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Extracting useful information from astronomical observations represents one of the most challenging tasks of data explo-
ration. This is largely due to the volume of the data acquired using advanced observational tools. While other challenges
typical for the class of big data problems (like data variety) are also present, the size of datasets represents the most signif-
icant obstacle in visualization and subsequent analysis. This paper studies an efficient data condensation algorithm aimed
at providing its compact representation. It is based on fast nearest neighbor calculation using tree structures and parallel
processing. In addition to that, the possibility of using approximate identification of neighbors, to even further improve the
algorithm time performance, is also evaluated. The properties of the proposed approach, both in terms of performance and
condensation quality, are experimentally assessed on astronomical datasets related to the GAIA mission. It is concluded
that the introduced technique might serve as a scalable method of alleviating the problem of the dataset size.
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1. Introduction

Recent decades have been characterized by an
unprecedented burst of new data being generated in
various fields of science and engineering. In essence, it
can be useful to generate new insights, which lead to new
discoveries and improve our standard of living. However,
the toolbox of contemporary data science, though broad
and reinforced by unconventional methods of artificial
intelligence, does not contain algorithms which cope well
with the challenges of the so-called big data. This term
encompasses a set of problematic properties of data sets
stored in present-day computer systems. Besides the
obvious obstacle of data volume, variety (which relates to
diverse data types and structures of the datasets), velocity
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(which refers to the speed of new data generation) and
veracity (which corresponds to data quality/uncertainty),
can also be named here (Grandinetti et al., 2015).

Astronomy, among other fields of science, is
nowadays strongly affected by big data problems. This
is due to the fact that it currently possesses a variety
of data acquisition tools. In reality, the sizes of
catalogs of astronomical objects reach petabytes, and
they may contain billions of instances described by
hundreds of parameters (Lukasik et al., 2016). Even
the seemingly simple task of visualizing such datasets
becomes a serious challenge. In such a case, along
with significant computing power, sophisticated data
preprocessing algorithms are required.

The aim of this paper is to provide an efficient
method of data condensation that selects the most
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representative objects (data prototypes) in the data in a
way that preserves the data density. Such data instances
can later be used for visualization, as well as for other
data mining procedures. For this purpose we propose a
modified fast density-based multiscale data condensation
algorithm (Mitra et al., 2002). Our variant utilizes a
kd-trees based nearest-neighbor technique together with
parallel processing. Furthermore, we suggest to optionally
use approximation of k nearest neighbor calculation to
achieve additional performance gains. The proposed
approach is thoroughly evaluated on astronomical datasets
related to the GAIA mission (GAIA, 2018). The
preliminary version of this paper, containing only partial
results, focusing purely on performance and assuming
only exact calculation of nearest-neighbors, was presented
by Lukasik et al. (2019).

The paper is organized as follows. First, in the
next section, we provide methodological preliminaries,
introducing data reduction and examples of related
techniques in astronomy, as well as the problem of
efficient nearest neighbors calculation. Section 3
overviews the proposed approach and is followed by a
discussion on the results obtained for real astronomical
data, presented in Section 4. Finally, general
remarks regarding characteristic features of the introduced
approach and planned further studies are discussed.

2. Methodological preliminaries

2.1. Data reduction and its use in astronomy. Data
preprocessing techniques used in astronomy ought to deal
with large datasets, also in real-time mode. This is a
consequence of the rapid development of new instruments
and new data gathering schemes. It effectively means
that the volume of the data generated doubles every year
(Szalay and Gray, 2001). A practical illustration of this
problem is the amount of objects captured by sky surveys
over the last fifty years, as demonstrated in Table[T]

Consequently, data reduction is typically introduced
as close as possible to the instrumentation level, i.e.,
at the signal/image processing phase. Its goal is to
reduce the size of transferred data. Such reduction in
most cases involves removing noise, signatures of the
atmosphere/instrument and other contaminating factors
(Freudling et al., 2013; Schirmer, 2013). Typically, such
reduction is a part of the data processing pipeline and
is performed in online mode (Freudling and Romaniello,
2016).

When object-based data are already available, their
reduction can be performed with random sampling,
probabilistic modeling, algorithms based on information
theory or clustering. Representative techniques
implementing all of these strategies will be covered
in subsequent paragraphs.

Sampling methods represent a typical approach to the

problem of data reduction (Chung et al., 2016). Uniform
sampling techniques with or without replacement are the
most widely used approach also in astronomy (e.g., Dutta
et al.,2005; Rocke and Dai, 2003). Stratified sampling, as
the one preserving the ratio of objects present in different
classes, is also used (e.g., Abraham et al., 2012).

As an alternative to statistical sampling, the
aforementioned, more  sophisticated  procedures
employing probabilistic modeling could be considered.
In the work of Wang et al. (2009) the dataset is clustered
into hyper-balls with predetermined radii. Each of them
is associated with a kernel and a weight, in such way that
the mixture exposes the local data distribution. Another
approach of this class, presented by Zhang et al. (2018),
involves condensation of the dataset obtained by the
well-developed kernel density estimators: the reduced
set density estimator or the fast reduced set density
estimator. It is followed by identifying representative data
points by means of the so-called exemplar score (ES),
which ensures that a reduced set consists of high-density
samples.

Information theory can also be a useful tool to
develop efficient methods of data reduction. In the work
of Huang and Chow (2006) an application of entropy to
measure the quality of newly obtained representatives is
presented. This method consists of two stages. First a set
of representatives of a desired size is built, and then its
elements are eliminated and replaced on the basis of two
criteria: representative entropy or weighted representative
entropy. Both measure representative performance of a
single element with regards to the original set. The latter
includes an additional weighting scheme which is used to
make sure that data elements close to the representative
have a greater effect on the entropy measure than those
far from it.

Representative data instances can be also located
using distance-based criteria. In this approach, a reduced
sample contains iteratively added furthest items from all
the already selected ones. The algorithm implementing
this paradigm called DIDES (distance-and density-based
sampling) requires only one parameter (granularity)
which indirectly determines the number of reduced data
points. At the same time this method was also found
to be insensitive to initialization and noise (Ros and
Guillaume, 2017). Clustering likewise represents a natural
method for data reduction. In such a case data are
clustered with desired granularity and then a set of
representatives from each cluster is selected. Running the
standard k-means algorithm and selecting cluster centers
as reduced set represent the most typical approach based
on this concept. The more complex OSC (object selection
by clustering) method, presented by Olvera-Lépez et al.
(2010), selects border instances from each cluster (while
retaining also some central ones). The method can
be built upon any clustering technique as it essentially
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Table 1. Selected sky surveys as reported by Lukasik et al. (2016).

Survey Institution ~ Number of objects Type Time frame
Hipparcos European Space Agency 0.12M  Optical ~ 1989-1993
Tycho-2 European Space Agency 25M  Optical  1989-1993
DPOSS Caltech 550M  Optical  1950-1990
2MASS Univ. of Massachusetts, Caltech 300M Near-IR  1997-2001
GAIA European Space Agency 1000M  Optical 2013-
SDSS  Astrophysical Research Consortium 470M  Optical 2000-
LSST LSST Corporation 4000M  Optical 2019-

proposes only an alternative scheme of representatives
selection. After clustering, border instances are located
in non-homogeneous clusters (border regions) and interior
ones in homogeneous clusters. This is based on the
assumption that border objects provide useful information
allowing discrimination between different regions.

The paragraphs above described general, problem
independent, methods of data reduction. As astronomy
relies heavily on advanced visualization, many procedures
of data reduction were developed to deal with the
problem of data abundance in visual analytics (Hassan
and Fluke, 2011). They are mainly based on creating
new data contexts containing only selected data points,
which makes data visualization less complex. Selection
of such a reduced set is performed either manually
Burgess er al. (2015) or using distance from the observer.
In addition to that, data reduction is frequently build
upon other underlying data exploration techniques, using
supervised learning (which sometimes, in the context of
data reduction, is named the wrapper approach). This
means that the result of the reduction procedure is
iteratively evaluated and improved over a set of runs of
an auxiliary data mining procedure (e.g., classification).
As a representative of this approach, an algorithm
by Czarnowski and Jedrzejowicz (2017) can be given.
A population of agents is used therein to find the
most effective classification model based on parallel

Algorithm 1. Density-based data condensation.

1: Denote by B = {x1,2,...,2x} the initial dataset.
Set condensation ratio k.

2: Prepare empty reduced dataset .

3: For each data point z; € B calculate the distance
di.(x;) to its k nearest neighbor.

4: Pick the point j with the smallest value of dj,(x ). 1.e.,
xj; = argming—1, . n di(z;).

5: Insert x; into reduced dataset F, denote by 7, the
distance to its neighbor k.

6: Remove all points from B which are situated within
2 x 1, from ;.

7: Repeat Steps 3—6 until B is not empty.

data reduction, which guarantees maximization of the
classification quality. Data prototypes are selected from
clusters of instances obtained by fuzzy clustering, under a
condition that each representative point is derived from a
single cluster.

For a more extensive overview of data reduction
schemes in astronomy, along with use-case examples,
one could refer to Lukasik et al. (2016). Here we will
discuss and use the general data condensation technique
proposed by Mitra et al. (2002). We already positively
evaluated it for elementary data reduction tasks present in
the preprocessing of astronomical sky surveys (Lukasik
et al., 2016). In particular, it was found that it is
very competitive in terms of preserving the original data
density for an artificially generated dataset.

The condensation algorithm discussed here relies
on iteratively finding points with the closest k-nearest
neighbor (the distance to which is denoted by r) and then
adding them to the reduced dataset F, which is initially
empty. In case of ties at this stage the decision which point
is selected is based on the distance to the subsequent (that
is, k + 1) neighbor. At the same time, other points lying
within a disc of radius 2 x rj, are eliminated (not included
in the set F). Algorithm[I]describes the main steps of the
data reduction algorithm.

It can be seen that the algorithm requires utilizing
both nearest neighbor search and the so-called radius
search, finding points situated in the hyper-sphere of given
radius.

2.2. Fast nearest neighbors search. Finding nearest
neighbors in data constitutes a very important issue,
as a plethora of data mining algorithms are built on

Algorithm 2. Exhaustive k-nearest neighbor search.

1: Calculate all pairwise distances d(z;,x;), i,j =

1,...,N.

2: For each query point x; sort distances in ascending
order.

3: For each query point z; find a set of k closest
neighbors.
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this component. It includes outlier detection (Breunig
et al., 2000), classification (Li et al., 2008) and clustering
(Bubeck and von Luxburg, 2009). That is why fast
k-nearest neighbor calculation is crucial to data analysis,
especially when it is performed on large datasets.

Naive, so-called brute-force or exhaustive, k-nearest
neighbor search involves steps listed as Algorithm[2]

The time complexity of such procedures—taking
into account that the neighborhood is to be identified for
all query points—is O(N?) + (N?log N). It becomes
prohibitive for most practical applications (Arefin et al.,
2012).

Three major classes of algorithms have been
identified to speed-up the process of locating nearest
neighbors: kd-trees or other tree-based partitioning
structures, hashing techniques and neighboring graph
approaches. The first approach is based on building
a hierarchical structure partitioning the data recursively,
e.g., along the dimension of maximum variance.
Examples of approaches based on this paradigm include
the use of kd-trees (Eastman and Weiss, 1982) and
vp-trees (Yianilos, 1993). The second approach is based
on hashing points in a similarity preserving way, i.e., by
putting it them in the buckets grouping similar items (as
in locality sensitive hashing (Zhang et al., 2013)). An
example of the third strategy can be found in the work
of Wang et al. (2013), where a random k-NN graph
approximation, updated in each step of the algorithm, is
used.

For a more extensive discussion on fast
nearest-neighbor strategies, one could refer to Muja
and Lowe (2014). In the subsequent part of the paper we
will discuss how fast nearest neighbor calculation, based
on kd-trees, can be included within the parallel scheme
of data reduction strategy to make its execution feasible,
even for large datasets.

3. Proposed approach

The proposed scheme of efficient data condensation
involves first building a tree structure using a standard
kd-tree algorithm. It should be then distributed among
nodes which are subsequently used for k-nearest neighbor
calculation. Each node is responsible for locating a set of
nearest neighbors for its assigned part of the dataset. The
search process itself is again parallelized at a multi-core
level. It is followed by a sequential radius search, locating
points situated within 2 X r; from the one with the smallest
value of dj(x;) and removing them from the dataset.
Evidently, each removal operation requires an update of
the kd-tree data structure. The process is repeated until
the initial dataset is completely pruned. The algorithmic
summary of the whole process is presented in Fig. [

It can be observed that parallelization is used at the
most often repeated step of locating nearest neighbors. It

B = {xy,x;, ..., xy} - initial dataset
k - condensation ratio
E - emptv reduced dataset

Create/update kd-tree for B,
distribute among nodes

[

Node 1 I Node 2 ! Nodeproc 4

Obtain k-nn

[ [ \
'

Find x; = arg ‘n}in di (i)
i=1.n

l

Denote d,(j) as 1y,
Insert x; into £

I

Remove x; from B with all points situated within
2 * 1y radius

l

Is B empty?

Obtain k-nn (X J Obtain k-nn

No

Yes

Terminate and
return E as the reduced data representation

Fig. 1. Data condensation with parallel nearest neighbors calcu-
lation based on kd-trees.
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Fig. 2. kd-Tree for a normalized portion of GAIA data.

is not needed at the stage of radius search, as it is executed
only once for one point in each data pruning step.

Using kd-trees as a tool for efficient nearest-neighbor
search allows us to implement additional approximation.
The tree is generally searched, starting from the root node,
by moving down the tree recursively, i.e., it goes left or
right depending on whether the point is lesser or greater
than the current node in the split dimension. At each
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Fig. 4. Running times for a varying value of k.

traversed node a check is done to store nearest-neighbors.
To make the algorithm run faster (at the cost of accuracy),
an upper bound (denoted as MaxNode) on the number
points to examine in the tree can be set.

In the subsequent part of the paper we will evaluate
this approach and study its properties.

4. Experimental results

To evaluate the performance of the proposed data
condensation approach, we set up an experiment involving
reducing the dataset size for a portion of the GAIA
Data Release 1 snapshot (GAIA, 2018). We used only
spatial information, namely, transformed 3D coordinates
of astronomical objects. Figure Pl demonstrates the result
of kd-tree search on a normalized portion of GAIA for the
first two coordinates.

As a distributed computing paradigm, MPI was used
(MPI Forum, 2015). At the same time we employed
OpenMP (OpenMP Architecture Review Boards, 2015) as
a model for multi-core parallelization of nearest-neighbor
search on one node. For the measure of time performance
of a newly developed parallel algorithm, speed-up,

understood as

t aralle!
Speedup = —parllel 100%, (1

sequential

i.e., running time of the parallel algorithm divided by the
running time of its sequential variant, was selected.

When examining the properties of the proposed
approach, we first explored the impact of neighborhood
size k on the resulting reduced dataset size, assuming that
the initial dataset had 250 000 objects. Figure 3] contains
the results of this experiment. It can be seen that the
reduction provides a very compact representation of the
analyzed snapshot, even for a small number of neighbors
we obtain only a few percent of the initial sample.

It is important to note that the intensity of data
reduction does not change with the initial dataset size—it
is therefore inherently associated with geometrical
properties of the dataset. This feature is demonstrated by
the compression ratios shown in Table 2]

The process of data reduction is usually performed
to achieve the assumed size of the resulting dataset. At
the same time it was established that it is not possible to
estimate it on the basis of the value of k. Still, as the
compression ratio depends on the geometrical properties
of the data, it is enough to estimate it on the small data
sample, testing different values of k, and use the number
of neighbors resulting with the desired reduction ratio for
the whole dataset.

Secondly, we studied the running times for the
algorithm with varying values of condensation ratio k.
The initial dataset size was set again to 250 000 elements.
One node with 4 threads running concurrently was used
for this experiment. Figure 4] demonstrates the results of
this test.

The analysis of the results leads us to conclusion
that the profit resulting from parallelization within one
node increases with the size of k. This is due to the
frequent need of synchronization, with small values of
the number k, which reduces the efficiency of parallel
processing. Furthermore, higher values of k result in more
intensive reduction, requiring fewer steps of data pruning.
It was observed, however, that for the large number of
neighbors the impact of identifying neighboring points
becomes more tangible, and it consequently deteriorates
the algorithm’s time performance.

We also studied obtained speed-up values for parallel
calculation of nearest neighbors for 100 000 objects
using 4 nodes, with one parallel thread running on
each of them. The results are reported in Fig. It
was established that parallelization is more beneficial
for a high number of neighbors. While k increases,
the speed-up becomes asymptotically linear. The
growing overhead of communication and synchronization
operations was not yet observed in this case.

aamcs
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Table 2. Compression ratios for different initial dataset sizes.

k

[N 5] 10] 25] 50] 100] 250] 500 1000 | 10000
50000 | 90.88% | 95.57% | 98.22% | 99.08% | 99.52% | 99.78% | 99.88% | 99.93% | 99.99%
100000 | 91.41% | 95.88% | 98.38% | 99.17% | 99.57% | 99.80% | 99.89% | 99.94% | 99.99%
250000 | 92.34% | 96.29% | 98.54% | 99.24% | 99.59% | 99.83% | 99.90% | 99.95% | 99.99%

The effect of using different parallel calculations
models was also under investigation. We have studied
speed-up values for a varying number of neighbors and
3 configurations:

e 4 nodes with 1 parallel thread running on each of
them,

e 2 nodes with 2 parallel threads running on both of
them,

e 1 node with 4 threads.

The results for all of the above setups are provided in
Table Bl It was observed that the best performance was
obtained purely on multi-core computation model (i.e.,
only using OpenMP-based parallelization). For small
values of k configuration with 2 nodes, 2 threads each
were over-performed by the algorithm run only as single
threads on 4 nodes. However, it was found to be faster for
large values of k. This may be explained by the impact
of the time cost of the kd-tree distribution, which for less
computationally demanding tasks becomes an important
factor. The configuration with many nodes is also more
prone to network jitter, which might lead to anomalies in
the obtained speed-up (as demonstrated by its decrease for
k = 10 and 4 nodes in Table 3).

We also studied the possibility of using approximate
nearest neighbor calculation to achieve additional boost in
terms of calculation time. For that purpose we assumed
(as indicated in the previous section) that the kd-tree
can be evaluated only partially. We studied the relations
between the maximum number of visited nodes and both
the speed-up and the approximation error ‘Error’. Errors
here correspond to the relative number of initial dataset
elements present both in the reduced dataset with and

greater than or equal to k. For a smaller number of nodes,
the error was unacceptable, and if MazNode was set close
to k the error of approximation was found to be still
significant. With an increasing number of the neighbors
considered, this error decreases considerably (so does the
speed-up). The gain from approximation was not large
due to the small scale of experimental problems; some
minor anomalies (e.g., speed-up value for £ = 5 and 50
nodes) related to the effect of background processes were
also observed. It should be noted that the impact of tree
reconstruction is higher than the search itself. Still, when
a proper value of MaxNode is selected, an improvement
in computation time, with no approximation error, can be
350%

observed.
300%
- | | | | | ‘
100%
5 10 25 50 250 50!
k

100 0 1000 10000

~
@
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Fig. 5. Observed speed-up for 4 nodes with one thread running
vs. single node configuration.
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without approximation, and calculated in the following "
way: % 6E-12
ENE 4E-12

Error= (1 — [E D Eappror| 100%, (2)
|E| 2E-12 I I
0E+00
k=1 k=2 k=3 k=4

where FE is represents reduced representation of the
dataset B, FEypprox is reduced dataset B obtained with
approximation.

Tables [ and 3] provide a summary of the obtained
results for £ = 1,2,...,5 (with dataset size 10 000) and
k =5,10,...,25 (with dataset size 50 000) . It should be
noted that maximum number of visited nodes was set as

H Density based condensation ®m Random sampling

Fig. 6. ISE of probabilistic density calculated for datasets re-
duced with density-based condensation and random
sampling.
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Table 3. Observed speed-up for different parallel configurations.

k
| Configuration 5 | 10 | 25 | 50 | 100 | 250 | 500 | 1000 | 10000
1 node, 1 thread 116 sec. | 71sec. | 49sec. | 44 sec. | 45sec. | 57sec. | 65sec. | 81 sec. | 97 sec.
2 nodes, 2 threads 193% | 263% | 272% | 293% 300% 317% 325% 338% 346%
1 node, 4 threads 283% | 284% | 288% | 314% 321% 335% 342% 352% 373%
4 nodes, 1 thread 242% | 237% | 258% | 275% 281% 300% 310% 324% 334%
Table 4. Speed-up and error for different levels of approximation (k < 5).
Max. visited nodes

| Configuration and performance 2 | 3] 4] 5] 6] 7] 8 ] 9] 10
k=1 Speed-up 111% | 109% | 107% | 105% | 104% | 102% | 102% | 102% | 102%
Error 48.7% | 30.4% | 17.0% | 8.1% | 35% | 1.2% | 04% | 0.2% | 0.0%

k=2 Speed-up - 120% | 114% | 110% | 109% | 107% | 106% | 105% | 104%
Error - 31.5% | 143% | 7.7% | 3.6% | 2.0% | 0.7% | 0.2% | 0.0%

k=3 Speed-up - - 129% | 119% | 114% | 111% | 109% | 107% | 107%
Error - - 43.8% | 183% | 87% | 4.0% | 2.1% | 03% | 0.0%

k=4 Speed-up - - - 139% | 122% | 116% | 114% | 111% | 109%
Error - - - 514% | 24% | 99% | 5.5% | 2.0% | 1.0%

Finally, the quality of condensation, in terms of
preserving data density, was under investigation. For
that purpose we used the ISE (integrated square error) of
estimator f of probabilistic density function f, which in
general is expressed as follows:

ISE(f(x)) = / (f@) - f@)?de. )

In this case, we assume that f is an empirical density
constructed for the initial sample. At the same time,
f (x) corresponds to the estimator constructed for the
reduced dataset. The estimator values will be calculated
for the points of the initial sample. Thus the problem of
calculating the integrated square error is defined by

m

ISE(f()) = > (f(xi) — f(x:))?, @

i=1

with x; being a sample element obtained from the original
dataset. The values of the ISE were examined for the
GAIA subsample consisting of m = 50000 elements.
As a point of reference, random sampling (uniformly
distributed) of the initial dataset (to obtain its reduced
representation) was used.

Density estimates were calculated using the kernel
density estimator

g9(x) =

1=

For the technique covered in this paper, additional weights
w;, equal to the number of points removed for each
“prototype”, were used. The experiments presented

here involved using a Gaussian kernel. The value of
smoothing parameter h was calculated with the commonly
used Silverman “rule of thumb” (Kulczycki, 2008). As
random sampling is of non-deterministic nature, we used
30 replicates and report the mean ISE. The results for
k ={1,2,3,4} are given in Fig.

It can be seen that the proposed algorithm preserves
the landscape of the probabilistic density function much
better. The advantage over random sampling in this area is
more significant for the cases with intensive data reduction
(e.g., for k = 2 — 4 ISE values are approximately 20%
smaller).

5. Conclusion

The paper presented an application of fast k-nearest

neighbor search, based on kd-trees and parallel
processing, in data condensation strategies. Our
experiments demonstrate that using improved

nearest-neighbor strategies may allow us to tackle
large astronomical datasets. This is due to the use of
efficient data representation and parallelization of data
reduction scheme. We also evaluated the performance of
data condensation with varying error of nearest-neighbor
approximation. It was discovered that additional
improvement in data reduction efficiency can be achieved
in this way. Finally, we also evaluated the preservation of
data density for both the proposed algorithm and random
sampling. The superiority of the former approach was
clearly observed.

Practical significance of proposed technique stems
mainly from the fact that it can be used for dynamic
large-scale visualization of astronomical objects. The
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Table 5. Speed-up and error for different levels of approximation (k > 5).

Max. visited nodes

| Configuration and performance 10 | 15 | 20 | 25 | 30 | 35 | 40 45] 50
k=5  Speed-up 112% | 106% | 104% | 101% | 101% | 101% | 101% | 101% | 101%
Error 1.9% 0 0 0 0 0 0 0 0

k=10 Speed-up - 114% | 114% | 109% | 104% | 104% | 104% | 104% | 100%
Error - 14.4% | 0.8% 0% 0% 0% 0% 0% 0%

k=15 Speed-up - - 118% | 118% | 108% | 108% | 108% | 108% | 100%
Error - - 42.3% | 13.1% | 3.9% 0% 0% 0% 0%

k=20 Speed-up - - - 126% | 118% | 110% | 108% | 105% | 103%
Error - - - 674% | 26.1% | 6.5% 0% 0% 0%

k=25 Speed-up - - - - 130% | 120% | 116% | 112% | 109%
Error - - - - 69.8% | 33.3% | 143% | 0.0% | 0.0%

intensity of data reduction can be conveniently controlled References

with a value of k, determining data granularity.
Furthermore, the obtained reduced data representation
is composed of data clusters corresponding to spatially
concentrated groups of objects.  Together with the
application of other strategies, like deep learning
(Castro-Ginard et al., 2018), it can lead to the discovery
of open clusters. It is in contrast to the traditional data a
reduction performed with random sampling. In this case
a reduced dataset is composed of nondeterministically
selected data points with no additional interpretation.

Further work in this area will concern studying
the properties of other methods of nearest-neighbor
approximation, e.g., techniques based on random kd-trees
or hierarchical clustering. Additional experiments using
the GPU computing paradigm are also planned. They
will be aimed at providing production environment for
large-scale astronomical data reduction. Subsequent steps
include modifying the algorithm for GAIA data interface
and the ability to process and merge large data hyper
cubes. Additional work also needs to be done in the
area of convenient data representation after their within
reduction. As the reduction procedure requires significant
amount of time, its result should be precomputed and
stored for further use.
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