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We introduce a novel fractional order adaptive control design based on the tube model reference adaptive control (TMRAC)
scheme for a class of fractional order linear systems. By considering an adaptive state feedback control configuration, the
main idea is to replace the classical reference model with a single predetermined trajectory by a fractional order performance
tube guidance model allowing a set of admissible trajectories. Besides, an optimization problem is formulated to compute
an on-line correction control signal within specified bounds in order to update the system performance while minimizing a
control cost criterion. The asymptotic stability of the closed loop fractional order control system is demonstrated using an
extension of the Lyapunov direct method. The dynamical performance of the fractional order tube model reference adaptive
control (FOTMRAC) is compared with the standard fractional order model reference adaptive control (FOMRAC) strategy,
and the simulation results show the effectiveness of the proposed control method.
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performance tube, fractional order TMRAC.

1. Introduction

Fractional calculus is a topic involving a large scientific
research community in various fields of science and
engineering applications. Indeed, fractional order

∗Corresponding author

differential equations have proven to be more appropriate
for the modeling of many physical systems, with a
growing number of examples in the research literature.
Their applications concern as well renewable energy
systems (Neçaibia et al., 2015), long transmission
lines (Clarke et al., 2004), robotics (Angel and
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Viola, 2018), economics (Dadras and Momeni, 2010),
electromechanical systems (Cheng et al., 2002),
biological systems (Ahmad and Abdel-Jabbar, 2006),
cardiac behavior (Goldberger et al., 1985), modeling and
identification (Benchellel et al., 2007), and so on.

In the meantime, differential operators of fractional
order are becoming more and more prominent in
control theory where the system to be controlled and/or
the regulator are governed by fractional differential
equations (Ladaci and Bensafia, 2016; He et al.,
2019). Fractional order operators allow more freedom
in designing controllers and setting parameters. A
major advantage provided by the resulting controls is an
improved robustness compared with classical regulators,
as demonstrated in the CRONE (Commande Robuste
d’Ordre Non Entier) approach introduced by Oustaloup
(1991), the fractional order PIλDμ control with different
adjustment strategies (Bettayeb et al., 2017; Neçaibia
and Ladaci, 2014; Mondal et al., 2020), the fractional
order robust control based on the ideal Bode transfer
function (Djouambi et al., 2008), the fractional order
high-gain adaptive control (Charef et al., 2013), fractional
order dynamic soft variable structure control (Kamal
and Bandyopadhyay, 2015) and the model-free fractional
order adaptive control (Yakoub et al., 2015).

Special attention has been paid to the fractional
order adaptive control structures based on model reference
adaptive control (MRAC) in the recent literature (Ladaci
and Charef, 2012; Bourouba et al., 2019). Indeed, since
the first works of Vinagre et al. (2002) as well as Ladaci
and Charef (2006), many innovative research studies
were developed around this promising adaptive control
configuration and its applications.

Various FOMRAC control strategies were developed
in the literature; one can cite the MIT adaptive control
law based on the fractional order integral (Ladaci and
Charef, 2003), the robust feed-forward based FOMRAC
(Ladaci et al., 2009) and the composite FOMRAC control
(Wei et al., 2016). Also, numerous applications of
FOMRAC have been realized, such as electronic systems
(Aguila-Camacho and Duarte-Mermoud, 2013), tank
level supervision (Balaska et al., 2018), cruise control of
an electrical vehicle (Balaska et al., 2019), a multi-source
renewable energy system (Djebbri et al., 2020), etc.
Some theoretical results on the stability of the FOMRAC
control have consolidated this growing technique
(Aguila-Camacho et al., 2014; Duarte-Mermoud
et al., 2015).

Recently, a new concept of MRAC with performance
tube was developed by Mirkin et al. (2011). It is called the
tube based model reference adaptive control (TMRAC),
where the control objective is not only to guaranty
the closed loop stability, robustness and asymptotical
tracking, but also to optimize the control cost with respect

 

 

 

 

 

 

 

 

 

 

vm 

r vc 

v 

va 

Reference 
model 

 

 
 
 
 
 

Goal correction 
calculation vc 

Adaptive component 
va calculation Plant 

 

Σ 

Σ 

Control calculation 
 

Fig. 1. Performance tube based MRAC configuration.

to some criterion. An application of this novel adaptive
control scheme was performed for the water level of a
cylindrical tank system (Chittillapilly and Hepsiba, 2015).

Fractional order MRAC with the performance tube
constraint. The concept of tube reference model based
adaptive control with real time input cost adaptation
(TMRAC) was proposed and developed by Mirkin et al.,
(2011; 2012) along with Mirkin and Gutman (2013). In
contrast to the standard adaptive control design approach
in which the desired performance of the closed loop
control system is set using a guidance model with a
predefined unique trajectory, in TMRAC control the
reference is not imposed as a unique trajectory but as set
of acceptable trajectories called tube reference model.

In the control principle detailed by Mirkin and
Gutman (2013), a goal correction control is used to define
the input signal for the guidance model which can evolve
within a chosen range as represented in Fig. 1. By tuning
this input signal with respect to the authorized interval,
an acceptable set of orientation trajectories are induced.
The feedback control signal is thus improved with the
goal correction control. The resulting TMRAC strategy
has two control aims: the first is the asymptotical stability
and tracking, while the second is to satisfy an additional
performance objective which can include decreasing the
necessary control energy by varying the goal correction
control within the permitted range.

In this paper, we propose a novel fractional order
tube model reference adaptive control (FOTMRAC)
approach to control a class of fractional order linear
systems. Using a state feedback control configuration, we
set two objectives: the first is to make the system states
asymptotically track the states of a stable fractional order
“guidance” model and the second goal is to reduce the
control energy cost (Sajewski, 2017).

Compared with the literature (Mirkin and Gutman,
2013; Chittillapilly and Hepsiba, 2015), the main
contribution is the generalization of the performance tube
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technique from integer order systems to a larger class
of plants involving fractional order derivatives of the
states with an improvement of the performance indexes.
Many preceding works have proven that fractional order
MRAC is advantageously robust against additive noise
and disturbances (Ladaci et al., 2009). The challenging
problem in this paper is to investigate the fractional order
control behavior against model parameter uncertainties,
within a fixed set of constraints.

The FOTMRAC design procedure can be
summarized in two major stages. In the first one we
compute a control law that guarantees the closed loop
stability of the fractional order guidance model for
any reference input, and the asymptotic tracking of the
allowed orientation trajectory. In the second stage, we
formulate an optimization problem in order to calculate
an on line correction signal in order to minimize the
control energy cost. Knowing this step is only feasible
after succeeding in the first design stage.

The paper is organized as follows. In Section 2
we describe some necessary preliminaries and present
some theoretical concepts on fractional order systems.
The proposed FOTMRAC control design is exposed in
Section 3, whereas Section 4 outlines the main results
of this work and performs the stability analysis of
the proposed adaptive control approach. Section 5 is
dedicated to numerical simulation examples in order to
illustrate the FOTMRAC efficiency. Finally, concluding
remarks are given in Section 6.

2. Preliminaries

Fractional order differential equations are widely
addressed in the mathematical and control literature
(Podlubny, 1999). Their main drawback is generally the
lack of exact solutions leading to the use of numerical
and approximation techniques for their analysis and
implementation. For the purpose of the proposed
fractional order adaptive control design, we will
present the Grünwald—Letnikov and Caputo derivative
definitions with a numerical approximation algorithm
for the Grünwald–Letnikov integral and derivative to
be used later in our simulations. Also, we will recall
some important results that are useful for the stability
analysis of the proposed fractional order control system
(Aguila-Camacho et al., 2014; Alikhanov, 2013), and the
fractional order extension of the Lyapunov theorem (Li
and Podlubny, 2010; Kaczorek, 2019).

2.1. Caputo and Grünwald–Letnikov definitions.
The Caputo definition of the derivative of fractional order
α has the following form (Kaczorek and Borawski, 2016):

C
0 D

α
t f(t) =

1

Γ(n− α)

dn

dtn

[ ∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ

]
(1)

where α is a real number such that n − 1 ≤ α ≤ n and
Γ(α) =

∫∞
0 yα−1e−y dy is the Gamma function.

The Grünwald–Letnikov derivative is defined as

GL
0 Dα

t f(t) = lim
h→0

h−α

t/h∑
r=0

(−1)r
(
α

r

)
f(t− rh) (2)

where the binomial coefficients (r > 0) are given by
(
α

0

)
= 1,

(
α

r

)
=

α(α− 1) · · · (α− r + 1)

r!
(3)

with r ∈ N and h denotes the sampling period.

2.2. Grünwald–Letnikov numerical approximation.
For a causal function f(t), with the time operator t = kh,
the fractional order derivative is (Balaska et al., 2019)

Dα
t f(t) = h−α

t/h∑
r=0

(−1)r
(
α

r

)
f(kh− rh) (4)

The fractional order integral is given by (Podlubny, 1999)

Iαt f(t) = D−α
t f(kh) (5)

≈ hα

t/h∑
r=0

(−1)r
(−α

r

)
f(kh− rh).

Besides, we have the following important
property of the Caputo derivative of fractional order
(Aguila-Camacho et al., 2014).

Lemma 1. Let ξ(t) ∈ R
n be a continuous and derivable

function. Then for any time instant t ≥ t0

1

2

C

t0
Dα

t

(
ξT (t)ξ(t)

) ≤ ξT (t)Ct0D
α
t ξ(t) (6)

2.3. Stability of fractional order systems. Consider
the fractional order nonlinear time varying systems of the
form

C
t0D

α
t ξ(t) = f(ξ, t), (7)

where t represents time andα ∈ (0, 1). Here the definition
(1) is used. Then we have the following important result
for the stability analysis of the system (7) using the direct
Lyapunov theorem (Alikhanov, 2010).

Definition 1. A continuous function γ : [0, t) → [0,∞)
is said to be a class-K function if it is strictly increasing
and γ(0) = 0 (Duarte-Mermoud et al., 2015).

Theorem 1. Consider a non autonomous fractional order
system (7), and let ξ = 0 be its equilibrium point. Assume
the existence of a Lyapunov function V (t, ξ(t)) and class-
K functions γi (i = 1, 2, 3) that satisfy

γ1 (‖ξ‖) ≤ V (t, ξ(t)) ≤ γ2 (‖ξ‖) , (8)
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Fig. 2. Comparison of step responses for a first order-like sys-
tem.

C
t0D

β
t V (t, ξ(t)) ≤ −γ3 (‖ξ‖) (9)

with β ∈ (0, 1). Then the system (7) is asymptotically
stable.

Proof. See the proof by Muñoz-Vázquez et al. (2019).
�

2.4. Performance of fractional order systems.
Advantageous properties of fractional order models
compared with standard integer order ones have been
pointed out by many previous studies as the best reference
models for control applications (Ladaci and Charef, 2006;
Mondal and Biswas, 2011). Indeed, fractional order
systems offer better quality, in terms of time response and
transition dynamic stability, in addition to their intrinsic
robustness action against disturbances and noise (Ladaci
et al., 2006).

In order to illustrate this fact, consider two examples
of systems with respectively first order and second
order-like models given by

H1(s) =
1(

1 +
s

4

)α , (10)

H2(s) =
1(

s2

ω2
n

+ 2ξ
s

ωn
+ 1

)α (11)

with ωn = 10 rad/s, ξ = 0.95.
The step responses of systems H1(s) and H2(s) for

the integer case (α = 1) and the fractional order values of
(α) are given in Figs. 2 and 3, respectively. They show the
gain in the rise time in both the cases.
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3. Problem statement

We consider the plant represented by the fractional order
linear state model

Dαξ(t) = Aξ(t) +Bv(t), (12)

where A ∈ R
n×n and B ∈ R

n×l are unknown constant
parameter matrices, α is a real number such that 0 < α <
1, ξ(t) ∈ R

n and v(t) ∈ R
l are the system state and the

input signal, respectively. We assume that the plant state
variables are measured.

To simplify the notation, we write Dα for the
fractional derivative of order α instead of C

t0D
α
t .

The first objective of the proposed control approach
is to determine the control signal v(t) such that ξ(t) tracks
asymptotically the desired fractional order reference
model specified by

Dαξm(t) = Amξm(t) +Bmvm(t) (13)

with
vm(t) = r(t) + vc(t) (14)

where Am ∈ R
n×n is a stable matrix, Bm ∈ R

n×l, ξm ∈
R

n and vm ∈ R
l are the reference model state and the

reference model input signal, respectively.
Here r(t) ∈ R is the reference input signal, and

vc(t) ∈ R is the goal correction control signal varying
in the following interval:

vc(t) ∈
[
v−c (t), v

+
c (t)

]
. (15)

Many practical processes can be modeled in the
form (12). In fact, fractional order models have
proven to be more accurate in representing many
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physical phenomena than the classical “integer-order”
methods. In (Stiassnie, 1979) and (Bagley, 1983),
viscoelastic models are formulated by fractional order
differential equations. Another typical fractional order
system is the voltage-current relation of a semi-infinite
lossy transmission line (Wang, 1987) and diffusion
of the heat through a semi-infinite solid, where heat
flow is equal to the half-derivative of the temperature
(Podlubny, 1999). An automotive application of the
fractional-order modeling of high-pressure fluid-dynamic
flows is presented by Lino et al. (2015). Movahhed
et al. (2016) proposed a fractional state space model for a
fractional DC/DC Buck converter. Also a fractional order
model is used to represent electrically coupled neuron
systems by Moaddy et al. (2012) and electrical circuits
by Kaczorek (2011). System identification for thermal
dynamics of buildings uses fractional order models in the
work of Chen et al. (2016). Even in biomedicine and
biology engineering, a fractional order model is proposed
to model immune cells influenced by cancer cells (Ucar
et al., 2019) and dynamics of HIV infection (Rihan, 2013)
(see a more complete review by Ionescu et al. (2017)).

Besides, by (14) we define the fractional order
reference model input signal, which can be changed
within specified limits, and like that, we do not have
unique reference trajectory but a set of admissible
desired trajectories which constitute the performance tube
reference model. In many applications, such as industrial
process or flight control, it is not necessary to follow
exactly a single reference trajectory, but some specified
deviation from it is permitted (Duarte-Mermoud et al.,
2015).

Then, a second objective is to find the correction
signal satisfying the condition (15) that minimizes the cost
function,

J(vc) =

∫ t

0

v2(τ) dτ (16)

In order to be able to guarantee the first goal of the
proposed fractional order adaptive control strategy, we
assume that there exist a constant vector θ�ξ ∈ R

n and
a nonzero constant scalar θ�m such that the following
conditions are satisfied:

A+Bθ�Tξ = Am, (17)

Bθ�m = Bm. (18)

We assume that the structure of A and B is known
and the pair (A,B) is controllable. We also assume that
θ∗m is positive. This last hypothesis is not restrictive
because, first, it is usually used in similar designs
(Ioannou and Sun, 1996) and we have the ability to choose
Am and Bm in a way that guaranties the existence of
θ�ξ ∈ R

n and θ�m. We note that if we consider arbitrary
matrices A, B, Am, Bm, there may be no θ�ξ ∈ R

n

and scalar θ�m satisfying (17) and (18), and, therefore, the

control law may not have sufficient structural flexibility to
realize the control objective.

In case the structure of A and B is known, we can
design the matrices Am and Bm so that the matching
conditions (17) and (18) have a solution for some θ�ξ and
θ�m. In this study, we assume their existence which means
that the controller has sufficient structural flexibility to
realize the control objective.

The proposed control v(t) is the sum of two signals:
an adaptive signal va(t), and a goal correction control
signal vc(t),

v(t) = va(t) + vc(t) (19)

Defining the tracking error e(t) = ξ(t) − ξm(t) for any
v(t) such that

Dαe(t) = Dαξ(t)−Dαξm(t)

= Aξ(t) +Bv(t)−Amξm(t) +Bmvm(t)

=
(
Am −Bθ�Tξ

)
ξ(t) +B (va(t) + vc(t))

−Amξm(t)−Bm (r(t) + vc(t))

= Ame(t) +B
[
va(t)− θ�Tξ Ψ(t)− θ�cvc(t)

]
(20)

with ⎧⎨
⎩

Ψ(t) = [ξ(t) r(t)]T ,
θ� = [θ�Tξ θ�m]T ,

θ�c = θ�m − 1,
(21)

va(t) = θTΨ(t) + θcvc(t), (22)

θ̃(t) = θ(t)− θ�, θ̃c(t) = θc(t)− θ�c (23)

which results in the fractional order error equation

Dαe(t) = Ame(t) +Bθ̃T (t)Ψ(t) +Bθ̃c(t)vc(t). (24)

Following the results of Mirkin and Gutman (2013), we
are able to propose the adaptive control of equations (19)
and (22), with the following gain adaptation laws:⎧⎪⎪⎨

⎪⎪⎩

Dαθ(t) = −Λ1Φ(t)− ΛpD
αΦ(t),

Φ(t) = Ω(t)Ψ(t),
Ω(t) = eT (t)PBm,
Dαθc(t) = −ΛcΩ(t)vc(t) + θc0(t),

(25)

where

θc0(t) =

{
0 if |θc + 1| ≥ ε,

ΛcΩ(t)vc(t) otherwise
(26)

is the projection function, Λ1 = ΛT
1 > 0, Λp = ΛT

p > 0
and Λc > 0 are the design parameters, ε is a known lower
bound to |θ�c + 1| = |θ�m| = θ�m, P is the solution of the
Lyapunov equation

AT
mP + PAm +Q = 0, Q = QT > 0. (27)
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In the next section, we shall prove that the proposed
control law guarantees the asymptotic stability in the
sense of Lyapunov of the closed loop system for any
choice of vc ∈ [v−c , v+c ], and thus, the first control goal
is achieved independently from the second one.

The objective for the proposed FOTMRAC control
scheme it to design an updating mechanism for the
goal correction control vc(t) ∈ [v−c (t), v+c (t)] aiming
to minimize the control energy cost evaluated by the
optimization criterion (16).

From (16) and (19) we get J(vc) = (va(t) +
vc(t))

2. Thus, for any bounded θT (t), Ψ(t) and θc(t), the
optimization criterion (16) leads to the following solution:

vopt
c (t)

=

{
−va(t) if va ∈ [v−c , v+c ] ,
argmin(J(v−c ), J(v+c )) otherwise

(28)

where J(v−c and J(v+c ) are the values of J(vc) = (va(t)+
vc(t))

2 when vc = v−c and vc = v+c , respectively.
From the given controller of Eqns. (19), (25), and

(28), it results that the two control goals are realized and
obviously, the first stage problem solution is indispensable
to deal with the second design step.

Remark 1. Note that the solution of the optimization
problem (16) in case when va ∈ [v−c , v+c ] has the form
−(1 + θc(t))

−1θT (t)Ψ(t), so the adaptive gain θc(t) has
a point of singularity. In order to prevent θc(t) from
taking the value −1, we suggest the parameter projection
algorithm for updating this gain (Ioannou and Sun, 1996).

4. Main results

In order to be able to perform the stability analysis of
the proposed performance tube based adaptive control
scheme for the discussed class of fractional order systems
represented by equation (12) for any bounded choice of
vc(t) ∈ [v−c (t), v+c (t)], we need to recall the following
lemma (Duarte-Mermoud et al., 2015).

Lemma 2. Consider a continuous and differentiable func-
tion ξ(t) ∈ R

n, with Q = QT ≥ 0 ∈ R
n×n. For any time

instant t ≥ t0, we have

1

2

C

t0
Dα

t ξ
T (t)Qξ(t) ≤ ξ(t)QC

t0D
α
t ξ(t), ∀α ∈ (0, 1).

(29)

Proof. We assume that there exist a matrix P ∈ R
n×n

and a vector y(t) ∈ R
n such that

Q = PTP, Pξ(t) = y(t). (30)

Thus

1

2

C

t0
Dα

t ξ
T (t)PTPξ(t) =

1

2

C

t0
Dα

t y
T (t)y(t). (31)

From (31) and Lemma 1, we get ∀α ∈ (0, 1),

1

2

C

t0
Dα

t ξ
T (t)Qξ(t) ≤ yT (t)Ct0D

α
t y(t), (32)

1

2

C

t0
Dα

t ξ
T (t)Qξ(t) ≤ ξT (t)PTPC

t0D
α
t ξ(t). (33)

Consequently,

1

2

C

t0
Dα

t ξ
T (t)Qξ(t) ≤ ξT (t)QC

t0D
α
t ξ(t). (34)

�
Now we present the main result of this paper

concerning the Lyapunov stability of the proposed
FOTMRAC control strategy.

Theorem 2. Consider the class of fractional order sys-
tems given by (12), and the designed reference model
given by (13), with the reference input (14) and the goal
correction control satisfying (15). The FOTMRAC control
law given by (19) and (22) with the gain adaptation laws
(25) and (28) guarantees that all the closed-loop signals
are bounded, the tracking error tends asymptotically to
zero, and also minimizes the control cost defined by (16).

Proof. Define the Lyapunov candidate function

V = eT (t)Pe(t) +
1

θ�m

[
Φ̃T (t)Λ−1

1 Φ̃(t) + Λ−1
1 θ̃2c (t)

]
,

(35)
where

Φ̃(t) = θ̃ + ΛpΦ(t). (36)

Then

DαV = Dα
[
eT (t)Pe(t)

]
+

1

θ�m

(
Dα

[
Ψ̃T (t)Λ−1

1 Ψ̃(t)
]

+ Λ−1
1 Dα

[
θ̃2c (t)

] )
.

(37)

Applying Lemma 2 for each fractional order
derivative term, we get

Dα
[
eT (t)Pe(t)

]
≤ 2eT (t)PDαe(t) (38)

≤ 2
[
eT (t)PAme(t)

+
1

θ�m

[
θ̃T (t)Ψ(t) + θ̃c(t)Ω(t)vc(t)

]]
,

Dα
[
Ψ̃T (t)Λ−1

1 Ψ̃(t)
]
≤ 2Ψ̃T (t)Λ−1

1 DαΨ̃(t). (39)
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But

DαΨ̃(t) = Dαθ(t) + ΛpD
αΨ(t) (40)

= −Γ1Ψ(t),

which yields

Dα
[
Ψ̃T (t)Λ−1

1 Ψ(t)
]

≤ 2
[
θ̃T (t) + ΨT (t)Λp

]
Λ−1
1 [−Λ1Ψ(t)] (41)

≤ −2
[
θ̃T (t) + ΨT (t)Λp

]
Ψ(t),

Dα
(
θ̃2c (t)

)
≤ 2θ̃c(t)D

αθ̃c(t) (42)

≤ 2θ̃c(t) [−ΛcΩ(t)vc(t) + θc0(t)] .

From (38), (41), and (42), we get

DαV ≤ 2eT (t)PAme(t) (43)

+
2

θ�m

[
θ̃T (t)Ψ(t) + θ̃c(t)Ω(t)vc(t)

]

+
2

θ�m

[
−θ̃T (t)Ψ(t)−ΨT (t)Λp Ψ(t)

]

+
2Λ−1

c

θ�m

[
−Λcθ̃c(t)Ω(t)vc(t) + θ̃c(t)θc0(t)

]
,

DαV ≤ 2eT (t)PAme(t) (44)

− 2

θ�m
ΨT (t)Λp Ψ(t) +

2

θ�mΛc
θ̃c(t)θc0(t).

Since

2eT (t)PAme(t) = eT (t)PAme(t) (45)

+ eT (t)AT
mPe(t)

= eT (t)
[
AT

mP + PAm

]
e(t)

= −eT (t)Qe(t),

we have

DαV ≤ −eT (t)Qe(t) (46)

− 2

θ�m
ΨT (t)Λp Ψ(t) +

2

θ�mΛc
θ̃c(t)θc0(t)

and the last term satisfies θ̃c(t)θc0(t) ≤ 0 (Ioannou and
Sun, 1996).

From (46), we have DαV ≤ 0, so that the Lyapunov
stability of the proposed control scheme is proved for any
vc(t) ∈ [v−c (t), v+c (t)]. Consequently, the first goal stage
is achieved. It is clear that choosing vopt

c (t) satisfying
(28) allows minimizing the control cost defined by (16).
Thus, the two control goals are achieved; we guarantee
the stability of the closed loop, the tracking convergence
and also the minimization of the control cost.

The two control goals are achieved separately, but the
solution of the first stage is necessary for the solution of
the second one. �
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Fig. 4. Reference model response for vc(t) = 0 (solid line) and
the performance tube (dotted line) for Example 1.

5. Simulation examples

In this section, we propose two numerical simulation
examples to illustrate the efficiency of the proposed
FOTMRAC adaptive control strategy. As discussed
before, the proposed fractional order models can represent
a wide range of practical processes.

5.1. Example 1. Let the unstable fractional order
scalar plant be modeled as

Dαy(t) = ay(t) + bv(t), y(0) = y0. (47)

Assume that the desired reference model is

Dαym(t) = amym(t) + bmvm(t), (48)

vm(t) = r(t) + vc(t),

where a = 1, b = 0.5, am = −5, bm = 5, v−c = −1,
v+c = +1, α = 0.75 and r(t) is a step signal with
amplitude +3.

By the choice of am and bm we describe the
performance of the reference model. In this numerical
example, we choose am as a stable pole, and bm in order
to have a unitary gain.

Since the reference signal r(t) is a step of +3 in
amplitude, we choose the range of vc(t) in [−1, 1], and
thus, we define the admissible range for the reference
trajectories. The variables y+m(t) and y−m(t) in Fig. 4,
represent the reference model response for the inputs
v(t) = r(t) + v+c and v(t) = r(t) + v−c , respectively.

These variables define the tube of the admissible
reference trajectories. The reference model response for
vc(t) = 0 is represented in Fig. 4 (the solid line).

The fractional order tube model reference adaptive
controller of (19) and (22) with the gain adaptation
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Fig. 5. Controlled system output (solid line) and the refer-
ence trajectory (dotted line) within the performance tube
(dashed line).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−4

−3

−2

−1

0

1

2

3

4

5

6

time sec

v(
t)

, v
c(t

)

 

 
v(t)
v

c
(t)
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Fig. 7. Adaptive gain vectors.

laws (25) and the optimization problem solution (28) are
applied to the plant (47) with the controller parameters

Λ1 = 9, Λp = 0.6, P =

[
1/5 0
0 1/5

]
. (49)

P is the solution of the Lyapunov equation (27).
Besides, in order to compare the performance of the
proposed FOTMRAC strategy with the FOMRAC scheme
(i.e., vc = 0 and θc = 0 in (19) and (22)), we adjust the
value of the reference model input in order to have the
same steady state trajectory reaching.

For the needs of numerical simulation, we use the
Gründwald–Letnikov approximation of the derivative and
integrator operators (4) and (5), respectively.

Our experimental setting for the proposed control
application includes two cases with two different values
for the reference model inputs r(t) = +3 and r(t) =
−3. First we take the reference model input r(t) =
+3. The simulation results for the obtained closed loop
control system output and the guidance trajectory within
the performance tube are presented in Fig. 5.

The FOTMRAC control signal, the goal correction
control signal and the adaptive gain vectors are
respectively represented in Figs. 6 and 7.

The closed loop control system outputs for both the
cases of fractional order adaptive control (FOMRAC)
with optimization and without optimization are shown in
Fig. 8, whereas the absolute control signals are illustrated
in Fig. 9.

By taking the reference model input r(t) =
−3, we obtain the results summarized in Figs. 10–14,
illustrating, respectively, the controlled system output
and the reference trajectory within the performance tube
(Fig. 10), the FOTMRAC control signal and the goal
correction control signal (Fig. 11), the adaptive gain
vectors (Fig. 12), the system outputs for the cases
of fractional order adaptive control with and without
optimization (Fig. 13), and the absolute control signals for
the same cases (Fig. 14).

From these simulation results, it is obvious that the
correction control signal is updated at each instant of
time, and varies within the preset limits in order to reduce
the energy control criterion. It implies also that the
reference trajectory is updated in real time and remains in
the predefined model reference tube, whereas the system
output tracks perfectly the updated trajectory.

Figures 9 and 14 show the absolute value of
the control signals |v(t)| for the cases of fractional
order adaptive control with and without optimization,
respectively. We notice that the control signal cost is
clearly lower with optimization, and thus, we have the
same steady response space with a minimum control
effort.
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Fig. 8. System outputs for case of fractional order adaptive con-
trol with and without optimization.
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Fig. 9. Absolute control signals for case of fractional order
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Fig. 10. Controlled system output and the reference trajectory
within the performance tube.
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Fig. 11. FOTMRAC control signal and the goal correction con-
trol signal.
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Fig. 12. Adaptive gain vectors.
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control with and without optimization.
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Fig. 14. Absolute control signals for the case of fractional order
adaptive control with and without optimization.
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Table 1. Comparison of control cost evaluations for Example 1.
FOTMRAC FOMRAC

Cost strategy strategy
(with optimization) (without optimization)

J =
∑

k v
2(k) 35171 54100

To evaluate the quadratic criterion J given in
(16), we compare for the two cases (with and without
optimization) the control cost function given in Table 1.

We observe that the control cost of the proposed
method is much lower (about 35%) than in the case of
the standard model reference adaptive control.

5.2. Example 2. Let us now consider the unstable
SIMO system defined by

[
Dαξ1(t)
Dαξ2(t)

]
= A

[
ξ1(t)
ξ2(t)

]
+B v(t), (50)

where

A =

[
0 1
1 2

]
, B =

[
0
0.5

]
,

and the order α = 0.8.
Our objective is to design a state feedback control

law v(t) according to our proposed FOTMRAC strategy,
in order to control the first state variable ξ1(t). For that
purpose we choose the following stable reference model:
[

Dαξm1(t)
Dαξm2(t)

]
= Am

[
ξm1(t)
ξm2(t)

]
+Bm vm(t), (51)

where

Am =

[
0 1
−1 −2

]
, Bm =

[
0
1

]
,

and
vm(t) = r(t) + vc(t).

The controller parameter values are chosen as
follows:

P =

[
3/2 1/2
1/2 1/2

]
, Λ1 =

⎡
⎣ 3 0 0

0 3 0
0 0 3

⎤
⎦ ,

Λp =

⎡
⎣ 0.9 0 0

0 0.9 0
0 0 0.9

⎤
⎦ , Λc = 2. (52)

The reference input signal r(t) is represented in
Fig. 15. The variables ξ+m1(t) and ξ−m1(t) in Fig. 15
represent the first state variable of the reference model
for the input v(t) = r(t) + v+c and v(t) = r(t) + v−c ,
respectively, where v−c = −0.5, v+c = +0.5. These
variables define the tube of the admissible reference
trajectories.

Figure 16 shows the controlled output system,
tracking perfectly the model reference trajectory within
the reference tube. This reference trajectory is updated
by the adaptive control law such that the control effort is
minimized.

The control signal and the goal correction control
signal are shown in Fig. 17, whereas the adaptive gain
vectors are represented in Fig. 18.

In order to compare the performance of the proposed
FOTMRAC strategy with the FOMRAC scheme (i.e.,
vc(t) = 0 and θc = 0 in (19) and (22)), we adjust the value
of the reference model input in order to have the same
steady state trajectory reaching. The controlled output
system and the absolute value of the control signals for the
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Table 2. Comparison of control cost evaluations for Example 2.
FOTMRAC FOMRAC

Cost strategy strategy
(with optimization) (without optimization)

J =
∑

k v
2(k) 162190 165500

scheme of adaptive control with and without optimization
are respectively illustrated in Figs. 19 and 20.

For the same steady state response, we remark that
the proposed FOTMRAC controller finds the reference
trajectory within the performance tube so that the control
effort is minimized.

From Fig. 20, it is obvious that the control cost
with FOTMRAC strategy is lower than the control
cost applying a simple FOMRAC control without

optimization. We notice that the gain in control cost
compared with the classical scheme is realized in the
transitory phase, because in the steady state phase the
curves of the proposed and the standard control converge
to the same value. From the instant 0 [s] to 10 [s],
the gain equals 5.75%. Notice that this improvement
in control cost could be increased by augmenting the
interval [v−c , v

+
c ]. For example, if we take the interval

[−1.5,+1.5], the gain in command cost becomes 13.98%.
Also to evaluate the criterion J , we present a

comparative evaluation of the control cost function in the
two cases (with and without optimization) in Table 2.

In regard of the obtained simulation results, we can
say that our proposed FOTMRAC strategy gives a better
control performance since all the closed loop signals are
bounded, the plant response tracks the reference trajectory
within the admissible range (the performance tube) with
a minimum control effort. Even if this performance
quantification is not linearly related to the fractional order,
we can always find a result improvement using a fractional
order tube MRAC control.

6. Conclusion

In this article, a novel fractional order tube model
reference adaptive control (FOTMRAC) has been
developed for a class of fractional order linear systems.
Based on the TMRAC control scheme proposed by Mirkin
and Gutman (2013), the proposed adaptive control scheme
generalizes the performance tube technique to the class of
arbitrary order systems.

Using an adaptive state feedback configuration, this
approach has two main objectives: the first one is to
ensure the stability of the resulting fractional order closed
loop system and the asymptotic tracking of the guidance
trajectory within the performance tube. The second
objective is the minimization of a control cost. The
stability analysis has been performed in Theorem 2 using
an extended version of the Lyapunov theorem to fractional
order systems.

Two illustrative examples have been presented to
demonstrate the effectiveness and the accuracy of the
proposed method. Applying the FOTMRAC control
scheme has given satisfactory performance for the two
plants considered, namely:

• The asymptotic stability is guaranteed in both the
cases despite the fact that the model parameters are
unknown.

• The systems’ outputs lay in the reference model tube
domain.

• The control energy cost is minimized.

• The performance indexes are much better than those
of the classical TMRAC control scheme.
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Future research will concern the extension of this adaptive
control approach to fractional order nonlinear and MIMO
systems.
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