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A scheduling problem in considered on unrelated machines with the goal of total late work minimization, in which the late
work of a job means the late units executed after its due date. Due to the NP-hardness of the problem, we propose two
meta-heuristic algorithms to solve it, namely, a tabu search (TS) and a genetic algorithm (GA), both of which are equipped
with the techniques of initialization, iteration, as well as termination. The performances of the designed algorithms are
verified through computational experiments, where we show that the GA can produce better solutions but with a higher
time consumption. Moreover, we also analyze the influence of problem parameters on the performances of these meta-
heuristics.
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1. Introduction

Late work minimization is one of the classical problems
in the scheduling field. It was first introduced in 1984
(Błażewicz, 1984), and has attracted more attention in
the recent years (e.g., Chen et al., 2017; Gerstl et al.,
2019; Piroozfard et al., 2018). Basically, a job’s late
work stands for the penalty when it is completed after
an expected time, i.e., the value equals the late units
executed after its due date. Since this parameter can
model any situation where a perishable commodity is
involved (Potts and Van Wassenhove, 1992b), scheduling
with late work minimization was widely studied in the
past four decades (Abasian et al., 2014; Błażewicz and
Finke, 1987; Kovalyov et al., 1994; Sterna, 2007).

Meta-heuristic algorithms (Blazewicz et al., 2008;
Talbi, 2009) are a kind of commonly used approach
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to solve the intractable (NP-hard) problems. Instead
of searching for an optimal solution with a high time
consumption (even for small problem instances), they can
always produce a good feasible solution quite quickly.
Among others, tabu search (TS) (Glover, 1989; 1990;
Rybarczyk et al., 2017) and genetic algorithms (GAs)
(Holland, 1962; Whitley, 1994) are two classical ones,
which are generally used for solving the optimization
problems such as scheduling (e.g., Blazewicz et al., 2000;
Kundakcı and Kulak, 2016; Servranckx and Vanhoucke,
2019), Internet shopping (e.g., Błażewicz et al., 2010;
Lopez-Loces et al., 2016), or routing (e.g., Labib et al.,
2019; Yan et al., 2013).

In this paper, we study the late work scheduling
problem on unrelated parallel machines, which is NP-hard
since its special case (scheduling on identical machines
with a common due date) is already NP-hard in the strong
sense (Chen et al., 2016). To solve the problem efficiently,
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we design two meta-heuristic algorithms for it, namely, a
TS and a GA. Finally, the proposed methods are analyzed
by computational experiments, in which we compare the
two algorithms from the viewpoints of solution quality, as
well as execution time.

The rest of this paper is organized as follows.
In Section 2 we give the definition of the problem
considered, and discuss the related work. Sections 3 and
4 are devoted to the design of the two meta-heuristics,
i.e., TS and the GA, respectively, which are evaluated by
the computational experiments in Section 5. Finally, we
give the conclusions and point out some future work in
Section 6.

2. Problem definition and related work

2.1. Problem definition. As we have mentioned
before, the late work of a job Jj (denoted as Yj) equals
the late part executed after its due date (dj), i.e.,

Yj =

⎧
⎨

⎩

0, Cj ≤ dj ,
Cj − dj , dj < Cj ≤ dj + pj ,
pj , Cj ≥ dj + pj,

where pj and Cj are the processing and completion time
of Jj , respectively. Thus, the problem we consider in this
paper can be defined as follows.

Input: Given m parallel unrelated machines M =
{M1,M2, . . . ,Mm} and n jobs J = {J1, J2, . . . , Jn}.
The processing time of job Jj (1 ≤ j ≤ n) on machine
Mi (1 ≤ i ≤ m) is pj,i, and each job has an arbitrary
due date dj . Consequently, if job Jj was scheduled
on machine Mi, its late work could be calculated as
Yj = min{max{0, Cj − dj}, pj,i}.

Output: Schedule J on M without preemption
to minimize the total late work of all jobs, i.e.,
Y =

∑n
j=1 Yj .

Using the three-field notation of scheduling models
(Graham et al., 1979), the problem can be denoted as
R||Y .

2.2. Related work. The parameter of late work was
first proposed by Błażewicz (1984), who was motivated by
the information collection in a control system. Therefore,
he used the term of “information loss” at that time.
Later, Potts and Van Wassenhove (1992b) analyzed the
characteristics of this concept again, and suggested to
use a more general phrase, i.e., “late work.” After these
pioneers, scheduling with the late work criterion has been
widely studied among single, shop, as well as parallel
environments.

For scheduling on a single machine, Potts and
Van Wassenhove (1992b) showed that problem 1||Y

is NP-hard, and designed a dynamic programming
algorithm which runs in pseudo-polynomial time to solve
it optimally. Almost at the same time, the two authors
(Potts and Van Wassenhove, 1992a) also proposed two
fully polynomial-time approximation schemes (FPTASs)
to solve this problem (1||Y ) approximatively. Later,
their results were extended to weighted model, i.e.,
problem 1||Yw (Hariri et al., 1995; Kovalyov et al.,
1994). Lin and Hsu (2005) studied the problems with
release time, in which they proposed a branch-and-bound
(B&B) algorithm for the general case (1|rj|Y ), and
several polynomial-time algorithms for some special cases
(1|rj , pmtn|Y or 1|rj , dj = d|Y , respectively). Wu et
al. (2016) studied a single-machine scheduling problem
with a position-based learning effect (1|LE|Y ), and
developed a B&B algorithm and three heuristic-based
genetic algorithms to solve this problem. Recently, Chen
et al. (2019) introduced the deadline restriction into the
original model, i.e., a series of 1|d|Yw related problems,
to study their complexities, approximabilities, as well as
polynomially solvablities for some special cases.

The investigations on late work minimization in shop
systems started by Błażewicz et al. after 2000, when
they showed that problems O2|dj = d|Yw (Błażewicz
et al., 2004), F2|dj = d|Yw (Błażewicz et al., 2005) and
J2|dj = d, nj ≤ 2|Yw (Błażewicz et al., 2007) are all
NP-hard in the weak sense. Following their work, Lin et
al. (2006) showed the unweighted problem F2|dj = d|Y
is also NP-hard, and proposed a B&B algorithm for its
general case F2||Y . Later, Pesch and Sterna (2009)
studied a more general case F |rj |Y , where they used a
genetic algorithm to solve the problem. Then, Chen et al.
(2017) revisited the complexity of flow shop scheduling
with the late work criterion, in which they showed that
the problem is NP-hard in the strong sense if the number
of machines is greater than or equal to 3, i.e., Fm|dj =
d|Y for m ≥ 3. Moreover, they introduced a learning
effect into this model, and designed a particle swarm
optimization algorithm for it (F |LE|Y ). Recently, Gerstl
et al. (2019) studied two versions of the m-machine
proportionate flow shop scheduling problem with late
work minimization (F |pij = pj |Y ), and introduced two
pseudo-polynomial dynamic programming methods for
them, respectively.

The late work parameter was first introduced in
the context of parallel machines scheduling. In its
seminal paper, Błażewicz (1984) showed that problems
P |rj , pmtn|Yw and Q|rj , pmtn|Yw are polynomially
solvable, while the non-preemption version P ||Y is
NP-hard. Then, Leung (2004) designed an O(n2log3n)
and an O(m2n4logmn) algorithm for P |rj , pmtn|Yw

and Q|rj , pmtn|Yw, respectively. He also showed that if
the weights of jobs are not considered, the complexities
could be reduced to O(n2log2n) and O(m2n3logmn),
respectively. Abasian et al. (2014) introduced the
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communication delays into the model, to study the
problem Pm|prec, comu|Yw. The authors constructed
an integer linear mathematical programming model, as
well as proposed a B&B algorithm for it. Recently,
Chen et al. (2020b) proposed an FPTAS for parallel
machines scheduling problem, with the context of early
work maximization. Then the relationships between the
two relevant criteria, i.e., early and late work were further
analyzed (Chen et al., 2020a). To understand this topic
more exactly, we propose to refer to the survey paper by
Sterna (2011) or the latest monograph by Błażewicz et al.
(2019).

3. Tabu search for R||Y
In this section, we propose a tabu search (TS) algorithm
for problem R||Y . A tabu search (for any combinatorial
optimization problem) always begins with a pre-defined
or randomly selected feasible solution, and then explores
its neighborhood to generate a new solution. During
the explorations, a tabu list is used to avoid cycles, i.e.,
repeated searching (but sometimes a tabu action may be
re-called if some aspiration criteria are met). Finally, tabu
search stops when the termination criteria are satisfied,
and outputs the best-found solution during the iterations.

In our TS, we use a vector with n+m− 1 elements
to represent a feasible solution, composed of n positive
integers from 1 to n to indicate jobs’ indices, and m − 1
negative integers from −(m − 1) to −1 to divide these
jobs into m machines. For example, when n = 7 and
m = 3, the schedule corresponding to the encoding
(3, 5, 4,−1, 7, 1,−2, 6, 2) is

M1 : J3 ≺ J5 ≺ J4,

M2 : J7 ≺ J1,

M3 : J6 ≺ J2,

in which we use Jj ≺ Jk to express that Jj is scheduled
preceding Jk on the same machine.

3.1. Initial solution. A reasonable initial solution
has great influence on the final result of TS. In this
paper, we use 9 heuristic policies plus a random way
to generate 10 feasible solutions, among of which the
best one (with the minimum criterion value) will be
selected to represent the initial solution. All of the 9
heuristics contain two parts and can be denoted as A-B,
in which part A means to sort jobs into a list by a
pre-defined order, while part B assigns jobs in this list
one by one, based on some machine selection rule. The
details of part A and B are enumerated in Tables 1
and 2, respectively. In summary, the nine heuristic
policies are EDD-MinC, EDD-MinY , EDD-MinP ,
SPT -MinC, SPT -MinY , SPT -MinP , LPT -MinC,
LPT -MinY and LPT -MinP .

Table 1. Rules in Part A.
Rule Explanation

EDD
Earliest due date first
(non-decreasing order of dj)

SPT
Smallest processing time first
(non-decreasing order of

∑m
i=1 pj,i)

LPT
Largest processing time first
(non-increasing order of

∑m
i=1 pj,i)

Table 2. Rules in Part B.
Rule Explanation

MinC
Assign the current job to a suitable machine
to keep the minimum makespan.

MinY
Assign the current job to a suitable machine
to keep the minimum current total late work.

MinP
Assign the current job to the machine with
the minimum processing time, i.e.,
min1≤i≤m{pj,i}.

Normally, we should run the ten ways above (9
heuristics and one random) and choose the best one
as the initial solution. However, based on our initial
experiments, we found that SPT -MinP beats the
other nine in most cases (see Section 5.2 for details).
Therefore, we decide to use SPT -MinP directly to
generate an initial solution for our TS, to save its running
time.

3.2. Iteration. The current solution could generate its
offspring by exchanging a pair of elements in its encoding.
That is, we define a generation process in TS as follows:
(i) two positions are randomly selected based on the
current encoding; (ii) if both of the elements on these two
positions are negative integers, we omit this selection and
do it again (since this schedule is the same as the current
one); (iii) otherwise, we exchange these two elements,
and re-set the negative integers from −1 to −(m − 1) on
their original positions if they violate the decreasing order.
Then we put this offspring into the neighborhood as one of
the candidates for the next iteration. The above processes
are illustrated in Fig. 1.

Observe that there are in total C2
n+m−1 =

(n+m− 1)(n+m− 2)/2 choices if we select two
elements from the (n + m − 1) vector. However,
it is time-consuming and not necessary to try all
the possibilities. Therefore, we set the size of
neighborhood to be 40 (after a parameter tuning process
in Section 5.3.1), i.e., we generate 40 offspring as the
candidates and choose the best one (with the minimal
criterion value) into the next iteration.
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(b) A positive number and a negative one are selected and

exchanged, and then the negative numbers are re-ordered.
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(c) Two negative numbers are selected, so this selection

has to be omitted.

Fig. 1. Illustrations of the generation processes.

3.3. Tabu list. A particular characteristic of tabu
search is the use of memory, i.e., it uses tabu list(s) to
store the information related to the searching process. In
our TS, we define a short-term memory and a long-term
memory to remember the recently visited solutions. The
short-term memory stores all the generated solutions if
it still has space (including all the offspring during the
iterations), while long-term one stores only the “current
solutions” which have been selected for generations. Of
course, storing all the visited solutions is time and space
consuming (and it makes no sense), so we define the sizes
of both memories. Then, both of them adopt the “First
In, First Out (FIFO)” strategy, that is, if there is no space
for the new generated solution(s), the first one(s) will be
removed out and the new one(s) will be put in.

3.4. Termination criteria. Our TS stops if one of the
following criteria is satisfied:

(i) the number of iterations achieves a pre-defined
quantity (M ITER);

(ii) the best-found solution has not been changed for a
pre-defined period (M UNCH).

Then, the best-found solution will be output as the
final solution of TS.

Algorithm 1. TS.
1: Run SPT -MinP to get an initial schedule, denoted

as current solution
2: Put current solution into long-term memory
3: best found solution = current solution
4: iter = unch = 0
5: while (iter ≤ M ITER && unch ≤ M UNCH) do
6: iter++
7: Generate 40 un-taboo offspring based on cur-

rent solution
8: Put them into short-term memory
9: Let the best one among them be best offspring

10: if (best offspring beats best found solution) then
11: unch = 0
12: best found solution = best offspring
13: else
14: unch++
15: end if
16: current solution = best offspring
17: end while
18: Output best found solution

3.5. Parameter setting and framework of TS.
Based on several preliminary experiments (see details in
Section 5.3.1), we set all the parameters in our TS in
Table 3. Then, the framework of this meta-heuristics is
given as Algorithm 1.

4. Genetic algorithm for R||Y
Tabu search is a typical single-solution based
meta-heuristics, that is, the generation in each iteration
is based on a single solution. In contrast, the genetic
algorithm is a classical population-based method, in
which a population is used to generate offspring during
the iterations.

Inspired by the adaptive process of the natural world,
a genetic algorithm can gradually approach the optimal
solution(s) (for any optimization problem) by an evolution
procedure. Based on an initial population, which contains
several chromosomes and each chromosome represents
a feasible solution, the algorithm starts the evolution
by the operations of selection, crossover and mutation.
After several iterations, the algorithm stops when the
termination criteria are met.

In this section, we design a genetic algorithm (GA)
for problem R||Y . The chromosome is encoded in the
same way as in TS, i.e., we use an (n + m − 1) vector
to represent a feasible schedule. Moreover, we define the
operations specifically for the problem, such as crossover,
mutation, and so on. Finally, we give the termination
criteria of the GA to stop its iterations and output the
best-found solution.
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Algorithm 2. Select a GA subprocedure.
Require: Current population (P ) with 200 individuals
Ensure: A selected group (G) with 200 individuals for

crossover and mutation
1: Calculate the fitness of each individual Ik (1 ≤ k ≤

200) in P , denoted as f(Ik)
2: Put the best 40 individuals with higher fitness values

into G directly {best-reserved}
3: Construct a roulette wheel. For individual Ik, its

possibility is set to be f(Ik)/
∑200

k=1 f(Ik)
4: Run the roulette wheel 160 times. Each time, pick up

an individual and copy it into G {roulette wheel}

Table 3. Parameter setting in TS.
Parameter Value

Size of neighborhood 40
Size of short-term memory 100
Size of long-term memory 50

M ITER 1000
M UNCH 100

4.1. Initial population. We define the population size
to be 200 (after parameter tuning in Section 5.3.2),
that is, there are 200 chromosomes in our GA.
Among them, 9 chromosomes are initialized
by the heuristic policies in Section 3.1, which
are EDD-MinC, EDD-MinY , EDD-MinP ,
SPT -MinC, SPT -MinY , SPT -MinP , LPT -MinC,
LPT -MinY and LPT -MinP , respectively; while the
other 191 are initialized at random.

It is worth mentioning that, although we know that
SPT -MinP works better than the other heuristics (see
details in Section 5.2), we still generate them as well
extend the searching range of our GA.

4.2. Operations during iteration.

4.2.1. Selection. We first define a fitness function
for the individuals (chromosomes) in the population to
evaluate their qualities, so that we can make a relevant
choice during selection. Since the problem considered is
a minimization problem, we use the difference between
a large number and its criterion value as an individual’s
fitness. That is, for an individual Ik (1 ≤ k ≤ 200), the
fitness function is

f(Ik) = M − Y (Ik),

where M is a sufficiently large number so that every
individual has a positive fitness, and Y (Ik) is the total late
work of the schedule corresponding to Ik.

According to the phenomenon of survival of the
fittest, a better individual in the current generation
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(b) Generate C1 with encoding from 0 to 2 in P1, and the free
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(c) Generate C2 with encoding from 0 to 2 in P2, and the free

elements in P1.

Fig. 2. Illustrations of the crossover in the GA.

has a higher possibility to generate its offspring (the
roulette wheel selection). Moreover, to guarantee a good
evolution of the whole population, we select the best
20% individuals without roulette wheel. That is, our
selection process is based on a roulette wheel mixed with
a best-reserved policy (see Algorithm 2 for details).

Note that there could be repeated individual(s) in G,
but we agree this overlap since it is a “natural selection”
process.

4.2.2. Crossover. The crossover operation is defined to
form an evolutionary process towards optimal solutions,
in which the offspring inherit superior genes from their
parents. We adopt a single-point crossover technique in
our GA, which is described as follows: (i) given two
parents P1 and P2, randomly choose a positive integer
h ∈ [0, n + m − 2]; (ii) keep the encoding on positions
from 0 to h in Pi (i ∈ {1, 2}) as they are, and set
the positions from h + 1 to n + m − 2 in Pi with the
free elements in P3−i one by one, where a free element
means it does not appear in Pi from position 0 to h for the
moment; (iii) output two new individuals as the offspring
of P1 and P2, denoted as C1 and C2, respectively. An
illustration of the crossover operation is shown in Fig. 2.

To keep the stabilization, we introduce a crossover
probability pc in the GA. That is, if the probability is hit,
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Algorithm 3. Cross a GA subprocedure.
Require: A group G with 200 individuals after selection
Ensure: A medial group G

′
with 200 individuals for

mutation
1: Partition G into 100 pairs randomly
2: For each pairs, do the crossover with a probability pc,

and put their offspring into G
′

Table 4. Parameter setting in the GA.
Parameter Value

Population size 200
Crossover probability pc 0.95
Mutation probability pm 0.2

M ITER 300
M UNCH 50

we output Ci based on the above process; otherwise, we
just output Ci exactly the same as Pi (for i ∈ {1, 2}).
Therefore, the whole process of crossover is shown in
Algorithm 3.

4.2.3. Mutation. The mutation operation in the genetic
algorithm is for the randomness during the exploration.
In our GA, we use the same method as neighborhood
searching in TS (in Section 3.2) to execute this operation,
with a probability denoted as pm.

Therefore, the process of mutation could be
described as follows: for each individual in G

′
(output

by crossover), do an exchange (only once) for a random
pair of the elements in its encoding, with a probability pm.
Then output the changed group, denoted as G

′′
.

4.2.4. Elitist preservation. Finally, to keep the
convergence of the iteration procedure, we add an elitist
strategy in our GA. That is, if the best individual (denoted
as current best) in the current population P beats the best
one in groupG

′′
(with a smaller criterion value, or equally,

a bigger fitness value), we remove the worst one from G
′′

,
and put current best into G

′′
. Then, a new population is

formed for the next generation.

4.3. Termination criteria. We use the same idea in TS
to define the GA’s termination conditions, as follows:

(i) the process of generation reaches a pre-defined
number (M ITER);

(ii) the elitist preservation strategy has been applied
for several times (M UNCH) continuously (which
means that the best-found solution has not been
improved for a period).

However, in contrast to TS, we do not have to
remember the best-found solution during the whole

Algorithm 4. GA.
1: Initialize a population, denoted as P
2: iter = unch = 0
3: while (iter ≤ M ITER && unch ≤ M UNCH) do
4: iter++
5: Find the best individual in P , denoted as cur-

rent best
6: G = select(P )
7: G

′
= cross(G)

8: G
′′

= mutate(G
′
)

9: if (current best beats the best one in G
′′

) then
10: unch++
11: P = elitist preserve(current best, G

′′
)

12: else
13: unch = 0
14: P = G

′′

15: end if
16: end while
17: Output current best in P

exploration. Due to the elitist preservation strategy, the
best individual in the final generation is the best one
during the searching process, and should be output as the
final result of the GA.

4.4. Parameter setting and the framework of the GA.
The parameters in the GA are set in Table 4 after an initial
experiment (in Section 5.3.2), and the framework of this
algorithm is then given below (Algorithm 4).

It is worth mentioning that, in order to speed up the
running process of the GA (for comparing it with TS), we
use a single-point crossover operation in it, which may
lead to a convergence into local optimum with a high
probability. To avoid this phenomenon and extend the
exploration, we set the mutation probability (pm) as a
rather high value, i.e., 0.2 in our GA.

5. Computational experiments

5.1. Test data. We generate test data according to
the frame proposed by Lin et al. (2006), which is a
widely used benchmark in the late work scheduling field.
However, since this method was originally designed for
a two-machine flow shop system (F2||Y ), we have to
change it somehow to fit the problem considered in this
paper (R||Y ).

The processing time pj,i was generated with a
discrete uniform distribution from [1, 10], and a regular
processing time of job Jj , denoted as pj , was set as

pj =
1

m

m∑

i=1

pj,i.

Next, we sort these jobs by the non-decreasing order of
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Table 5. Parameter values in TS.
Parameter Small value Big value

Size of neighborhood 20 40
Size of short-term memory 50 100
Size of long-term memory 50 100

pj . For convenience, we still use Jj to denote the j-th
job after sorting (and pj for its regular processing time as
well). Then, the due date of Jj , i.e., dj , was generated
randomly from the interval

(pj , pj +
1

mβ

j∑

k=1

pn−k+1],

in which β is a tightness controller and set to be 3, 5 and
7, respectively. Moreover, the jobs and machines numbers
were set as n ∈ {100, 300, 500} and m ∈ {3, 5, 7, 10},
respectively.

All the algorithms were implemented in C++ with the
IDE of Visual Studio 2017, and run on the platform with
Intel Core i7 8565U 1.80 GHz CPU and 8 GB RAM.

5.2. Initial experiments for the simple heuristics.
As we have mentioned in Section 3.1, there could be
9 simple heuristics plus one random way to generate
feasible schedules, which could be used as the initial
solutions of TS. One of an alternative approach is to run
these methods respectively, and choose the best one to be
the initial solution. However, if we knew in advance that
one of the policies works much better than the others, we
could use it directly to avoid time consumptions on the
other procedures.

With this motivation, we first do an initial experiment
to compare the performances of these simple heuristics,
which are EDD-MinC, EDD-MinY , EDD-MinP ,
SPT -MinC, SPT -MinY , SPT -MinP , LPT -MinC,
LPT -MinY , LPT -MinP , as well as the random way.
For each combination of (m, n, β), we randomly
generated 20 instances, and the average results are shown
in Fig. 3.

There are three sub-figures in Fig. 3, which are the
performances of the 10 methods related to m, n and β,
respectively. We set the ordinate as the criterion value
directly, because it can help us to evaluate the qualities
of these methods more clearly. Moreover, since all the
procedures are very fast (O(nlogn) for the nine heuristics
and O(n) for the random one), we omit the running time
of them. All the sub-figures indicate that SPT -MinP
is the best one among all the approaches, regardless of
the aspects of m, n or β. Therefore, we can claim that
SPT -MinP is the most suitable one to get TS’s initial
solution, which makes our design of TS more reasonable.

Consequently, since there is no suitable lower bound
or exact algorithms for the problem considered, we adopt

Table 6. Comparisons for parameter combinations in TS.
Combinations Imp(%) Time(ms)

TS BBB 18.6074 9.6247
TS BBS 18.6958 8.4296
TS BSB 18.6139 8.1595
TS BSS 18.6302 7.3931
TS SBB 12.5759 4.8103
TS SBS 12.3578 4.0259
TS SSB 12.3802 3.6721
TS SSS 12.4884 3.6086

the method used by Pesch and Sterna (2009) to analyze
our algorithms, that is, the improvements from the (best)
initial solution. More precisely, we use the value of

Yinit − Ymeta

Yinit
× 100%

to report the qualities of the proposed meta-heuristic
algorithms, where init = SPT -MinP since it is the best
heuristics among the policies considered based on the
above experiments, while meta ∈ {TS, GA}.

5.3. Parameter tuning for the meta-heuristics. The
performance of any meta-heuristic algorithm is closely
related to its parameter settings. In order to obtain the
suitable parameters for TS and the GA, we introduce
several supplementary experiments on parameter tuning
in this part. We generated 20 random instances for each
(m, n, β) based on the methods in Section 5.1, and
adjusted the parameters of each meta-heuristic algorithm
(i.e., size of neighborhood, long-term and short-term
memories in TS, while population size, crossover and
mutation probabilities in the GA).

5.3.1. Parameter tuning for TS. For each parameter
in TS, i.e., size of neighborhood, long-term and short-term
memories, we define a small value and a big value in the
Table 5. Then we have 8 different parameter combinations
for TS algorithm, denoted as TS BBB (big neighborhood,
big short-term memory, and big long-term memory),
TS BBS, TS BSB, TS BSS, TS SBB, TS SBS, TS SSB,
and TS SSS, and their comparison results are shown in
the Table 6. In this table, column “Imp(%)” represents the
value of

Yinit − Ymeta

Yinit
× 100%,

which can reflect the performance of the corresponding
algorithm, while the columns “Time(ms)” reports the
execution time in milliseconds.

Based on the results in Table 6, we claim that
TS BBS could produce the best solution among the eight
parameter combinations. Although it takes more than
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Fig. 3. Comparisons among the simple heuristics.

Table 7. Parameter values in GA.
Parameter Small value Big value

Population size 50 200
Crossover probability pc 0.8 0.95
Mutation probability pm 0.05 0.2

twice the running time of the fastest one, i.e., TS SSS,
considering that the time unit is in milliseconds, we say
that TS BBS is still a very fast procedure. Therefore, we
fix the parameters in our TS: the size of neighborhood is
40, and the sizes of short-term and long-term memories
are 100 and 50, respectively (cf. Table 3).

5.3.2. Parameter tuning for the GA. In the same
manner as in Section 5.3.1, we adjust the parameter values
for the GA in this part. For its population size, crossover
and mutation probabilities, we define their small and big
values in Table 7, and report their comparison results in
Table 8.

Therefore, we choose GA BBB as our final setting
for the GA, i.e., we set the population size to be 200,
crossover and mutation probabilities to be 0.95 and 0.2,
respectively (cf. Table 4).

5.4. Final evaluations on TS and the GA. Now we
are ready to make the final evaluations on the proposed
meta-heuristics in this paper, i.e., TS and the GA. We

Table 8. Comparisons for parameter combinations in the GA.
Combinations Imp(%) Time(ms)

GA BBB 27.2035 387.3315
GA BBS 20.1754 297.0859
GA BSB 27.0946 376.2716
GA BSS 20.2158 285.0183
GA SBB 19.3598 81.2790
GA SBS 10.5995 65.2739
GA SSB 19.3727 79.0948
GA SSS 10.7873 62.7952

further generated 50 instances for each combination of
(m, n, β), and the average results are reported in Tables
9 and 10, respectively. In the same as in Tables 6
and 8, we use the columns “Imp(%)” to evaluate the
main performances of the algorithms, and report their
running time in the columns “Time(ms)” in milliseconds.
Moreover, since we want to reveal the strengths of the
algorithms more clearly, we count the numbers that one
algorithm beats another within the 50 times experiments
(on average), which are shown in the columns “Score”.

Based on the experimental results, we could
conclude the following characteristics of TS and the GA:

(i) Generally, the GA shows a better performance than
TS. On one hand, the GA achieves a 26.9554%
improvement over the initial solution (on the average,
among 1800 instances), while the rate of TS is
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Table 9. Performances of TS and the GA related to (m, n).

m n
TS GA

Imp(%) Score Time(ms) Imp(%) Score Time(ms)

3

100 25.0713 16.67 5.7012 26.5639 33.33 105.4348
300 18.1254 0.00 8.0770 24.7483 50.00 377.8662
500 13.8957 0.00 10.9636 22.2385 50.00 636.4567
avg. 19.0308 5.56 8.2473 24.5169 44.44 373.2526

5

100 26.7524 9.67 5.8147 30.2008 40.33 112.0703
300 18.2465 0.00 8.1590 27.2803 50.00 381.7057
500 13.8860 0.00 11.4578 23.8543 50.00 655.1272
avg. 19.6283 3.22 8.4772 27.1118 46.78 382.9677

7

100 25.6073 6.00 5.9015 31.2694 44.00 112.7215
300 17.5230 0.00 8.5882 28.3381 50.00 401.3114
500 13.2418 0.00 10.9963 24.3097 50.00 635.1684
avg. 18.7907 2.00 8.4953 27.9724 48.00 383.0671

10

100 22.9062 2.00 5.6853 33.0815 48.00 115.8920
300 15.4456 0.00 8.3280 28.2093 50.00 387.6926
500 11.6712 0.00 11.3368 23.3708 50.00 666.4315
avg. 16.6743 0.67 8.4500 28.2206 49.33 390.0054

AVG. 18.5310 2.86 8.4175 26.9554 47.14 382.3232

Table 10. Performances of TS and the GA related to β.

β
TS GA

Imp(%) Score Time(ms) Imp(%) Score Time(ms)

3 22.5363 2.00 8.6888 34.0734 48.00 397.1892
5 18.0489 3.17 8.5976 25.7987 46.83 386.2916
7 15.0078 3.42 7.9660 20.9942 46.58 363.4888

AVG. 18.5310 2.86 8.4175 26.9554 47.14 382.3232

18.5310%. On the other hand, it wins on the average
47.14 times within 50 experiments (94.28%) for each
parameter setting.

(ii) However, TS shows its fast process for the problem
considered, with an average execution time 8.4175
ms, while this indicator of the GA is 382.3232 ms.
Moreover, the running time of both the algorithms
is not that sensitive to the parameters m and β, but
sensitive to n, with an obvious reason of the encoding
method.

(iii) Both the GA and TS are stable with the machines
number m. From Table 9 or Fig. 4, we can find
that for m = 3, 5, 7 and 10, the rates of the GA
are almost around 26.96%, while the rates of TS are
almost 18.53%.

(iv) For job n, both TS and the GA show strong influence
along with its changing. As can be seen from Fig. 5,
when n = 100, 300 and 500, the improvement
rates of TS are on the average 25.0843%, 17.3351%
and 13.1737%, while the ones for the GA are
30.2789%, 27.1440% and 23.4433%, both indicating

a low performance when n turns big. Actually,
this phenomenon shows in disguise that when the
problem scale increases, the quality of the initial
solution (obtained by SPT -MinP ) is getting better.

(v) Finally, we can analyze the influence of β in Table 10
or in Fig. 6, where we find that both algorithms
turn weak during an increase in β. Furthermore, the
influence on the GA is much stronger than on TS,
since the mean difference is about 6.54% in the GA
for β = 3, 5 and 7; this value in TS is around 3.76%.

6. Conclusions

In this paper, we studied the problem of late work
minimization on unrelated machines, i.e., R||Y , and
proposed two meta-heuristic algorithms for it, which
are tabu search (TS) and the genetic algorithm (GA),
respectively. For TS, we first selected an initial solution
among several heuristic schedules, and then defined its
neighborhood exploration strategy and the tabu list. For
the GA, the initial population was constructed by several
heuristic and random solutions, and the iterations were
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implemented through the operations such as selection,
crossover, mutation, as well as elitist preservation.
Moreover, we also defined the termination criteria for the
two meta-heuristics to stop their evolutions and output the
best-found solution.

In the phase of computational experiments, we first
compared the qualities of 9 heuristic policies, and found
that SPT -MinP performed best among them. This result
convinced us to use SPT -MinP as the initial solution of
TS, and as the reference for evaluating TS and the GA.
Then we introduced the parameter tuning processes for TS
and the GA, to find reasonable parameter setting, for them.
During the major experiments for the two meta-heuristics,
we found that the GA outperforms TS, but needs a longer
time (but both of them are very fast since they all run in
milliseconds). Finally, the impacts of problem parameters
on the algorithms, such as m, n and β, were analyzed
respectively.

To continue this work in the future, one may
consider the lower bound analysis for the problem,
which may lead to a deeper evaluation on the heuristic
algorithms. Moreover, the multi-objective scheduling
problems related to the due date constraint can be
considered another future work, since it can model the
practical productions more accurately.

Acknowledgment

This research was partially supported by the Overseas
Training Foundation of Liaoning (no. 2019GJWYB015),
the Natural Science Foundation of Liaoning (no.
2019-MS-170), a grant from the ICS PUT, and the China
Scholarship Council (no. 201908210271).

References
Abasian, F., Ranjbar, M., Salari, M., Davari, M. and Khatami,

S.M. (2014). Minimizing the total weighted late
work in scheduling of identical parallel processors with
communication delays, Applied Mathematical Modelling
38(15): 3975–3986.
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