
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 3, 489–501
DOI: 10.2478/amcs-2019-0036

A THREE–LEVEL AGGREGATION MODEL FOR EVALUATING SOFTWARE
USABILITY BY FUZZY LOGIC

EVA RAKOVSKÁ a,∗, MIROSLAV HUDEC a

aFaculty of Economic Informatics
University of Economics in Bratislava, Dolnozemská cesta 1, 852 35 Bratislava, Slovakia

e-mail:{eva.rakovska,miroslav.hudec}@euba.sk

Rapid deployment of IT brings about new issues with software usability measurement. Usability is based on users’ ex-
perience and is strongly subjective, having a qualitative character. The users’ comfort is usually collected by surveys in
their daily work. The present article stems from an experimental study related to the evaluation of the usability of tools by
a rule-based system. The work suggests a robust computational model that will be able to avoid the main problems aris-
ing from the experimental study (a large and less-legible rule base) and to deal with the vagueness of IT user experience,
different levels of skills and various numbers of filled questionnaires in different departments. The computational model
is based on three hierarchical levels of aggregation supported by fuzzy logic. Choices for the most suitable aggregation
functions in each level are advocated and illustrated with examples. The number of questions and granularity of answers
in this approach can be adjusted to each user group, which could reduce the response burden and errors. Finally, the paper
briefly describes further possibilities of the suggested approach.

Keywords: measuring software usability, rule-based system, fuzzy quantifiers, aggregation functions, questionnaire.

1. Introduction

In today’s competitive world, information technologies
(ITs) have a significant impact on the management and
efficiency of enterprises as well as governmental and
public agencies. These institutions make an effort to
optimize their processes and often put a lot of investments
into IT. The traditional perception of IT management
(hardware support, network services, installation services,
etc.) is rapidly changing. Information technologies are
offered as services that are integrated into the companies
to support the achievement of business goals. IT services
are directly involved in the company as part of the
business process.

These institutions frequently try to introduce the
newest IT, although it is not always the right way to satisfy
employees and to achieve the desired process efficiency.
Therefore, the implementation of the newest IT may
not bring the expected results in the business processes’
effectivity. Modern IT management is governed
by frameworks and standards for implementation and
management, like ISO standards (ISO, 2018; 2011),

∗Corresponding author

the Information Technology Infrastructure Library (ITIL)
(Greiner and White, 2019) as well as Control Objectives
for Information and Related Technologies (COBIT)
(ISACA, 2018) at different levels of management.
Frameworks derived from software engineering are
usually used for software development and its further
management (maintenance, revision, re-engineering,
etc.). Many software engineering tools assess the
quality and reliability during the design and development
phase. There are plenty of tools for software quality
measurement; however, it is not easy to control and
measure the actual performance of IT services and
software in business processes in practice. Software
testing is a phase of software engineering methodologies,
but it is done by testing specialists, not regular daily users.
It is not easy to use all the frameworks and standards;
therefore some enterprises and public institutions prefer
using the balance scorecard methodology for monitoring
business performances, and using traditional non-financial
and financial metrics for monitoring IT performances
(Pavlı́k, 2018).

Although all methodologies specify various key
indicators of software performance for achieving the

mailto:{eva.rakovska, miroslav.hudec}@euba.sk

490 E. Rakovská and M. Hudec

business goal and using metrics for software validation,
they arise from the needs of software engineers and do
not take into account the user’s perspective. To validate
software quality from the users’ point of view means
to assess the software as a product. Software users
have no idea about the set of metrics used by software
development. Their opinion includes such items as users’
satisfaction and experience, or customer sentiment, which
are not measurable quantitatively. Hence, the task is to
design soft metrics and create an appropriate model for
assessing software quality as a product.

As mentioned before, the soft metrics characterize
items such as IT user satisfaction or IT user experience
within different user groups. Satisfaction and experience
come from subjective opinions of users (Albert and
Tullis, 2013), such as whether the software application
response time is adequate for them, whether the software
availability is appropriate, whether the software has
intuitive interface, whether the software saves the user’s
time, whether the user is able to use all functionalities
intuitively, etc. User experience is usually monitored by
surveys. We suppose that observability and measurability
are attributes of user experience (Albert and Tullis, 2013).

The aim of the present paper arises from the
experimental idea to design a rule-based expert system for
monitoring the software usability in daily use. Therefore,
this means monitoring which software or software
functionality (or part thereof) is the most valuable in the
company and in which department. Many companies
use a mix of software and applications (especially small
and medium-sized companies); those are not compatible
and sometimes are useless. We examined the research
and experimental study by Králiková (2017) as well
as Rakovská and Hudec (2020), where a survey was
given to users for evaluating software usability and
gaining adequate knowledge for the preparation of fuzzy
rules. The research used the survey data to design
the rules in the rule-based expert system based on the
Mamdani inference produced by the MATLAB Fuzzy
Inference tool. The experimental study detected problems
with the management of a high number of rules, by
preparing appropriate understandable questions, which
can be expressed by linguistic values, with an adequate
flexible number of rules and computation by the Mamdani
inference. The survey was realized by questionnaires and
fuzzy-rule preparation, which revealed several problems.
These observations led to the suggestion of a new solution.
Thus, the research in the experimental study was finally
focused on analyzing the benefits and drawbacks of
expressing software usability by the questionnaires and
shown that the rule base grows significantly, even when
we reduce the number of rules with the disjunctive normal
form (Zimmermann, 2001).

The next research started with the analysis of
possibilities of handling uncertain and incomplete data,

and aggregating them in an appropriate way. In order
to mitigate incomplete data, questionnaires should be
adjusted to skills of users in diverse departments. As a
consequence, we expect a different numbers of questions
and various granularity of possible answers. The research
question in this environment is how to efficiently measure
the users’ satisfaction with employed software tools not
only in departments, but also among departments inside an
institution, and therefore rank these tools accordingly. In
this direction, we tried to solve the problem of aggregating
answers from various imbalanced groups (departments)
together and rank the evaluated software accordingly.
The preliminary results of this research are presented by
Rakovská and Hudec (2020).

The paper is organized as follows. Section 2 provides
motivations for this work based on the experiential study
with a fuzzy rule-based system. Section 3 is dedicated
to three-level aggregation with the support of fuzzy logic
and an illustrative example, whereas Section 4 discusses
the achieved results. Finally, Section 5 concludes the
paper and sets out future research opportunities and
applicability.

2. Motivation and background

As mentioned in Section 1, the research arises from
practice when users are not satisfied with IT services
and software in their companies. This situation is more
frequent in the public sector, at schools and universities
or in the health area, but also in small and medium-sized
enterprises. The management often does not focus on
the opinions of employees as to which software is useful
for their work or whether the software is comfortable
for them. The user perspective of software quality
reveals the connection between the user and the product
and is observable and measurable. Seffah et al. (2001)
state: “A good quality in use model should define all
the characteristics that are required for a product to
meet predefined usability goals in a specified context of
use.” They mentioned, for example, characteristics such
as efficiency, learnability, human satisfaction and safety,
which are observable, but are not well quantified. The
user perspective of software usability is closely linked to
software efficiency and effectivity, which are involved in
the user perspective.

As Albert and Tullis (2013) hold, efficiency is
“the amount of effort required to complete the task”
and effectiveness means “being able to complete the
task”. Software efficiency and effectiveness are usually
connected with software development and software
engineering, with an impact on the human–computer
interaction area. ISO standards include the definition
of usability from the human–computer interaction (see
ISO 9241-11:2018 (ISO, 2018)): “Usability relates to the
outcome of interacting with a system, product or service.

A three-level aggregation model for evaluating software usability by fuzzy logic 491

Usability, as defined in this document, is not an attribute
of a product, although appropriate product attributes can
contribute to the product being usable in a particular
context of use.” Other characterizations of software
quality and usability are from the software engineering
point of view (see ISO/IEC 25010:2011 (ISO, 2011))
named “Systems and software engineering—Systems
and software Quality Requirements and Evaluation
(SQuaRE)—System and software quality models.”

Software engineering methodologies offer metrics
for better software performance. A basic metric
classification comes from hard and soft metrics used to
measure the efficiency of performance in the company and
coming from internal attributes of the software. The hard
metrics can be easily expressed by financial indicators and
do not need additional costs. Despite hard metrics, in our
work we consider only soft metrics, which often express
the degree of internal goal achievement or the degree of
process improvement through software use. Soft metrics
represent such concepts as effectiveness, efficiency,
availability, safety, user comfort (understandable user
interface) and accessibility on internationality as a set of
factors or a set of criteria (completeness, minimum actions
to achieve the goal of the task, minimum load memory,
etc.) mentioned by Seffah et al. (2001). We also identified
other concepts of software usability measurement, such as
the clarity of concepts and logical sequence of operations,
transparency of design, quick availability of certain items,
expression of frustration of the users, misinterpretation of
some parts and information in the software, etc. All these
factors and criteria are thought of as purely qualitative and
observable, so it is easy to collect data concerning these
issues by using questionnaires. Surveys conducted by
questionnaires, although effective, usually cope with the
issues of the item and unit non-response and measurement
error, which are far from negligible (Bavdaž et al., 2011;
Bavdaž, 2010).

We observed the same behaviour (to a lower extent)
in the case of a survey distributed among users in the
company. In this case, it causes an unbalanced number of
filled questionnaires (e.g., 20 answered in one department
and 12 in another) and non-response items (users have not
responded to all questions). Further, respondents were
not always careful in filling out the questionnaires, i.e.,
they filled in neighbouring values in categorical answers.
The next section is dedicated to the evaluation of data
collected by questionnaires, concerning user satisfaction
in a company running its business in the IT sector.
This task was solved by the fuzzy rule-based system
(Králiková, 2017; Rakovská and Hudec, 2020), because
IF-THEN rules related to degrees of software usability can
be easily created and linguistically explained. The next
subsection explains the experiments carried out and the
obtained results.

2.1. Experimental study as a background. The
experimental study was undertaken in a mid-sized IT
company. It was based on a survey which maps users’
perspectives and experience with information systems and
software within the company. As mentioned before, we
applied a fuzzy rule-based approach for evaluating the
survey. We expected that the fuzzy rule-based system
might be a suitable method for evaluating the survey with
the use of the Likert scale for answers (Likert, 1932).
There was also a possibility of managing and controlling
the implication by IF-THEN rules. Nevertheless, the
fuzzy rule approach has the following main problems:

• how to create questionnaires on a common platform
for each piece of software in each department in the
enterprise;

• how to take into account different levels of software
users;

• how to aggregate the answers within the departments
in an appropriate way to get a useful result;

• how to evaluate the high number of conditions in the
rules so that the result reliability is not lost;

• how to deal with large numbers of rules.

The evaluation of software usability was based on
user satisfaction surveys using the approach suggested
by Allen and Seaman (2007). The questionnaire was
inspired by certain methods and their combinations
(System Usability Scale, Software Usability Measurement
Inventory, etc.)

First, we produced three different types of
questionnaires for three groups (management,
development, group of other users), each questionnaire
containing 27 questions. We used the Likert scale
(Likert, 1932) to acquire answers; the scale was mostly
from 1 to 5 and from 1 to 10 in a few questions when
we needed more precise response granularity. Each
questionnaire started with the same question: “Type
the software you most frequently work with. This
piece of software will be further the subject of the
questionnaire, and all questions will be asked only about
it” (Králiková, 2017). The other 26 questions mapped
user satisfaction with this software from various points of
view. We asked for total software satisfaction; whether
the software product is up to date; how users work
with the software product; whether they use service
and maintenance services; whether the software is
intuitive and consistent; or whether they will prolong the
license. Some of the other questions about the interaction
between the user and the software; whether the software
sometimes shut down unexpectedly; whether it is a
satisfactory software language; whether it has all the
necessary features; whether the user feels frustrated when

492 E. Rakovská and M. Hudec

working with the software or if the software environment
is easy to use; how often he or she works using the
software; or whether the software is slower after hours of
work, etc.

Table 1 shows some results from questionnaires at
the economic department of the company, where the users
preferred and frequently used software S and some parts
of it (e.g., S1 and S2). Then the users answered the
questions concerning the chosen software (Q1–Q26). For
the majority of questions the answers were on the scale
from 1 to 5 (1 = disagree, 2 = rather disagree, 3 = I
cannot judge, 4 = rather agree and 5 = agree), whereas
some questions using a more detailed scale (1 to 10)
for evaluating the attributes such as interaction with the
software. Every row in Table 1 represents 26 collected
answers from one user (Q0 is choosing the software).
Several rows contain also the missing values (e.g., the first
and the last), where the respondents did not answer (for
instance, the first question in the first row).

We considered 26 inputs for the premise of each
rule (for instance, from A11 to A126 for the first rule).
The supposed rule-system within one department was
suggested as follows:

• IF A11 AND A12 AND A13 . . . AND A1j THEN
B1,

• IF A21 AND A22 AND A23 . . . AND A2j THEN
B2,

• . . . ,

• IF Ai1 AND Ai2 AND Ai3 . . . AND Aij THEN
Bi,

where j is the number of answers (in our case,
26) in the questionnaire and i represents the number
of all combinations that are given from all possible
answer values (based on the scale from 1 to 5).
Then we set the linguistic values (see above) into
rules. Secondly, we processed the rules with the
Mamdani fuzzy inference, where AND connective = min,
OR connective = max, Implication = min (Mamdani
technical implication (Gupta and Qi, 1991)), Aggregation
= max, Defuzzification = centroid using the MATLAB
tools. In our case, considering one group, one
questionnaire with 27 questions, we computed the number
of possible answer combinations. The result was to
have more than 11 billion rules in the knowledge base
(Rakovská and Hudec, 2020). In order to cover all
the options, we would have to create as many rules as
possible. After multiplying three types of questionnaires,
the number would increase even more.

Therefore, keeping the balance between precise
capturing of all the details in the knowledge base model
and acceptable computational complexity was a big
challenge for further research activities. It seemed that

a satisfactory solution was to aggregate the rules in an
appropriate way. Further, we divided the constructed
fuzzy rules into 5 groups in each questionnaire and
then gradually aggregated them using again the Mamdani
fuzzy inference. Although the number of rules decreased,
it was still unsatisfactory and the response time of the
expert system would not be relevant. In that case, we
processed only the answers from the scale from 1 to 5.
If we took into account a more precise granularity of the
answer, the number of rules would be even higher.

The other option is full fuzzification of input and
output variables. The first step in constructing such a
fuzzy-rule based system is fuzzification of input variables.
The fuzzification of the output variable is required for
the Mamdani inference system (Zimmermann, 2001). In
this way, we avoid using singletons in the above created
rules. For the [1, 10] scale of the respondents’ answers)
(Table 1), inputs are fuzzified into three fuzzy sets: low,
medium and high as

Low = {(1, 1), (2,), (3, 0.75).(4, 0.25)},
Medium = {(3, 0.25), (4, 0.75), (5, 1), (6, 1),

(7, 0.75), (8, 0.25)},
High = {(7, 0.25), (8, 0.75), (9, 1), (10, 1)}.

The output attribute usability is fuzzified into five
elements: very low, low, medium, high and very high.
Hence, the number of rules is 263 = 17576. Several of
them are as follows:

• IF A1 is LOW AND A2 is LOW AND . . . AND A26
is LOW THEN B is VERY LOW,

• IF A1 is LOW AND A2 is LOW AND . . . AND A26
is MEDIUM THEN B is VERY LOW,

• . . . ,

• IF A1 is HIGH AND A2 is HIGH AND . . . AND
A26 is HIGH THEN B is VERY HIGH,

Although the number of rules is significantly
reduced, it is still too high for business or domain expert
users. Moreover, fuzzification into three fuzzy sets is not
beneficial for a scale consisting of 5 or fewer elements.
However, in this way it does not cope effectively with the
different features of departments (the number of workers
and their respective skills).

Even the disjunctive normal form is not a solution
because there are few rules with common input parts.
Finally, we decided for restriction of the number of rules
by using qualitative heuristics. We reduced the number
of rules to 1200 using the FIS (fuzzy inference system)
matrix in MATLAB, but the number was still significant.
We did not use weighted rules, because we supposed all
the questions were of the same significance.

A three-level aggregation model for evaluating software usability by fuzzy logic 493

Table 1. Illustrative sample of answers from users’ questionnaires in the experimental study.
soft./question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26

S 4 2 3 4 4 4 5 4 4 4 8 2
2 4 2 4 5 4 2 8 4 4 4 1 8

S2 4 4 4 4 4 4 4 5 4 4 4 7 4
2 4 4 4 5 4 1 7 4 4 4 1 8

S2 2 4 4 5 4 2 3 5 2 4 2 7 2
2 4 2 4 4 4 2 8 4 4 5 1 8

S2 4 4 2 5 4 2 2 4 2 3 3 5 2
2 2 2 3 4 3 2 6 4 4 2 2 6

S 2 4 4 5 5 4 2 4 2 4 5 7 2
1 2 2 4 5 4 1 8 3 2 2 1 8

S 4 4 3 4 4 4 5 4 4 4 8 4
4 3 4 4 4 4 2 8 4 4 4 7

S1 4 4 3 4 3 4 4 4 4 4 7 4
4 4 3 4 4 4 4 7 4 4 4 4 7

S1 4 4 4 5 4 3 4 5 5 4 8
4 5 4 4 4 4 9 4 4 4 4 8

S 4 4 3 4 4 4 3 4 4 4 4 7 4
4 4 4 5 4 5 4 8 4 4 4 4 7

S 4 5 4 4 3 4 4 4 4 4 4 8
4 4 4 4 4 4 5 8 4 4 4 4 8

S 4 3 4 4 2 3 4 3 4 4 3 7 4
4 4 4 4 4 4 4 8 4 4 4 4 8

S 4 4 3 4 4 4 4 4 4 4 7 4
4 4 5 4 3 4 8 5 4 4 4 8

S 4 4 5 4 4 4 4 4 5 4 4 8 5
4 4 4 4 4 4 5 4 4 4 5 8

2.2. Experiments conclusion and discussion. After
the experiment, we can summarize its pros and cons. To
sum up, the input was the following:

• only three groups of users;

• the same number of questions in each questionnaire
(although some questions were different depending
on the user group);

• only two types of questions: the first type has the
answers from the [1–5] scale, whereas the second
type from the [1–10] scale, so the granularity of
answers was different;

• number of respondents was lower than fifty.

The experiment shows us that, although we
expected a good result using the well-known fuzzy
rule-based method and MATLAB software for evaluating
questionnaires, some problems as well as high computing
complexity were recognized. The main drawback was
that computing complexity was very high and therefore
we had a difficulty with the size of the model and result
reliability. That was the reason for starting considering

other possibilities of evaluating the usability by applying
different aggregation strategies.

These experiments showed benefits and weak points
of fuzzy rule-based evaluation. It is not an easy task
to create a less-complex fuzzy rule base, and therefore
avoid computational intensive activities (Rakovská and
Hudec, 2020). Another problem is efficiently spreading
questionnaires for the same tools among departments,
e.g., tools used in several departments like the text
processor, spreadsheet calculations, managerial tools, etc.
In this case, we cope with the problems of different levels
of skills and unequal numbers of filled questionnaires
(different numbers of workers in departments). There
were missing values recorded in this survey, although it
was carried out within a company. In the experiment,
responses containing missing values were not processed
further. Usual statistical ways for estimating missing
values are not applicable due to a low number of
respondents per department.

The most suitable solution is a motivation
to cooperate in the survey, e.g., by anonymized
questionnaires. In order to keep the response
burden as low as possible, we should adjust the

494 E. Rakovská and M. Hudec

design to different respondent groups (Calinescu and
Schouten, 2012; Snijkers et al., 2013). This means that we
should offer a set of three possible categorical answers:
negative, neutral, positive for the least skilled workers in
terms of IT and general literacy (less demanding work
positions), whereas for the expert users (high level of
IT skills or deep domain knowledge) we may offer finer
granularity like very negative, negative, more neutral than
negative, neutral, more neutral than positive, positive,
very positive. The next section explains the developed
robust approach to cope with the recognized problems.
In addition, the categorical answers might be expressed
by linguistic terms instead of numbers, as indicated in
Table 6.

That was the reason for finding other possibilities
of aggregating the data collected from questionnaires
in order to keep the computational complexity of a
reasonable size and minimize effect of the measurement
error (e.g., respondents marked the neighbouring answer).
A promising direction is quantified aggregation (Yager,
1982) adjusted to questionnaires and various aggregation
functions (more about these functions is given, e.g., by
Beliakov et al. (2007) and Grabisch et al. (2009)).

3. Hierarchical aggregation

According to the observations in Section 2, the main
features of the problem considered are as follows:

• evaluating usability of the common software among
diverse departments;

• diverse groups of respondents with different levels of
expertise and experience;

• different number of filled questionnaires among
groups (i.e., unequal size of groups or not all
respondents cooperative in the survey);

• some respondents may not fill in the questionnaire
carefully, i.e., they can fill in the neighbouring value
from the set of categorical answers.

Therefore, the aim is to develop a flexible survey
system, which can efficiently solve these problems.

3.1. Preliminaries of fuzzy sets. Flexible evaluation
relies on the theories of fuzzy sets and fuzzy logic, where
belonging to a set is a matter of degree. A fuzzy set F over
the universe of discourse X is defined by the membership
function µF that matches each element of X with its
degree of membership to the set F (Zadeh, 1965),

µF (x) : X → [0, 1], (1)

where µF (x) = 0 means that an element x does not
belong to F , while µF (x) = 1 means that x is a full

member of F . A value µF (x) ∈]0, 1[indicates the
intensity with which the element x belongs to F .

An example is the set high opinion, where the
maximal rating score means clearly belonging to this
set, whereas significant rating means belonging with a
slightly lover degree. This set is plotted in Fig. 2.
When the universal set X contains few elements
(e.g., scale of possible answers), we directly assign
the matching degree to each element, i.e., FC =
{(very low, 1), (low, 0.75), (medium, 0.25)}.

People are familiar with linguistic aggregation by
elastic quantifiers, e.g., most of and about half. These
so-called fuzzy relative quantifiers are formalized by
fuzzy sets. The proportion of records in a set X that fully
and partially belongs to the fuzzy set F is defined as

y =
1

n

n∑

i=1

µF (xi), (2)

where xi is the i-th record in a data set, or in our case the
answer of the i-th question in a questionnaire.

Thus, the validity (truth value) of aggregation with
the quantifier most of is

µQ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for y ≥ 0.85,
y − 0.5

0.35
for 0.5 < y < 0.85,

0 for y ≤ 0.5,

(3)

where y is the proportion of records which belong to
the fuzzy set (1). The validity assumes values from the
unit interval, i.e., when all collected opinions are clearly
positive, the validity is 1. If the proportion of positive
opinions is decreasing, it causes the decrease of the truth
value for the quantifier most of. When the proportion is
low, the truth value is 0.

Main benefits of such evaluation are as follows:
(i) similar observations are similarly treated and (ii)
understandable interpretation for domain experts, without
a considerable level of mathematical literacy. Fuzzy sets
are proposed for aggregation on the second and third
levels. The other relevant concepts and functions are
explained in the successive subsections.

3.2. Questionnaire organization. Generally, we
consider Sk, k = 1, . . . ,K , software tools for calculating
their usability; Gl, l = 1, . . . , L user groups (or
respondent groups to be in the line with the mainstream
literature terminology in surveys), e.g., G1 is a group of
managers, G2 is a group of IT developers, G3 is a group
from the accounting department, etc.). The number of
groups depends on the type of organization (enterprise).
Further, we have respondents Rilk , i = 1, . . . ,mlk,
where mlk is the number of respondents in group l that
evaluate software k and xijlk , j = 1, . . . , nlk, is an

A three-level aggregation model for evaluating software usability by fuzzy logic 495

Fig. 1. Hierarchical structure of questionnaires.

answer of the i-th respondent to the j-th question while
nlk is the number of questions for respondents in group
l for software k. Figure 1 illustrates this structure for
software S1. For instance xm111 stands for the answer
of respondent m to the first question in the first user group
regarding the first evaluated software and xmnKL is the
n-th answer recorded for the m-th respondent in group L
for software tool K .

Each user group may have a different number of
categorical questions and a number of possible answers.
In this way, we adjust questionnaires to particularities of
user groups. For instance, for group G1, the number
of possible answers is from a scale consisting of five
elements, whereas for G2 the number of possible answers
is 10, i.e., the possible answers are numbers from the scale
[1, 10] of integers, where 1 is the worst and 5 or 10 the best
opinion, respectively. Answers might be also expressed
with linguistic terms, where one number corresponds
to one linguist term. In this way, questionnaire
design is adjusted to the expected respondents skills
among departments which may influence the reduction in
non-responses and errors (Calinescu and Schouten, 2012;
Snijkers et al., 2013).

Comparing answers to the same question providing
a different number of categorical answers is not a
problem, because the transformation among categorical
sets suggested by Herrera and Martı́nez (2001) carries out
the necessary conversions by linguistic pairs. With this

transformation, we are able to transform all answers from
term sets of various granulations into the basic linguistic
term set for the required analyses.

The problem of a different number of answers
per respondent, i.e., they may answer only several
questions (i.e., those for which they can easily provide an
opinion) is compensated by a large number of respondents
(Morente-Molinera et al., 2018). However, the nature
of our problem is not the same. It is true that we
have a different number of questions per group and the
granularity of possible answers differs, but our task has
relatively small and compact groups, and all of them
should provide an answer to each question.

3.3. Aggregation. Aggregation operators reduce a set
of values into a unique representation or a meaningful
number (Beliakov et al., 2007). In this direction, we
searched for suitable aggregation for the problem plotted
in Fig. 1, where we see different sizes of questionnaires
for diverse respondent groups. The standard classification
of aggregation functions divides them into conjunctive,
averaging, disjunctive and hybrid (Calvo et al., 2002;
Dubois and Prade, 2004). In order to cover the
requirements and create a robust and flexible system
for evaluating usability, we organized aggregation into
the following three levels: the respondent level, the
department level (groups of respondents) and the software
level.

496 E. Rakovská and M. Hudec

3.4. Aggregation at the respondent level. At the
lowest level, there are questionnaires for particular groups
of respondents, where xijlk , j = 1, . . . , nlk, is the answer
of the i-th respondent to the j-th question and nlk is
the number of questions for respondents in group l for
software k. In our study, aggregation at the first level
should consider all answer for each respondent. Hence,
conjunctive, disjunctive and hybrid aggregation functions
are not suitable. The domain for these functions is the
unit interval. Although the answers do not belong to the
unit interval, they might be straightforwardly converted to
this interval. This is the reason why we considered all
classes of aggregation functions. A suitable one is the
class of averaging functions. In this case, we express this
aggregation as

A1
ilk(x) = fav(x), (4)

where index ilk is the i-th respondent in group l
for software k and fav is an averaging aggregation
function. Generally, any averaging function might be
used. However, we applied the arithmetic mean due to full
neutrality (i.e., low values are fully compensated by high
ones). It does not hold for the other means (for instance,
geometric or quadratic means), which are closer to the
minimal or maximal observations (Dujmović, 2007).

The score for each questionnaire can be also
calculated by the sum of respondents’ answers,

A1
ilk(x) =

Nilk∑

j=1

xijlk , (5)

where jilk is the j-th answer for the same group and
software, and x is the numerical value of the answer.

The solution for (5) assigns a value from the set
of natural numbers, whereas the solution for (4) assigns
a real number from the interval between the smallest
possible and the highest possible answer. These functions
were chosen due to their computational efficiency,
although the solution is not in the unit interval.

Fig. 2. Linguistic variable opinion and its two labels expressed
by fuzzy sets, where a = 13.95 and b = 17.05 for the
sum of answers, and a = 2.79 and b = 3.41 for the
average of answers.

Table 2. Illustrative group G1, its respondents, their respective
answers, the sum and arithmetic mean of answers.

users
in G1

answers assume
values [1–5]

sum
of answers

arithmetic
mean

R1 1 2 2 3 2 10 2
R2 5 2 4 5 4 20 4
R3 2 1 4 3 4 14 2.8
R4 3 3 3 3 3 15 3
R5 2 5 4 1 5 17 3.4
R6 4 4 4 5 4 21 4.2
R7 3 3 3 3 3 15 3
R8 1 1 2 3 1 8 1.6
R9 4 4 4 4 4 20 4

R10 4 5 4 5 4 22 4.4
R11 4 5 3 3 5 20 4
R12 5 4 3 2 5 19 3.8
R13 4 4 4 5 4 21 4.2
R14 4 5 5 4 5 23 4.6
R15 4 5 4 4 3 20 4
R16 3 2 5 3 4 17 3.4
R17 1 2 3 1 1 8 1.6

This level is considered to be the preparation step for
the next levels. An example of answers for respondents
belonging to group 1 (an economic department with the
scale of answers [1, 5]), the sum of answers and arithmetic
mean of answers are shown in Table 2.

3.5. Aggregation at the department level. This
level of aggregation should calculate the utility of given
software within a particular group of respondents and
should not be dependent on the aggregation used in
Table 2. In order to envelop the aforementioned features
of groups, we suggested aggregation by the relative
quantifier most of of the structure most of the respondents
in a department have highly rated software k.

In order to solve this task, the term highly rated soft-
ware and the quantifier most of should be formalized.
Regarding the latter, it is a usual relative fuzzy quantifier
(Kacprzyk and Yager, 2001; Kacprzyk et al., 2000), in our
case expressed by the increasing function (3).

The predicate high opinion is dependent on the
properties of each respondent group, or on the structure of
the questionnaire. From the minimal and maximal score
among questionnaires (Table 2), the fuzzy granules high
and low rates were created in the sense of Ruspini (1969)
by uniformly covering the domain of scores (Tudorie,
2008). In this example, the linguistic variable opinion
consists of two labels: low and high, as illustrated in
Fig. 2.

The formalization is derived from the basic structure
of linguistic summaries created by Yager (1982) in the

A three-level aggregation model for evaluating software usability by fuzzy logic 497

Table 3. Matching degrees of all respondents to the concept pos-
itive opinion calculated from the data in Table 2 by uni-
formly covering the domain of aggregated values; see
Fig. 2.

matching degrees to high opinion for
users in G1 sum of answers average of answers

R1 0 0
R2 1 1
R3 0.0161 0.0161
R4 0.339 0.389
R5 0.984 0.984
R6 1 1
R7 0.339 0.338
R8 0 0
R9 1 1

R10 1 1
R11 1 1
R12 1 1
R13 1 1
R14 1 1
R15 1 1
R16 0.984 0.983
R17 0 0

following way:

A2
lk(A

1
ilk) = µQ(y), (6)

where y is the proportion of respondents (2) which
provided a high opinion, in our case

y =
1

mlk

mlk∑

i=1

µpo(A
1
ilk), (7)

with mlk being the number of respondents in group l
evaluating software k and µpo a membership function
formalizing the predicate positive opinion.

Regarding the group of respondents G1 from
Tables 2 and 3, the validity of quantified aggregation (6)
for the sums of answers is 0.532, whereas that for the
arithmetic means of answers is 0.531. We observe that the
validity is almost the same. Hence, there is no significant
sensitivity in applying the sum or arithmetic mean at the
first level. In the case of the geometric mean, the validity
is 0.454. The difference is around 10%, but for the high
number of categorical questions it might be higher. Thus,
we conclude that the validity of the sentence most of re-
spondents in department G1 have high opinion is 0.531.

The result of this aggregation is in the unit interval.
Thus, we can at the next level examine aggregation
functions and apply the most suitable ones.

3.6. Aggregation at the software level. The result of
aggregation in Section 3.5 assumes values from the [0, 1]

interval, which allows applying a variety of aggregation
functions. The aforementioned four classes of these
functions are (Dubois and Prade, 2004) conjunctive,
averaging, disjunctive and hybrid. These classes are able
to cover a large variety of requirements, but the selection
of a suitable one should be in agreement with the semantic
meaning or expectations.

When each piece of software should be at least
partially recognized in all departments, disjunctive
functions are not a solution because of the absorbing
element 1; i.e., it suffices that software is ideally evaluated
in one department regardless of extreme poor evaluation in
remaining ones. A similar observation holds for averaging
functions having no absorbing element like the arithmetic
mean (two extreme poor evaluations are compensated
by two extreme positive evaluations). Observe that the
most suitable function at the first level is the arithmetic
mean. On the other hand, the geometric mean is a suitable
option here due to the existence of the absorbing element
0. The solution might be a conjunctive function. But,
values higher than minimal are either ignored (minimum
t-norm) or the solution is lower than the lowest grade
by departments (downward reinforcement). More details
about these functions can be found in, e.g., the works of
Beliakov et al. (2007) and Grabisch et al. (2009).

When the valuable software tool should be
emphasized (upward reinforced by disjunctive behaviour)
and at the same time poorly evaluated tools attenuated
(downward reinforced by conjunctive behaviour), the
solution is a hybrid function belonging to the uni-norm
category (Calvo et al., 2002). A binary uni-norm function
is depicted in Fig. 3, where e is the neutral element,
i.e., u(x, e) = u(e, x) = x. Obviously, for e = 1 we
get conjunctive functions, whereas for e = 0 we get
disjunctive ones. By shifting e in the interval (0, 1) the
sizes of four areas change.

A possible choice is a 3 − Π function suggested by
Yager and Rybalov (1996),

v(Sk) =

∏L
l=1 xl∏L

l=1 xl +
∏L

l=1(1− xl)
, (8)

where index k stands for the k-th software evaluated by

Fig. 3. Graphical interpretation of the uni-norm function.

498 E. Rakovská and M. Hudec

all groups of users, xl is the aggregated value from the
previous step. In order to avoid indefinite results, we
adopt 0/0 = 0. The product in the numerator ensures
assigning zero to any piece of software which does not
pass the evaluation in at least one group of respondents
(department).

An illustrative example is shown in Table 4, where
values of G1 for S1 are taken from the previous
subsections (Tables 2 and 3). The other values are
provided directly without showing the whole procedure
to illustrate the proposed method. Upward reinforcement
holds for S2, whereas downward reinforcement holds for
S5. For software S1 and S4, aggregation is behaving as
an averaging function. An interesting case is S6. Due to
existence of the absorbing element 1 (for the disjunctive
part of the domain), the solution is 1 regardless of whether
the software is weakly evaluated in some departments, but
software has not failed in any department.

Aggregation by the geometric mean is realized as

v(Sk) =
L

√√√√
L∏

l=1

xl, (9)

where the variables have the same meaning as in (8). The
solution is in Table 5.

Thus, reasonable choices are uni-norms and
averaging functions having the absorbing element 0
like geometric mean. The ranks by (8) and (9) differ.

Table 4. Aggregation of software usability within all depart-
ments by the uni-norm function.

group /
software

G1 G2 G3 G4
uni-norm

(8)

S1 0.532 0.151 0.850 0.350 0.3815
S2 0.835 0.725 0.778 0.931 0.9985
S3 0.250 0.320 0.410 0.220 0.0298
S4 0.630 0.826 0.253 0.366 0.6125
S5 0.110 0.220 0.320 0.180 0.0035
S6 0.56 1.000 0.220 0.580 1.000
S7 0.886 0.900 0.135 0.000 0.000

Table 5. Aggregation of software usability within all depart-
ments by the geometric mean.

group /
software

G1 G2 G3 G4
geom. mean

(9)

S1 0.532 0.151 0.850 0.350 0.393
S2 0.835 0.725 0.778 0.931 0.816
S3 0.250 0.320 0.410 0.220 0.291
S4 0.630 0.826 0.253 0.366 0.468
S5 0.110 0.220 0.320 0.180 0.193
S6 0.560 1.000 0.220 0.580 0.517
S7 0.886 0.900 0.135 0.000 0.000

The main requirement that software should pass in all
departments is met. The geometric mean is a simple
multiplicative scoring (all inputs are mandatory regardless
of their importance), whereas the arithmetic mean is a
simple additive scoring where all inputs are optional
(Dujmović, 2018). These models are useful as parts in a
complex evaluation model (in our case, implemented into
the first and third level). The geometric mean provides
the result between the best and the worst evaluation for
all cases, whereas uni-norms provide such a solution only
for tools which are badly evaluated in several departments
and positively in others.

4. Discussion

The theory of usability has been developed to explain
human behaviour in decision making (Olson, 1996).
Therefore, this approach should not rely on preferential
independence and expectation that the usability of the
whole can be calculated as the weighted sum or weighted
average of utilities of evaluated parts (Dujmović, 2018;
Hensher et al., 2015). Thus, we should include logic
properties of human evaluation, which is not a linear
one. Further, using both numerical and linguistic data
and information enables more effective decision-making
(Piegat and Pluciński, 2015).

This paper, however, focuses on a different utility
task, but the same principle should be met. During a
considerable time a company might have various tools
within departments: MS Office, Open Office, Libre
Office; various web browsers, and so forth. This might
cause a mess in the inventory and maintenance of updates.
In this work, the goal is to find tools which are positively
evaluated among all departments by the majority of
workers.

The suggested solution is flexible and robust because
it is able to cover the evaluation of the usability of
software used across the entire institution regardless of
different features within departments. The experiments
were carried out within a company running its business
in the IT sector. Generally, this approach can be used
for a large variety of tasks focusing on the evaluation
of the usability of software tools considered, or for
the evaluation of a variety of topics where respondents
are divided into several clearly distinctive groups. For
instance, this approach may be applicable in surveys
related to perspectives of various big-data sources for
departments of a company, or within different research
groups. The same holds for evaluating suitability of
methodologies considered or collecting opinions of the
several suggested acts to cope with the recognized
problem in an institution or broaden and support informed
decisions. In such tasks, evaluators should focus their
work only on the given task to create the relevant number
of questions and possible answers and adjust them to

A three-level aggregation model for evaluating software usability by fuzzy logic 499

particularities of each group or department.
Expressing answers by numerical values is

recognized as a problem. Users may not be careful
in filling questionnaires, i.e., they can fill in the
neighbouring value in categorical answers and may not
associate properly the intensity of feelings to numbers
like they can without difficulties associate feelings to
linguistic terms. This problem was recognized by random
checking of answers by re-asking the respondents. A
higher number of such cases may significantly bias the
aggregation, even when uncertainties are managed by
fuzzy logic. The solution expresses answers linguistically.

In surveys within different groups of respondents, the
granularity of terms can be adjusted to particularities of
each user group, similarly as for numerical categories.
We also considered the fact that user groups often
express their observations by linguistic terms, rather
than numbers and different users groups prefer various
granularities of answers (Morente-Molinera et al., 2018).
For instance, for the less skilled and educated users,
we can offer a set of three terms, whereas for experts
we may offer a larger set, e.g., a set of seven terms.
Generally, the number of terms should be within the range
of 3 to 9, where 9 is the upper bound for cognitive
processing of information (Miller, 1956). A possible
mapping from linguistic interpretation to numbers for the
afore–explained aggregations is shown in Table 6. These
scales can be straightforwardly transformed into the unit
interval, if required. Generally, for the first level of the
suggested approach this transformation does not influence
the solution.

5. Conclusion

Evaluation of software usability in a company is not an
easy task. The quality of a software product usually

Table 6. Categorical answers expressed by linguistic interpreta-
tion and a possible mapping into the interval [0, 10] for
expressing the answers in Table 1.

three terms five terms seven terms
term value term value term value

negative 1 very
negative

1 very
negative

0.5

neutral 5 negative 3 negative 2

positive 9 neutral 5 more neut.
than neg.

3.5

positive 7 neutral 5
very

positive
9 more neut.

than pos.
6.5

positive 8
very

positive
9.5

is involved in the process of software development.
Evolution of the testing software quality has a long
history, and software engineering is changed according
to the new object-oriented programming paradigm. The
main role in testing the quality is not played by a real
user, but by a tester in an IT company who is not familiar
with the domain area of the user. Future directions
for software quality testing are more oriented to user
satisfaction, and the creation of a computational model for
a knowledge-based system should bring new possibilities
in software quality testing.

Usually, rule-based systems are used to express
knowledge regarding software usability. However, these
systems, as shown in the experiments, might be very
large, especially when the institution has a larger number
of software tools, complex questionnaires and higher
numbers of departments. This work demonstrated the
benefits and drawbacks of fuzzy rule-based systems
in measuring software utilities. There are recognized
benefits of evaluating the software tools independently,
i.e., each department evaluates specific tools required for
their respective daily work.

This work recognized the demand for evaluating
and ranking software tools used in a company. In
order to solve this problem, we suggested three levels
of aggregation for the schemes plotted in Fig. 1 by
fuzzy logic. The aggregation at the questionnaire level
is realized by the sum or arithmetic mean because other
mean functions are less suitable. Thus, the quantified
aggregation in the second step is not sensitive to the
aggregated option at the first level and, moreover, it is
irrelevant—the transformation from the linguistic answers
to the numerical intervals. The result at the second level
is in the unit interval, which opens the space for a large
variety of aggregation functions at the third aggregation
level. At the third level, suitable functions are uni-norms
due to their full reinforcement property or the geometric
mean (the opposite observation than for the first level due
to averaging behaviour and having zero as an absorbing
element).

For future research, we would like to examine
other aggregation functions and carry out further
experiments regarding computational effort. The
suggested aggregation model has broader applicability
such as customer satisfaction, marketing evaluation, etc.
Furthermore, this approach may be used for evaluating
opinions regarding the benefits and drawbacks of various
big-data sources within departments in a company, or
collecting opinions of the several suggested internal
regulations (directives) to cope with the recognized
problem. Based on the suggested aggregation model, it
is possible to develop a valuable system for supporting
informed decisions. The applicability in the mentioned
and possibly others fields might be a topic for future
research.

500 E. Rakovská and M. Hudec

Acknowledgment

This work is partially supported by a project VEGA no.
1/0373/18 entitled Big Data Analytics as a Tool for In-
creasing the Competitiveness of Enterprises and Support-
ing Informed Decisions of the Ministry of Education,
Science, Research and Sport of the Slovak Republic.

References
Albert, W. and Tullis, T. (2013). Measuring the User Expe-

rience, Collecting, Analyzing, and Presenting Usability
Metrics (Interactive Technologies), 2nd Edition, Elsevier,
Amsterdam.

Allen, I.E. and Seaman, C. (2007). Likert scales and data
analyses, Technical report, QP-Quality Progress, http:/
/asq.org/quality-progress/2007/07/stat
istics/likert-scales-and-data-analyses
.html.

Bavdaž, M. (2010). Sources of measurement errors in business
surveys, Journal of Official Statistics 26(1): 25–42.

Bavdaž, M., Biffignandi, S., Bolko, I., Giesen, D., Gravem, D.
and Haraldsen, G. (2011). Final report integrating findings
on business perspectives related to NSIS’ statistics,
Technical report, Deliverable 3.2., FP7 Blue-Ets Project,
European Commission, Brussels, https://cordis.e
uropa.eu/project/rcn/94081/results/en?
rcn=143042.

Beliakov, G., Pradera, A. and Calvo, T. (2007). Aggregation
Functions: A Guide for Practitioners, Springer-Verlag,
Berlin/Heidelberg.

Calinescu, M. and Schouten, B. (2012). Adaptive survey designs
that minimize nonresponse and measurement risk, Techni-
cal report, Statistics Netherlands, The Hague/Heerlen.

Calvo, T., Kolesárová, A., Komornı́ková, M. and Mesiar, R.
(2002). Aggregation operators: Properties, classes and
construction methods, in T. Calvo et al. (Eds), Aggrega-
tion Operators: New Trends and Applications, Physica,
Heidelberg, pp. 3–104.

Dubois, D. and Prade, H. (2004). On the use of aggregation
operations in information fusion processes, Fuzzy Sets and
Systems 142(1): 143–161.

Dujmović, J. (2007). Continuous preference logic for
system evaluation, IEEE Transactions on Fuzzy Systems
15(6): 1082–1099.

Dujmović, J. (2018). Soft Computing Evaluation Logic: The
LSP Decision Method and Its Applications, Wiley/IEEE
Computer Society, Hoboken, NJ.

Grabisch, M., Marichal, J.-L., Mesiar, R. and Pap, E. (2009).
Aggregation Functions, Encyclopedia of Mathematics and
its Applications, Cambridge University Press, Cambridge.

Greiner, L. and White, S. (2019). What is ITIL? Your guide to
the it infrastructure library, in digital magazine CIO from
IDG, https://www.cio.com/article/2439501
/infrastructure-it-infrastructure-libr
ary-itil-definition-and-solutions.html.

Gupta, M. and Qi, J. (1991). Theory of t-norms and
fuzzy inference methods, Fuzzy Sets and Systems
40(3): 431–450.

Hensher, A., Rose, J. and Greene, W. (2015). Applied Choice
Analysis, Cambridge University Press, Cambridge.

Herrera, F. and Martı́nez, L. (2001). A model based on linguistic
2-tuples for dealing with multigranular hierarchical
linguistic contexts in multiexpert decision-making, IEEE
Transactions on Systems, Man, and Cybernetics B: Cyber-
netics 31(2): 227–234.

ISACA (2018). Service it governance professionals, COBIT5,
an ISACA framework, http://www.isaca.org/co
bit/pages/default.aspx.

ISO (2011). Systems and software engineering, ISO/IEC
25010:2011: Systems and software quality requirements
and evaluation (square). System and software quality
models, https://www.iso.org/standard/3573
3.html.

ISO (2018). ISO, online browsing platform, ISO 9241-11:2018:
Ergonomics of human–system interaction. Part 11:
Usability: Definitions and concepts, https://www.is
o.org/standard/63500.html.

Kacprzyk, J. and Yager, R. (2001). Linguistic summaries of data
using fuzzy logic, International Journal of General Sys-
tems 30(2): 133–154.

Kacprzyk, J., Yager, R.R. and Zadrożny S. (2000). A fuzzy logic
based approach to linguistic summaries of databases, In-
ternational Journal of Applied Mathematics and Computer
Science 10(4): 813–834.

Králiková, L. (2017). Testovanie efektı́vnosti softvéru v pod-
nikovej praxi z hľadiska užı́vateľov (Software Effective-
ness Testing in Business Practice from a User Perspec-
tive), Master thesis, University of Economics in Bratislava,
Bratislava.

Likert, R. (1932). A technique for the measurement of attitudes,
Archives of Psychology 22(140): 1–55.

Miller, G. (1956). The magical number seven, plus or minus two:
Some limits on our capacity for processing information,
Psychological Review 63(2): 81–97.

Morente-Molinera, J., Kou, G., Pérez, I., Samuylov, K., Selamat,
A. and Herrera-Viedma, E. (2018). A group decision
making support system for the web: How to work in
environments with a high number of participants and
alternatives, Applied Soft Computing 68: 191–201.

Olson, D. (1996). Decision Aids for Selection Problems,
Springer-Verlag, London.

Pavlı́k, L. (2018). Metrics for evaluating information systems,
Posterus, Portl pre odborn publikovanie, http://www.
posterus.sk/?p=18957.

Piegat, A. and Pluciński, M. (2015). Computing with
words with the use of inverse RDM models of
membership functions, International Journal of Applied
Mathematics and Computer Science 25(3): 675–688,
DOI:10.1515/amcs-2015-0049.

http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
https://cordis.europa.eu/project/rcn/94081/results/en?rcn=143042
https://cordis.europa.eu/project/rcn/94081/results/en?rcn=143042
https://cordis.europa.eu/project/rcn/94081/results/en?rcn=143042
https://www.cio.com/article/2439501/infrastructure-it-infrastructure-library-itil-definition-and-solutions.html
https://www.cio.com/article/2439501/infrastructure-it-infrastructure-library-itil-definition-and-solutions.html
https://www.cio.com/article/2439501/infrastructure-it-infrastructure-library-itil-definition-and-solutions.html
http://www.isaca.org/cobit/pages/default.aspx
http://www.isaca.org/cobit/pages/default.aspx
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/63500.html
https://www.iso.org/standard/63500.html
http://www.posterus.sk/?p=18957
http://www.posterus.sk/?p=18957

A three-level aggregation model for evaluating software usability by fuzzy logic 501

Rakovská, E. and Hudec, M. (2020). Two approaches for the
computational model for soft-ware usability in practice,
in J. Kacprzyk et al. (Eds), Information Technology, Sys-
tem Research and Computational Physics, ITSRCP 2018,
Advances in Intelligent Systems and Computing, Vol. 945,
Springer, Cham, pp. 191–202.

Ruspini, E. (1969). A new approach to clustering, Information
and Control 15(1): 22–32.

Seffah, A., Kececi, N. and Donyaee, M. (2001). QUIM: A
framework for quantifying usability metrics in software
quality models, 2nd Asia-Pacific Conference on Quality
Software, Hong Kong, pp. 311–318.

Snijkers, G., Haraldsen, G., Jones, J. and Willimack, D.
(2013). Designing and Conducting Business Surveys,
Wiley, Hoboken, NJ.

Tudorie, C. (2008). Qualifying objects in classical relational
database querying, in J. Galindo (Ed.), Handbook of Re-
search on Fuzzy Information Processing in Databases,
Information Science Reference, Hershey, pp. 218–245.

Yager, R. (1982). A new approach to the summarization of data,
Information Sciences 28(1): 69–86.

Yager, R. and Rybalov, A. (1996). Uninorm aggregation
operators, Fuzzy Sets and Systems 80(1): 111–120.

Zadeh, L. (1965). Fuzzy sets, Information and Control
8(3): 338–353.

Zimmermann, H. (2001). Fuzzy Set Theory and Its Applications,
Kluwer Academic Publishers, Dordrecht.

Eva Rakovská received her PhD degree in applied informatics at the
University of Economics in Bratislava, Slovakia, in 2010. She obtained
her MS degree in mathematics at Comenius University, and worked as a
programmer and an IT developer in various companies till 2001. Since
then, she has been an assistant professor at the University of Economics
in Bratislava, Faculty of Economic Informatics. Her research interests
are in applied informatics and artificial intelligence in education and
knowledge management. The particular emphasis is on applications of
soft computing and expert systems.

Miroslav Hudec is an associate professor at the University of Eco-
nomics in Bratislava, Faculty of Economic Informatics. He received his
MS and PhD degrees from the University of Belgrade, where he has
recently took the position of a visiting professor. His work is mainly
focused on fuzzy logic, knowledge discovery, and information systems.
He has published more than 50 articles in these fields. He has been a
member of program committees of several international conferences and
serves as an editorial board member for several journals.

Received: 20 October 2018
Revised: 24 April 2019
Re-revised: 27 June 2019
Accepted: 3 July 2019

	Introduction
	Motivation and background
	Experimental study as a background
	Experiments conclusion and discussion

	Hierarchical aggregation
	Preliminaries of fuzzy sets
	Questionnaire organization
	Aggregation
	Aggregation at the respondent level
	Aggregation at the department level
	Aggregation at the software level

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

