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This study presents a new, reference trajectory based sliding mode control strategy for disturbed discrete time dynamical
systems. The desired trajectory, which is generated externally according to an existing switching type reaching law, deter-
mines the properties of the emerging sliding motion of the system. It is proved that an appropriate choice of the trajectory
generator parameters ensures the existence of the quasi-sliding motion of the system according to the definition by Gao et
al. (1995) in spite of the influence of disturbances. Moreover, the paper shows that the application of the desired trajectory
based reaching law results in a significant reduction in the quasi-sliding mode band width and errors of all state variables.
Therefore, in comparison with Gao’s control method, the system’s robustness is increased. The paper also presents an
additional modification of the reaching law, which guarantees a further reduction in the quasi-sliding mode band in the case
of slowly varying disturbances. The results are confirmed with a simulation example.
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1. Introduction

Sliding mode control is one of the most attractive
strategies among modern control methods. Due to its
high computational efficiency and low implementation
costs, it has recently become very popular. However,
the idea of variable structure systems has been present in
control theory for decades. First sliding mode systems
were studied in the Soviet Union in the early 1950s
by Emelyanov (1957; 1964), Utkin (1977; 1978; 1984)
and Itkis (1976). They proposed to use a discontinuous
state-feedback based control law in order to adjust the
structure of the system according to its state during
the control process. Namely, a sliding mode controller
switches the structure of the system along an arbitrarily
chosen sliding surface, which ensures stable steady state
behaviour. Therefore, the dimensions of the dynamical
problem are reduced by the number of independent inputs,
and the system becomes highly insensitive to external
disturbances and parameter uncertainties.

The invariance conditions were studied in detail
by Draženović (1969), and later on multiple authors
elaborated on sliding mode control for continuous time
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systems (DeCarlo et al., 1988; Hung et al., 1993; Edwards
and Spurgeon, 1998; Sabanovic, 2011). However, the
implementation of digital controllers was one of the
factors that triggered the chattering phenomenon. As
in discrete time the control signal cannot be changed
smoothly, the systems tend to oscillate around the
switching plane (Zinober et al., 1982; Chang et al., 1990;
Bartolini et al., 1998; 2000). Profound analysis of the
problem drew the attention to discrete time dynamical
systems. At the end of the 20th century, Milosavljević
(1985) for the first time defined the conditions of the
existence of sliding motion in discrete time systems. His
work was followed by numerous authors, who analyzed
the stability of discrete time sliding modes (Sarpturk
et al., 1987; Kotta et al., 1989; Utkin and Drakunov, 1989;
Furuta, 1990). A breakthrough occurred when Gao et al.
(1995) defined the quasi-sliding motion as follows:

• The representative point of the system moves
monotonically, in the so-called reaching phase, from
any initial position towards the sliding surface and
crosses it in finite time.

• Once the representative point of the system has
crossed the sliding hyperplane for the first time,
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a sliding phase begins, where the sliding plane is
recrossed and the sign of the sliding variable changes
in each following step.

• In the sliding phase the representative point of the
system remains in an a priori known vicinity of the
sliding surface.

The authors also introduced a reaching law approach.
Their idea assumes selecting a sliding hyperplane
(Luis-Delgado et al., 2017), which ensures stable steady
state behaviour, and describing the sliding variable with
a function, which drives the representative point to
the chosen plane. Several researchers have worked to
improve Gao’s control strategy (Bartoszewicz, 1996; Ren
et al., 2013; Veselic et al., 2010; Qu et al., 2014)
and numerous new reaching laws have been proposed
(Bartoszewicz,1998; Leśniewski and Bartoszewicz, 2015;
Bartoszewicz and Leśniewski, 2016; Latosiński, 2017;
Latosiński and Bartoszewicz, 2018; Monsees and
Sherpen, 2001; Vivekanandan et al., 2008; Golo and
Milosavljewic̀, 2000; Niu et al., 2010; Ma et al., 2017;
Zhang, 2016; Chakrabarty and Bandyopadhyay, 2015;
2016; Chakrabarty and Bartoszewicz 2016) ever since.

In our work we propose a new, reference trajectory
following sliding mode control strategy. We begin with
generating a desired evolution of the sliding variable with
an existing inverse tangent switching type reaching law
of Leśniewski and Bartoszewicz (2015), satisfying the
sliding mode conditions defined by Gao et al. (1995).
Next, we introduce a new trajectory following reaching
law for the real disturbed plant. We prove that our strategy
guarantees the existence of the sliding mode as defined
by Gao et al. (1995). Moreover, the implementation
of the reference trajectory method results in a reduction
in the influence of external disturbances and parameter
uncertainties on the system, and therefore offers an
improvement of its robustness. Then our strategy is
modified to ensure a further reduction in the width of the
ultimate band in the case of slowly varying disturbance.
Lastly, our results are verified with a simulation example
and compared with the performance of the original
strategy of Gao et al. (1995).

2. Reference trajectory based SMC strategy

2.1. Problem statement. In this paper we take into
account a discrete time disturbed plant, described by the
following state equation:

xxx(k + 1) = AxAxAx(k) + bbbu(k) + bbbd(k), (1)

where xxx(k) is an n × 1 state vector, AAA is the plant’s
state matrix, bbb is the input distribution vector, u(k)
denotes the control signal and d(k) is a scalar disturbance.
The disturbance is bounded by known values: dmin and

dmax. We aim to drive the system from the initial state,
represented by xxx0 = xxx(0), to the demand state xxxd.
Therefore, the error vector in each control step is defined
as eee(k) = xxxd − xxx(k). We introduce the sliding variable
s(k) = cecece(k), where ccc is an 1 × n vector selected so
that (cbcbcb)−1 �= 0, and the sliding hyperplane

s(k) = 0. (2)

We denote here by D(k) = cbcbcbd(k) the impact of the
disturbance on the sliding variable. Moreover, we denote
by D1 the mean value of D(k) and by D2 maximum
deviation of D(k) from the mean. We have

D1 =
cbcbcbdmax + cbcbcbdmin

2
,

D2 =
|cbcbcbdmax − cbcbcbdmin|

2
.

(3)

Having introduced the necessary notation, in the
next section we will present how to obtain the reference
trajectory for the nominal system (1).

2.2. Reference trajectory. Our idea is to use an
existing switching type reaching law to generate the
desired evolution of the sliding variable. At the stage
of designing the reference trajectory, neither disturbances
nor parameter uncertainties are considered. Therefore,
we use an inverse tangent reaching law (Leśniewski and
Bartoszewicz, 2015), which ensures all the properties of
the quasi-sliding mode according to Gao’s definition and
provides a relatively small width of the ultimate band. We
denote by sd(k) the desired sliding variable and set its
initial value according to the initial conditions of the plant:

sd(0) = s(0) = ccc(xxxd − xxx0). (4)

The reference sliding variable sd(k) must converge
to a predefined vicinity of zero. Therefore, in the
trajectory generator we use the inverse tangent reaching
law (Leśniewski and Bartoszewicz, 2015) in the following
form:

sd(k + 1) = sd(k)− g arctan

[
sd(k)

g

]
− ε sgn[sd(k)],

(5)
where g and ε are positive real constants. We define the
signum function as

sgn(z) =

{
1 for z ≥ 0,

−1 for z < 0.
(6)

As the inverse tangent function is bounded, the
maximum and the minimum rate of change of the desired
sliding variable are limited. Directly from (5) we may
write that

|sd(k)− sd(k + 1)| = ε+ g arctan

[
sd(k)

g

]
. (7)
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Consequently, the rate of change of the desired sliding
variable is limited as follows:

ε < |sd(k)− sd(k + 1)| < ε+ g
π

2
. (8)

This proves that the desired sliding variable will change
its sign in finite time. We define k0d as the last moment
before the desired trajectory crosses the sliding plane, so
the following equality holds:

sgn [sd(k0d)] = − sgn [sd(k0d + 1)] . (9)

Next, using (5), we express sd(k + 1) as

sgn [sd(k + 1)] |sd(k + 1)|

= sgn [sd(k)]
{
|sd(k)| − g arctan

[ |sd(k)|
g

]
− ε

}
.

(10)

Therefore, using (9) and (10), we can express the
absolute value of sd(k0d + 1) as follows:

|sd(k0d + 1)| = −|sd(k0d)|+ g arctan

[ |sd(k0d)|
g

]
+ ε.

(11)
It is easy to notice that, for any |sd(k)|,

g arctan

[ |sd(k)|
g

]
− |sd(k)| ≤ 0. (12)

Therefore, from (11) and (12) we conclude that

|sd(k0d + 1)| ≤ ε. (13)

For the next time step we may write

sgn [sd(k0d + 2)] |sd(k0d + 2)|
= sgn[sd(k0d + 1)]

·
{
sd(k0d + 1)− g arctan

[ |sd(k0d + 1)|
g

]
− ε

}
.

(14)

As the term in curly brackets is always negative, the
change in the sign of the desired sliding variable occurs
again. Moreover, from (12) and (14) it can be noticed that

|sd(k0d + 2)| ≤ ε. (15)

Following the same reasoning for the next control steps,
we conclude that, for any k ≥ k0d

sgn[sd(k)] = − sgn[sd(k + 1)] (16)

and the absolute value of the desired sliding variable is
bounded by

|sd(k + 1)| ≤ ε. (17)

As shown above, the desired trajectory satisfies the
properties of the quasi-sliding mode defined by Gao et al
(1995). In the sliding phase the sliding variable is confined
to the ε vicinity of the sliding surface and changes its sign
in each consecutive time instant. In the next section, the
reference trajectory will be used for the control of a real
disturbed plant.

2.3. Reaching law-based control strategy. Now, we
will introduce a reference trajectory based reaching law
for the system (1):

s(k + 1) = sd(k + 1)−D(k) +D1. (18)

The reaching law drives the plant’s sliding variable in
step k + 1 to its desired value with the accuracy
of the disturbance D(k) and compensates for the mean
disturbance D1. As the desired trajectory is not affected
by any perturbation, the plant’s performance at time k + 1
is only influenced by the disturbance from one control step
k, whereas, in the previous sliding mode control strategies
(e.g., Gao et al., 1995; Veselic et al., 2010; Leśniewski
and Bartoszewicz, 2015; Golo and Milosavljević, 2000;
Monsees and Sherpen, 2001), the sliding variable in each
step bears the influence of all the disturbance values
from the beginning of the control process. Consequently,
implementation of the trajectory following the reaching
law improves the system robustness.

Considering (1), (2) and (18), we get the following
control signal:

u(k) = (cbcbcb)−1[cxcxcxd − cAxcAxcAx(k)− sd(k + 1)−D1]. (19)

However, following the reference trajectory by the
real plant, subject to external disturbance and parameter
uncertainties, may be insufficient for the quasi-sliding
mode to emerge as the disturbance D(k) may push the
system’s representative point away from the sliding plane.
Therefore, we will provide a certain selection of control
parameters g and ε of the reference trajectory generator
that guarantee the sliding motion. Assume that at some
instant the sliding variable of the plant changes its sign
and denote by k0 the last moment before the first change
in the sign so that

sgn[s(0)] = sgn[s(1)] = . . .

= sgn[s(k0)] = − sgn[s(k0 + 1)].
(20)

Further in the paper we will demonstrate that a finite k0
actually exists. According to Gao’s definition, for the
quasi-sliding mode to emerge, the sliding variable must
satisfy

sgn[s(k + 1)] = − sgn[s(k)] (21)

for any k ≥ k0.

Theorem 1. If g > 2D2/π and ε > g tan (D2/g),
then the plant’s trajectory crosses the sliding plane not
later than between steps k0 = k0d + 2 and k0 + 1. For
any k ≥ k0, (21) is satisfied and the quasi-sliding mode
as defined by Gao et al. (1995) emerges. Moreover, for
any k ≥ k0 + 1 the absolute value of the plant’s sliding
variable is bounded by ε + D2.
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Proof. We first present s(k + 1) according to the reaching
laws (18) and (5):

sgn[s(k + 1)]|s(k + 1)|

= sgn[sd(k)]

{
|sd(k)| − g arctan

[ |sd(k)|
g

]
− ε

}

−D(k) +D1.

(22)

In Section 2.2 it is shown that the desired trajectory
crosses the sliding plane for the first time between
moments k0d and k0d + 1. Afterwards, for any
k ≥ k0d + 1, the sign of sd changes and its absolute
value is upper bounded by ε. Therefore, the term in
the curly brackets in (22) is always negative. Moreover,
since D(k) = cbcbcbd(k) and d(k) is lower and upper
bounded by dmin and dmax, from (3) we conclude that
| −D(k) + D1| ≤ D2. Consequently, if

g arctan

(
ε

g

)
> D2, (23)

then, for any k ≥ k0d + 2,

sgn[s(k + 1)] = − sgn[sd(k)] = sgn[sd(k + 1)]. (24)

We conclude that a finite k0 exists and (21) holds for
any k ≥ k0 = k0d + 2 if the reference trajectory
parameters are chosen as

g >
2D2

π
(25)

and

ε > tan

(
D2

g

)
. (26)

Next, we may use the reaching law (18) to obtain
the quasi-sliding mode band width. As has already been
proved, sd(k) satisfies (17) for any k ≥ k0d + 1.
Consequently, in the sliding phase the absolute value of
the plant’s sliding variable satisfies

|s(k)| ≤ ε+D2, (27)

which ends the proof. �

The benefits of the reference trajectory based control
strategy may be demonstrated by a comparison with the
fundamental strategy of Gao et al. (1995). They proved
that the implementation of their reaching law results in
the ultimate band described by

|s(k)| ≤ ε+ 2D2, (28)

which is strictly greater than the band (27) achieved in our
control method. Moreover, the reaching law used in the
reference trajectory generator determined the maximum
rate of change in the desired sliding variable in the

reaching phase. This feature allows us to restrict the
maximum rate of change of the plant’s sliding variable as
well. We describe the change in s(k) as

s(k)− s(k + 1)

= sd(k)−D(k − 1) +D1

− sd(k + 1) +D(k)−D1.

(29)

Considering (8) and (29), we conclude that the maximum
absolute rate of change in s is upper bounded by

|s(k)− s(k + 1)| ≤ ε+ g
π

2
+ 2D2. (30)

We may also notice that our control strategy allows the
designer to easily adjust the pace of convergence of the
system by the choice of parameter g and the width of the
ultimate band with the choice of ε.

It has already been noticed by Latosiński and
Bartoszewicz (2018) that a certain choice of the control
vector ccc also allows determining the maximum errors of
all the state variables in the sliding phase. Assume that
the control vector is chosen to place all the poles of the
closed-loop system at the origin of the complex plane.
Hence the characteristic polynomial satisfies

M(z) = det(1z −AcAcAc) = zn, (31)

where AcAcAc = [111 − bbb(cbcbcb)−1ccc]AAA denotes the state matrix
of the closed-loop system and n is the system order. In
this case, after Latosiński and Bartoszewicz (2018), we
conclude that the state vector for any k ≥ k0 + n in the
sliding phase may be expressed as

xxx(k) =

n−1∑
l=0

AcAcAc
lbbb(cbcbcb)−1s(k − l). (32)

The maximum absolute value of the i-th state variable in
the sliding phase may be determined by multiplying both
the sides of (32) by a row vector:

vvvi =
[
0 . . . 0︸ ︷︷ ︸

i−1

1 0 . . . 0︸ ︷︷ ︸
n−i

]
(33)

and substituting the maximum absolute values of the
sliding variable for s(k − l). Therefore, for Gao’s control
strategy, the maximum value of the i-th state variable in
the sliding phase satisfies

|xi(k)| ≤
∣∣∣(ε+ 2D2)vvvi

n−1∑
l=0

AcAcAc
lbbb(cbcbcb)−1

∣∣∣, (34)

whereas for the trajectory following strategy it satisfies

|xi(k)| ≤
∣∣∣(ε+D2)vvvi

n−1∑
l=0

AcAcAc
lbbb(cbcbcb)−1

∣∣∣. (35)

From the comparison of (34) and (35) it is clear that
the new trajectory following control method reduces the
maximum errors of all the state variables.
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2.4. Modified strategy. In this section we consider
slowly varying disturbances. We assume that for any
k ≥ 0, the disturbance satisfies

|D(k + 1)−D(k)| ≤ Δ < D2. (36)

In that case the reference trajectory based reaching law
may be modified, as shown by Bartoszewicz (1998), in
order to additionally reduce the width of the ultimate
band. The idea is to partially compensate for D(k) using
the system’s history. Therefore, we modify our reaching
law to the following form:

s(k + 1) = sd(k + 1)−D(k) +D1

−
k∑

l=0

[s(l)− sd(k)].
(37)

Considering (1), (2) and (37), we obtain the following
control signal:

u(k) = (cbcbcb)−1
{
cxcxcxd − cAxcAxcAx(k)− sd(k + 1)

−D1 +
k∑

l=0

[s(l)− sd(k)]
}
.

(38)

Theorem 2. If g > 2D2/π, ε > g tan (D2/g) and
disturbance D(k) satisfies (36), k0 ≤ k0d + 2 and
(21) is satisfied for any k ≥ k0. Moreover, for any
k ≥ max{k0 + 1, 2}, the absolute value of the plant’s
sliding variable is bounded by ε + Δ.

Proof. First, we express s(k + 1) by considering (5) and
(37) as

sgn[s(k + 1)]|s(k + 1)|

= sgn[sd(k)]

{
|sd(k)| − g arctan

[ |sd(k)|
g

]
− ε

}

−D(k) +D1 −
k∑

l=0

[s(l)− sd(l)].

(39)

Using (37) for any k ≥ 1, the last element on the
right-hand side of (39) can be expressed as

k∑
l=0

[s(l)− sd(l)] = −D(k − 1) +D1. (40)

We substitute (40) into (39) and get

sgn[s(k + 1)]|s(k + 1)|

= sgn[sd(k)]

{
|sd(k)| − g arctan

[ |sd(k)|
g

]
− ε

}

−D(k) +D(k + 1).

(41)

Taking into account that, for any k ≥ k0d + 1,
the desired sliding variable is upper bounded by
ε, sgn[sd(k − 1)] = − sgn[sd(k)] and the disturbance
satisfies (36), we conclude that choosing the control
parameters as

g >
2Δ

π
, (42)

ε > g tan

(
Δ

g

)
(43)

ensures the existence of the quasi-sliding mode for the
plant for any k ≥ k0 = k0d + 2. Furthermore, from
(37), for any k ≥ 2, we may write

s(k) = sd(k)−D(k − 1) +D(k − 2). (44)

From (17) and (36), for any k ≥ max{k0 + 1, 2},
the quasi-sliding mode band width is reduced to

|s(k)| ≤ ε+Δ, (45)

which completes the proof. �

In the next step, following the same reasoning as
in Section 2.3, the maximum value of the i-th state
variable may be found. Assuming that the characteristic
polynomial of the closed loop system satisfies (31) and
considering (32) and (33), the absolute value of each state
variable is bounded by

|xi(k)| ≤
∣∣∣(ε+Δ)vvvi

n−1∑
l=0

AcAcAc
lbbb(cbcbcb)−1

∣∣∣. (46)

Moreover, the restriction of the rate of change in the
reference sliding variable allows us to restrict the rate of
change in the plant’s sliding variable as well. According
to the reaching law (37) we may express the change in
s(k) between successive steps as

s(k)− s(k + 1)

= sd(k)−D(k − 1) +D1 −
k−1∑
l=0

[s(l)− sd(l)]

− sd(k + 1) +D(k)−D1 +

k∑
l=0

[s(l)− sd(l)].

(47)

Using (36) and (40), we obtain

|s(k)− s(k + 1)| ≤ ε+ g
π

2
+ 2Δ, (48)

which yields a smaller maximum rate of change than
in (30).
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3. Simulation results

In this section we demonstrate the benefits of the reference
trajectory based control strategy with two simulation
examples. First, we shall compare the performance of our
reference trajectory following strategy with the reaching
law of Gao et al. (1995) and the inverse tangent reaching
law (Leśniewski and Bartoszewicz, 2015). Next, we
shall demonstrate the additional benefits of the modified
strategy for slowly varying disturbance.

We consider a simple second-order continuous-time
plant, consisting of an integrator and a first-order inertial
element, discretized with the discretization period equal
to 1 second. This kind of systems may, e.g., model
mechanical actuators. The discrete time plant is described
by

xxx(k+1) =

[
1 0.906
0 0.819

]
xxx(k)+

[
0.468
0.906

]
[u(k)+d(k)].

(49)
The aim is to drive the system from the initial state

xxx0 = xxx(0) = [25 0]T to the desired state xxxd = [0 0]T . We
select the sliding surface so that (31) holds. Therefore,
the control vector ccc = [1 0.4833]. The disturbance d(k)
has the following values: d(k) = −1 for k ∈ [1, 20]
and d(k) = 1 for k ∈ [21, 40]. Consequently, the
mean disturbance D1 = 0 and the maximum disturbance
deviation D2 ≈ 0.906.

We begin with computer simulations for the first
three control methods. We choose the control parameters
to ensure a comparable pace of convergence for all
strategies. For Gao’s reaching law, we chose q = 0.4
and ε = 2.72. For the strategy of Leśniewski and
Bartoszewicz (2015), we set g = 4.6 and ε = 0.87, and
for the trajectory following strategy, g was set to 8 and ε
to 0.92. This choice guarantees that in all the strategies
the first change the sign of the sliding variable occurs
between steps 2 and 3. The results of our simulations
are presented in Figs. 1–5. We plot the trajectories
obtained with the trajectory following strategy with solid
line, inverse tangent strategy with a dashed line, and
Gao’s strategy with a dotted line. Figures 1 and 2 show
the evolution of the sliding variable of the plant during
the whole control process and in the sliding phase only.
All three control methods ensure the convergence of the
system to the sliding plane in finite time and guarantee
the sliding motion afterwards. As clearly visible, the
reference trajectory following control method ensures a
significant reduction in the width of the ultimate band.

Figure 3 presents the control signal. It is
demonstrated that our new control method requires a
smaller control effort in the sliding phase than the other
strategies considered. We calculated the errors of the
state variables in the quasi-steady state according to
(32). The calculated maximum absolute error of the
first state variable for the trajectory following method is
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Fig. 1. Evolution of the sliding variable of the plant.
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Fig. 2. Comparison of the ultimate bands.
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Fig. 3. Control signal for the plant.

|x1(k)| = 0.94, and that of the second state variable is
|x2(k)| = 1.83, whereas for the inverse tangent strategy
the absolute errors are |x1(k)| = 1.15, |x2(k)| = 3.40
and for the Gao’s method they are |x1(k)| = 2.34,
|x2(k)| = 4.53. All the computed error values may be
verified in Figs. 4 and 5, which show the evolution of the
state variables.

As one can see from the presented graphs, the
reference trajectory based sliding mode control strategy
ensures not only an improvement in the robustness of the
system in comparison with the existing control methods,
but also a significant reduction in the control effort.

Next, we shall present the additional benefits
of the implementation of the modified strategy in
comparison with the reference trajectory following
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Fig. 4. First state variable x1 of the plant.
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Fig. 5. Second state variable x2 of the plant.

control method. We consider slowly varying disturbance,
i.e., when the disturbance changes linearly from – 1
to 1 during 10 seconds. Therefore, D(k) satisfies
|D(k + 1) − D(k)| ≤ 0.1813 and D1 and D2 remain
as in the former example. Parameter g was chosen so that
the first change in the sign of the sliding variable occurs
between steps 2 and 3 in both control methods. For the
nominal strategy we set g = 8, and for the modified
version g = 12.8. According to (43), for the modified
strategy we chose ε = 0.19, whereas for the nominal
strategy ε = 0.92 as a result of (26). In Figs. 6–10, we
compare the simulation results for both strategies. The
plots obtained with the nominal strategy are presented in
dashed line plots and those obtained with the modified
strategy are shown with a solid line.

In the presented figures, it may be seen that the
modification of our reference trajectory following control
strategy leads to a further reduction in the ultimate band
and of the control effort in the sliding phase. The
calculated maximum absolute error of the first state
variable for the nominal control strategy is |x1(k)| = 0.85
and that of the second state variable |x2(k)| = 2.02,
while for the modified strategy the errors were reduced
to |x1(k)| = 0.19 and |x2(k)| = 0.74.
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Fig. 6. Evolution of the sliding variable of the plant.
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Fig. 7. Comparison of the ultimate bands.

4. Conclusions

This paper introduced a new, switching type reference
trajectory based sliding mode control strategy for discrete
time systems. First, the desired trajectory was obtained
using the inverse tangent reaching law of Leśniewski and
Bartoszewicz (2015). The reference trajectory does not
depend on any perturbation. Next, we proposed a new
trajectory following reaching law for the real disturbed
system. We proved that an appropriate choice of the
desired trajectory parameters ensures the existence of
the quasi-sliding motion according to the fundamental
definition by Gao et al. (1995). Moreover, we
demonstrated that the implementation of our control
strategy guarantees a significant reduction in the width
of the ultimate band and maximum deviations of all state
variables from their demand values in comparison with
Gao’s control method. Afterwards, we considered slowly
varying disturbances and proposed a modification of our
reaching law, which results in a further improvement in
the robustness.

Lastly, the benefits of our two control strategies were
verified with a simulation example. The performance
of the reference trajectory based reaching law has been
compared with the results of Gao’s reaching law and
the inverse tangent reaching law proposed by Leśniewski
and Bartoszewicz (2015). Next, the benefits of the
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Fig. 8. Control signal for the plant.
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Fig. 9. First state variable x1 of the plant.
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Fig. 10. Second state variable x2 of the plant.

implementation of the modified strategy have been
verified as well. The calculated errors of all state
variables clearly show that both the trajectory following
sliding mode control strategies ensure an improvement
in the system’s robustness without compromising the
controller’s efficiency.
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Latosiński, P. and Bartoszewicz, A. (2018). Discrete time
sliding mode controllers with relative degree one and
two switching variables, Journal of the Franklin Institute
355(15): 6889–6903.
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