a more robust source visual
classifier by using the depth images; thus, the performance
of the target classifier is improved indirectly by sharing
parameters with the source visual classifier.

4.5.2. Influence of transfer learning. In this section,
we will explore the influence of transfer learning for the
ATL-ls algorithm. To achieve this goal, we construct
another simplified algorithm based on the ATL framework
called ATL-notransfer, which does not use any knowledge
from the source domain. This can be achieved by setting
the value of the cross-domain regularizer parameter β =
0 and keeping other terms in the objective function
unchanged. The comparison with the experimental results
on different dataset pairs is given in Table 5. ATL-ls
performs better than ATL-notransfer on dataset pairs as
it can construct the target classifier with the significant
visual features in both domains by sharing the coefficient
vectors.

4.5.3. Parameter sensitivity. In this section, we will
investigate how regularization parameters μ and β affect
the accuracy for various object recognition tasks. We
conducted experiments on four different problems (R→C,
R→I, B→C, and B→I) and plotted the classification
accuracy, as illustrated in Fig. 2. In these experiments,
we tuned one parameter at a time over a given range while
pinning the others to their optimal values.

As Fig. 4.5.1 shows, the accuracy degrades when the
value of μ is too large or too small. If it is too large, the
classification boundary of the target classifier becomes too
close to that of the source classifier. Therefore, the effects
of the target samples are inhibited, and this situation is
referred to as overtransfer. Conversely, if the value is too
small, knowledge from the source domain can adequately
be transferred to the target domain, and this situation is
referred to as undertransfer. Over and undertransfers both
degrade accuracy. As shown in Fig. 4.5.1, the value of
β can also clearly affect performance. When β is too
small, depth information in the source domain is not fully
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Table 3. Comparison of average accuracies (%) for object recognition on different dataset pairs.

Dataset RLS-s RLS-t SVM+ RT HFA MTLF DA-M2S IBDAPI DARDR ATL-ls

R→C 19.54 22.18 20.15 19.62 28.14 29.82 31.26 31.87 33.41 35.12

R→I 17.87 21.01 19.56 18.31 27.32 27.18 30.62 32.01 32.28 33.45

B→C 18.69 24.32 20.10 19.45 29.01 28.70 30.16 31.24 32.13 33.22

B→I 19.02 23.18 20.27 19.82 28.76 29.63 31.03 31.98 33.02 34.11
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Fig. 2. Influence of regularization parameters μ (a) and β (b).

Table 4. Impact of depth images on the accuracy (%) of the
ATL-ls algorithm.

Dataset ATL-nodepth ATL-ls

R→C 34.03 35.12
R→I 32.10 33.45
B→C 31.36 33.22
B→I 32.18 34.11

utilized. Conversely, when β is too large, the effects
of the other terms in the proposed method are inhibited.
Therefore, to achieve the best performance, we need to
select suitable values for μ and β.

4.5.4. Convergence and running time. Denote by

J(As
(n),Ad

s
(n)

,At
(n)) the value of the objective function

at the n-th iteration. According to Eqns. (10) and (11), the
value of the objective function will decrease at Steps 4 and
5 for each iteration of Algorithm 1, i.e.,

J(As
(n+1),Ad

s

(n)
,At

(n))

≤ J(As
(n),Ad

s

(n)
,At

(n)), (13)

J(As
(n),Ad

s

(n)
,At

(n+1))

≤ J(As
(n),Ad

s

(n)
,At

(n)). (14)

x Moreover, the convergence for the alternating
minimization algorithm computing the optimal solutions

Table 5. Impact of transfer learning on the accuracy (%) of the
ATL-ls algorithm.

Dataset ATL-notransfer ATL-ls

R→C 30.21 35.12
R→I 28.15 33.45
B→C 29.62 33.22
B→I 28.37 34.11

of the L2,1 norm was proved by Argyriou et al. (2008).
Thus, in Step 6 at the n-th iteration the value decreases
further,

J(As
(n+1),Ad

s

(n)
,At

(n+1))

≤ J(As
(n),Ad

s

(n)
,At

(n)). (15)

According to Eqn. (12), after Step 7 at the n-th iteration
we can get

J(As
(n+1),Ad

s

(n+1)
,At

(n+1))

≤J(As
(n),Ad

s

(n)
,At

(n)). (16)

Obviously, we can see that the total objective function
decreases after each iteration, in other words, the
algorithm is convergent.

To further demonstrate the convergence of our
algorithm, the iteration and running time of ATL-ls on
various dataset pairs are reported in Table 6, wherein
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Table 6. Iteration times and running time (s) for ATL-ls on var-
ious dataset pairs.

Dataset Iterations Running time

R→C 8 64.2096
R→I 11 70.2388
B→C 8 22.3542
B→I 9 26.2247

the algorithm is running on Matlab Version R2015a and
the convergence condition is |objt+1 − objt|/|objt| ≤
10−4. It appears that the algorithm converges after 8–11
iterations. The factors affecting running time are primarily
the calculations of the four kernel matrices. As the number
of samples increases, the running time will obviously
increase. A practical solution to this problem involves
using a manually assigned bandwidth for the Gauss kernel
instead of a fixed value set to the average distance between
samples.

5. Conclusion

In this paper, we proposed an asymmetrical transfer
learning framework to utilize the relevant RGB-D images
in the source domain to help recognize RGB images in
the target domain, which contains scarce labeled data.
Specifically, we jointly learn the source visual classifier,
the source depth classifier and the target visual classifier
with RGB and depth images from the source domain and
RGB images from the target domain. To leverage depth
information, we impose consistency in the predictions
of the two-source classifiers, yielding performance gains.
In addition, parameters are shared across the two visual
classifiers so that knowledge can be transferred from
the source domain to the target one. Model parameters
can all be incorporated into a unified model, and the
optimal solution can be obtained after a few iterations.
The results of the experiments on different dataset pairs
show that the proposed method can effectively exploit the
relevant RGB-D images in the source domain to learn a
robust target classifier and significantly outperform the
state-of-the-art methods in various recognition tasks.

A limitation of our method is that it requires some
labeled images in the target domain. Thus, in the future,
we will explore ways to learn a classifier with labeled
RGB-D images from the source domain when RGB
images in the target domain are all unlabeled. Another
important question is how to utilize RGB-D images in
categories that are different to those of RGB images in
the target domain.
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