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The paper proposes a discrete-time sliding mode controller for single input linear dynamical systems, under requirements
of the fast response without overshoot and strong robustness to matched disturbances. The system input saturation is
imposed during the design due to inevitable limitations of most actuators. The system disturbances are compensated by
employing nonlinear estimation by integrating the signum of the sliding variable. Hence, the proposed control structure
may be regarded as a super-twisting-like algorithm. The designed system stability is analyzed as well as the sliding man-
ifold convergence conditions are derived using a discrete-time model of the system in the δ-domain. The results obtained
theoretically have been verified by computer simulations.
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1. Introduction

Variable structure control systems (VSCSs) (Emelyanov,
1957) operating in sliding mode (SM) (Utkin, 1992), as a
robust nonlinear control technique, have attracted a lot of
attention in the literature. This is due to the following
important features: order reduction of the system
dynamics in SM, theoretical invariance to parameter
variations and disturbances acting through the control
channels (Draženović, 1969) and a simple two-step design
procedure (Utkin, 1992). First, the desired SM dynamics
is selected by defining the appropriate sliding manifold
in the state space, and then a discontinuous control is
designed that brings the system state to the manifold in a
finite time (Ackermann and Utkin, 1998). Further motion
towards the equilibrium takes place along the sliding
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manifold under the action of the discontinuous control. In
addition to these remarkable features, some shortcomings
have also been noticed. The first one is related to the
discontinuous nature of control. Namely, every real
control system has small transport/inertial delays usually
present in the control plant and/or in actuators and sensors
that are not captured by its mathematical model used
in controller design. Such unmodeled dynamics can be
excited by discontinuous control inducing high-frequency
oscillations (chattering) around the sliding manifold (and
the equilibrium state). Chattering cannot be tolerated
in most applications, especially in electromechanical
systems, where it results in unpleasant sound effects, wear
out of mechanical parts, or drive overheating.

In order to mitigate the effects of chattering, the
following methods were proposed: the boundary layer
method (Slotine, 1984), application of an observer
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(Bondarev et al., 1985) as a bypass for chattering,
the implicit method for realization of the signum
function (Golo et al., 2000; Huber et al., 2016) and
application of higher order sliding modes (HOSMs)
(Levant, 1993). In the first method, the discontinuous
(signum) function is replaced by a high-gain saturation
or a sigmoid function that eliminates or alleviates
chattering, but the system robustness is reduced because
the system gain becomes limited. In the second
approach, the controller governs the observer and not
the real plant, thus excluding the plant from the
chattering-contaminated loop. The disadvantage is that
the plant parameter variations deteriorate robustness and
system performance. In the implicit control method, the
signum function is treated as a multi-valued function,
which reduces chattering. This approach is more
complicated for practical implementation and does not
result in significantly better results than a method that is
the subject of this paper.

HOSMs have become very popular in the past
decade. Since the introduction of HOSMs, the former
first-order SMs have been called classic SMs. In classic
SM, the sliding variable is a continuous function of time,
whereas its time derivative is a discontinuous function. In
the r-th-order SM, r − 1 time-derivatives of the sliding
variable are continuous, whereas the r-th time derivative
is a discontinuous function. The second-order sliding
mode certainly attracted most attention because of its
practical feasibility (Bartolini et al., 1998). According
to Utkin (2016), all HOSMs are ultimately reduced to
classical SMs in the sliding variable subspace, and only
the super-twisting control (STC) algorithm (Levant, 1993)
achieves a true second-order SM. The STC algorithm has
become very popular in SM theory and practice. STC
was originally developed for single input continuous-time
(CT) systems (Levant, 1993). The relative order of the
system must be one with respect to the sliding variable,
taken as an output.

Modern control systems are implemented using
computers or microprocessors, i.e., in the discrete-time
(DT) domain. DTSM analysis and development began
in the 1980s and 1990s (Milosavljević, 1985; Drakunov
and Utkin, 1989; Gao et al., 1995; Bartolini et al., 1995;
Bartoszewicz, 1998; Bartoszewicz and Leśniewski, 2014;
Bartoszewicz and Adamiak, 2019) in the case of the
first-order SM. The DT development of HOSMs began
with the paper (Bartolini et al., 2001) and became one of
the research fields by well-known authors (Bartoszewicz
and Latosinski, 2017; Chakrabarty et al., 2017). However,
there are relatively few papers in the field of DT
realization of STC (Salgado et al., 2016; 2011; Yan
et al., 2015; Koch and Reichhartinger, 2019). An
essential feature of CT STC is that the system state
reaches exactly the sliding manifold in a finite time.
By simple discretization of CT STC by applying the

Euler discretization method, this property is lost (Yan
et al., 2015). The system state arrives into a vicinity of the
sliding manifold in a finite time, and the further motion
takes place in a quasi-sliding domain around the manifold
even in the absence of disturbances.

This paper discusses DT SMC design for single
input linear time-invariant (LTI) systems that provides
a fast response without overshoot, but with reduced
chattering and strong robustness to matched disturbances.
Furthermore, input saturation is imposed on the system
considered, which is a realistic situation due to
inevitable construction limitations of actuators. Hence,
the controller output is saturated, which has required
additional stability analysis to determine sliding manifold
convergence conditions under saturation. This problem
was also discussed by Bartolini et al. (1995) and Corradini
et al. (2014) for classic DT SMC systems, and Golkani
et al. (2018), Shtessel et al. (2012), Castillo et al. (2016)
for CT STC.

As in the work of Golo and Milosavljević (2000), the
analysis and design of the DT SM controller in this paper
have been also carried out using a DT model of the system
in the δ-domain, which in this case allows separation of
the reaching control component that achieves reaching the
sliding manifold and the sliding control component that
secures sliding along that manifold. The reaching control
of the proposed controller is selected to be linear in order
not to excite chattering. However, to provide robustness
it is necessary to introduce disturbance compensation.
Some methods for it were suggested by Su et al. (2000)
and Milosavljević et al. (2007) for DTSMC systems,
both applying linear estimation laws. In this paper, an
additional compensation control component is introduced,
which is formed by applying nonlinear estimation by
integrating the signum of the sliding variable. Thus,
the proposed control structure resembles the structure
of discretized STC. Finally, in order to avoid integrator
wind-up because of the saturation in the system, an
anti-wind-up mechanism is embedded into the controller.

The rest of the paper is organized as follows.
Section 2 summarizes some basic design aspects of DT
SMC and briefly describes the DT realization of an STC.
Section 3 carries the main results and proposes a DT
SM controller that meets the predefined design tasks.
Stability analysis and convergence conditions are also
given. Section 4 supports the designed control system
by presenting simulation results of an illustrative example.
The paper ends with conclusions and the used literature.

2. Preliminaries

Consider a linear time invariant continuous time dynamic
system described as

ẋ(t) = Ax (t) + b (u (t) + d (t)) , (1)
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where x ∈ R
n is the state vector, u ∈ R is the control

signal, and A ∈ R
n×n and b ∈ R

n×1 are the state and
input matrices, respectively. Also, the system is subjected
to a bounded matched disturbance d, |d (t)| ≤ d0 < ∞.
To implement SMC it is necessary (i) to design a sliding
manifold in the state space and (ii) to choose a control that
establishes a stable SM. The system motion can be divided
into two phases: reaching phase and SM. Consequently,
there are two control components. The reaching control
should bring the system state from any initial state to the
sliding manifold, and the SM control should drive the
system state along the sliding surface. In CT systems
it is possible to have a unique reaching and SM control
but it must have a discontinuous nature, which can excite
unmodeled dynamics and induce chattering.

As the scope of the paper is DTSMC, some
elementary design principles of these systems are
summarized below.

2.1. Discrete-time sliding mode control design.
Consider a linear time invariant continuous time dynamic
system described as

xk+1 = Adxk + bd (uk + dk) , (2)

Ad = eAT , bd =

∫ T

0

eAtb dt, (3)

under the assumption that the sampling period T is
sufficiently small and the disturbance is slowly varying,
due to which the disturbance can be considered constant
over the sampling interval. Note that the time
discretization disrupts the matching property (Draženović,
1969) from CT. It was shown by Abidi et al. (2007)
that the unmatched part of disturbance in DT is of order
O
(
T 3

)
. However, for constant disturbances the matching

property is preserved, which is the ground for the main
assumption.

The sliding motion should be organized along the
sliding manifold

sk = cdxk = 0, (4)

where the constant vector cd should provide the desired
reduced order SM dynamics, defined by an eigenvalue
spectrum

λd =
[
λd,1 λd,2 · · · λd,n−1 0

]
. (5)

According to the comprehensive approach to the sliding
manifold design (Draženović et al., 2013), vector cd
that provides the desired dynamics (5) and common
requirement cdbd = 1 can be easily found using

cd =
[
kde 1

] [
Ad bd

]†
. (6)

A gain vector kde in (6) is the one that provides the
desired spectrum (5) by conventional state feedback in

the system (2). Also, the operator † in (6) denotes the
matrix pseudo-inversion. The control that establishes the
SM along the manifold (4) is obtained by solving equation
sk+1 = 0, using the model (2), as

ueq,k = −cdAdxk − dk. (7)

This linear control is the equivalent control, which is
in this case both the reaching control and the SM
control. Under this control, the system reaches the sliding
manifold in one step and slides along it afterwards. It
requires the knowledge of disturbancedk, which is usually
unknown. Therefore, only the equivalent control for
nominal system (dk = 0) is feasible in practice as

uk = −cdAdxk = −kdexk. (8)

This means that the disturbance should be estimated and
compensated as best as possible by an additional control
component. Also, there is no possibility of shaping the
reaching phase.

2.2. Discrete-time sliding mode control design in
the δ-domain. Another design approach is to use a
DT model of a system in the δ-domain (Golo and
Milosavljević, 2000). A mathematical model of the
system (1) in the δ-domain can be obtained using (2) in
the following manner:

δxk =
xk+1 − xk

T
= Aδxk + bδ (uk + dk) , (9)

Aδ =
1

T
(Ad − In) , bδ =

bd
T
. (10)

Now, the sliding variable in the δ-domain is defined as

sδ,k = cδxk, cδbδ = 1. (11)

The desired eigenvalues (5) can be mapped into the
δ-domain according to (10) as λδ,i = (λd,i − 1)T−1,
(i = 1, . . . , n − 1), which gives the spectrum in the
δ-domain

λδ =
[
λδ,1 λδ,2 · · · λδ,n−1 0

]
. (12)

Equation (6) for finding the sliding manifold
parameters in this case becomes

cδ =
[
kδe 1

] [
Aδ bδ

]†
, (13)

where kδe is the state feedback gain vector that provides
the desired spectrum (12) in the system (9). According to
(11) and (9) it follows that

δsδ,k =
sδ,k+1 − sδ,k

T
= cδδxk = cδAδxk + uk + dk.

(14)
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The equivalent control for the δ-domain
representation can be determined from the condition
sδ,k+1 = 0 by solving the previous equation with respect
to uk. This yields the equivalent control in the following
form:

ueq,k = −cδAδxk − sδ,k
T

− dk. (15)

Unlike control (7), in this control form there is the
term sδ,kT

−1 that plays a role of the reaching control,
which becomes zero when the sliding surface is reached.
Hence, this approach offers the possibility to influence
the reaching phase of the system motion, which will
be exploited in this paper for obtaining a suitable
control structure that minimizes chattering and increases
dynamical properties in real systems. The feasible part of
the equivalent control (15) is given by

uk = −cδAδxk − sδ,k
T

= −
(
kδe +

1

T
cδ

)
xk. (16)

By comparing (8) and (16), the equality
(
kδe +

1
T cδ

)
=

kde holds. Also, from the design condition cδbδ = cdbd =
1 and bd = Tbδ, it follows that cδ = Tcd.

2.3. Disturbance compensation via the sliding vari-
able. If the control (8) is applied in the system (2),
the future value of the sliding variable sk, according to
(4) and (2), would be sk+1 = dk. Hence, dk−1 =
sk, which means that the past value of the disturbance
can be estimated according to the current value of the
sliding variable. This knowledge can be employed for
disturbance compensation.

A compensation control for slowly varying
disturbances was proposed by Milosavljević et al.
(2007) and Lješnjanin et al. (2011) in the form

uc,k = uc,k−1 − hsk, (17)

with stability condition 0 < hT < 1. This control is,
in fact, an integration of the sliding variable. Due to
this integrating property, the compensation control fully
rejects stepwise disturbances and significantly decreases
the impact of other slowly time-varying disturbances. The
overall control can now be rewritten as

uk = −cdAdxk + uc,k, (18a)

uc,k = uc,k−1 − hsk. (18b)

The described method belongs to the class of linear
compensators. Further improvements in system
compensation can be achieved by employing nonlinear
estimation of disturbance.

2.4. Discrete-time realization of the STC. A
very popular SMC algorithm, which incorporates a
sliding variable based part for disturbance estimation and

compensation, is the STC algorithm (Levant, 1993). It
belongs to the group of second-order SMC algorithms,
developed for CT control systems with relative degree one
with respect to the sliding variable. STC is defined by the
following equations:

u = −kp|s|1/2sgn(s) + w, (19a)

ẇ = −kisgn (s) . (19b)

Here w is the disturbance estimate that is used in
(19a) for the compensation to obtain robustness of the
ST controller. A DT version of the STC (Koch and
Reichhartinger, 2019) is usually obtained by applying the
explicit Euler discretization method, yielding

uk = −kp|sk|1/2sgn(sk) + wk, (20a)

wk = wk−1 − kiT sgn(sk−1). (20b)

Comparison of the controllers (18) and (20) shows that
they have identical structure. However, the control
components in (18) are linear, whereas in (20) they are
realized using nonlinear functions.

It has been noticed by Milosavljević et al. (2019)
that the factor |s|1/2 present in (19a), which provides
finite time reaching in CT, loses its importance in the DT
realization (20a) since then it is only possible to achieve
quasi-SM in real systems. By neglecting the square root,
the control (20a) becomes linear. Hence, a combination
of (18a) and (20b) was proposed as the controller by
Milosavljević et al. (2019), whose performance was
thoroughly analysed in the control of first order plants
with/without unmodeled dynamics.

3. DTSM controller design

The control task is to design a digital controller
that provides a fast response without overshoot with
significant robustness to disturbances. The controller
should also take into account the actuator saturation
property that limits the magnitude of the control signal.
To meet the given requirements, the designed DTSM
controller generally combines in stages two control
principles with the proposed modifications in order to
eliminate their well-known shortcomings. The first
control phase is linear providing a near deadbeat response
while a nonlinear control phase, based on a super twisting
like algorithm, is activated in the vicinity of the sliding
manifold. In this way a quick arrival into the quasi-sliding
domain is ensured, avoiding the response overshoot due to
integrator windup during the inevitable control saturation
arising in the first stage of motion.

The proposed control law is given by the following
set of equations:

uk =

{
U0sgn(uΣ,k) if |uΣ,k| > U0,

uΣ,k if |uΣ,k| ≤ U0,
(21a)



Discrete-time sliding mode control of linear systems with input saturation 521

uΣ,k = ul,k − p2,kuc,k, (21b)

ul,k = −cδAδxk − [ks1 + (1− p2,k) ks2]
sδ,k
T

, (21c)

uc,k = uc,k−1 + kintT sgn (sδ,k−1) , (21d)

p1,k =

{
0 if |uΣ,k| > U0,

1 if |uΣ,k| ≤ U0,
(21e)

p2,k = p1,k−1, (21f)

ks1, ks2 > 0, ks1 + ks2 ≤ 1. (21g)

The given control strategy can be summarized as
follows. The control signal consists of two parts: linear
ul,k and nonlinear uc,k. For the system state far away from
the sliding manifold, the control will be saturated due to
the linear control term that tends to bring the system state
onto the sliding surface in a nominal system. Hence, a
high control magnitude will be generated so the control
signal must be limited to the U0 value, which is acceptable
by an actuator. In the sampling instant when the controller
output exits saturation, the linear control

ul,k = −cδAδxk − (ks1 + ks2)
sδ,k
T

(22)

is applied during only one sampling period. For the limit
case ks1 + ks2 = 1, the control (22) is a deadbeat control
that ensures sδ,k+1 = 0 in the nominal system (dk = 0).
In real cases ks1 + ks2 ≤ 1 since dk �= 0 (including
unmodeled dynamics) in order to adjust the width of a
quasi-sliding domain. Such control brings the system
state to a vicinity of the sliding manifold. In the next
sampling period, the gain of the linear part is reduced and
the nonlinear component is activated, so the control signal
becomes

uk = −cδAδxk − T−1ks1sδ,k − uc,k, (23)

uc,k = uc,k−1 + kintT sgn (sδ,k−1) . (24)

The control (23), (24) represents an ST like structure,
which can be obtained from the original ST algorithm
by replacing the factor |s|1/2 with |s|. Neglecting the
square root function in the DT realization of the STC
is quite acceptable, since only a quasi-sliding mode
can be attained by a digital controller. The control
component uc,k, as an output of the DT integrator, can
be understood as a compensational control that tends to
cancel disturbance effects on the system behavior, which
will be displayed later in the text.

In the light of the given explanation of the controller
operation, to prove the stability of the proposed control
system means to prove the state trajectory convergence
to the sliding manifold for both saturated and unsaturated
control phases. The required stability analysis is presented
in the subsequent subsections.

3.1. Stability of the system with saturated control.
Since the saturation is invoked by the linear control (22)
and the compensational control is activated only in the
small vicinity of the sliding manifold, stability analysis
during saturation will be analyzed with respect to linear
control. From (14), the following equation defines the
sliding manifold dynamics:

sδ,k+1 = sδ,k + TcδAδxk + T (uk + dk) . (25)

The control signal is calculated according to (22). If
the calculated control is greater than the allowed actuator
limitation, i.e., ul,k > U0, the applied control would be

uk = U0sgn (ul,k) = U0
ul,k

|ul,k| . (26)

The following proposition imposes a condition on the
limit value U0 to get the system out of saturation.

Proposition 1. The DT system (9) with the controller
(21) operating in the saturation will leave this mode in a
finite number of sampling periods if

U0 > |cδAδxk|+ d0, ∀k ≥ 0. (27)

Proof. Under the applied saturated control (26), the
sliding dynamics becomes

sδ,k+1 = sδ,k + TcδAδxk + Tdk

− U0
TcδAδxk + (ks1 + ks2) sδ,k

|ul,k| .
(28)

Let ks1 + ks2 + ks3 = 1, where 0 ≤ ks3 < 1. Then the
sliding dynamics can be rewritten as

sδ,k+1 = [(ks1 + ks2) sδ,k + TcδAδxk]

×
(
1− U0

|ul,k|
)
+ ks3sδ,k + Tdk.

(29)

Since |ul,k| > U0 we have

0 <

(
1− U0

|ul,k|
)

< 1.

Also, having in mind that 0 ≤ ks3 < 1 and |dk| ≤ d0, the
following inequality can be obtained:

|sδ,k+1| ≤ |(ks1 + ks2) sδ,k + TcδAδxk|
(
1− U0

|ul,k|
)

+ ks3 |sδ,k|+ Td0

= T |ul,k|
(
1− U0

|ul,k|
)
+ ks3 |sδ,k|+ Td0

= T |ul,k| − TU0 + ks3 |sδ,k|+ Td0

≤ (ks1 + ks2) |sδ,k|+ T |cδAδxk| − TU0

+ ks3 |sδ,k|+ Td0

= |sδ,k|+ T (|cδAδxk|+ d0 − U0) .
(30)



522 B. Veselić et al.

Hence

|sδ,k+1| ≤ |sδ,k|+ T (|cδAδxk|+ d0 − U0) . (31)

If the condition (27) holds, then

|sδ,k+1| < |sδ,k| , (32)

which shows that |sδ,k| decreases monotonically and the
system trajectories will be directed towards the sliding
manifold. This means that both sδ,k and xk will be
decreasing, making ul,k decreasing as well. Therefore, it
is inevitable that the control signal becomes smaller than
the saturation limit and the system exits saturation. �

Usually, in practice the value U0 cannot be chosen
greater than the actual physical limitation of the actuator.
Also, the maximum disturbance magnitude d0 acting on
the system is determined by the system construction and
cannot be affected. Therefore, an area in the state space
should be determined where prerequisite (27) is valid
for the predefined U0 and d0. The following remark
conservatively finds that area.

Remark 1. The condition (27) is satisfied for the given
U0 and d0 within a ball around the origin defined by

‖x‖ < r, r =
U0 − d0
‖cδAδ‖ . (33)

where ‖x‖ defines Euclidean vector norm.

Proof. The product cδAδxk is a scalar, so that
|cδAδxk| = ‖cδAδxk‖. Then, inequality (31) can be
rewritten as

|sδ,k+1| ≤ |sδ,k|+ T (‖cδAδxk‖+ d0 − U0), (34)

Since ‖cδAδxk‖ ≤ ‖cδAδ‖ · ‖xk‖, the above inequality
becomes

|sδ,k+1| ≤ |sδ,k|+ T (‖cδAδ‖ · ‖xk‖+ d0 − U0). (35)

To fulfil the sliding manifold convergence condition (32),
it is necessary to have ‖cδAδ‖ ·‖xk‖+d0−U0 < 0, ∀k ≥
0, which gives

‖xk‖ <
U0 − d0
‖cδAδ‖ , ∀k ≥ 0. (36)

This inequality defines a ball around the origin with the
radius r given in (33). �

It is not always possible in any system to fulfil (27)
for a given initial state. Besides the initial state, the
fulfilment of (27) depends on the plant dynamics as well
as the required sliding mode dynamics. It may happen
that for demanding a fast sliding mode dynamics, the
condition (27) cannot be fulfilled for a given initial state
for the maximum admissible U0. Then the system slips
into instability. It should also be emphasized that the
occurrence of an external disturbance further worsens
the fulfilment of this condition. Time derivatives of the
reference signal must be bounded as well since they are
components of the disturbance d(t).

3.2. Stability of the system with unsaturated control.
After the control signal exits saturation, by virtue of (21)
in the next discretization period the following control acts:

uk = −cδAδxk − T−1 (ks1 + ks2) sδ,k, (37)

so δsδ,k becomes

δsδ,k = −T−1 (ks1 + ks2) sδ,k + dk. (38)

Since δsδ,k = T−1 (sδ,k+1 − sδ,k), we get

sδ,k+1 = (1− ks1 − ks2) sδ,k + Tdk. (39)

It is interesting to notice that the limit case ks1 +
ks2 = 1 gives sδ,k+1 = Tdk, which indicates
that this control brings the system state into an O (T )
vicinity of the sliding manifold whose dimensions depend
on the disturbance magnitude. In the nominal case
(dk = 0) , sδ,k+1 = 0 is achieved, so this is actually the
equivalent control providing the deadbeat response.

After the first discretization period of the unsaturated
control (37), the controller gain is then reduced (ks2 = 0)
and the compensational control uc,k is activated,
according to (21). Hence, the controller is now described
by

uk = −cδAδxk − T−1ks1sδ,k − uc,k, (40)

uc,k = uc,k−1 + kintT sgn (sδ,k−1) . (41)

Then

sδ,k+1 = (1− ks1) sδ,k + T (dk − uc,k) , (42)

uc,k+1 = uc,k + kintT sgn (sδ,k) . (43)

The compensational control uc,k actually represents
the disturbance estimated value so let a new variable zk =
dk − uc,k be introduced, denoting the estimation error.
Then the system dynamics can be described as

sδ,k+1 = (1− ks1) sδ,k + Tzk, (44)

zk+1 = −kintT sgn (sδ,k) + zk +Δk, (45)

where Δk = dk+1 − dk. The stability of the
above described system is established by the following
proposition.

Proposition 2. The SM convergence condition for the
DT system described by (44) and (45), with the controller
parameters 0 < ks1 ≤ 1 and kint > 0, is satisfied within
the area defined by

|sδ,k| > kintT
2

ks1
. (46)
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Proof. By using sgn (sδ,k) = sδ,k/ |sδ,k|, the
above nonlinear system (44), (45) can be rewritten in
a pseudo-linear form (Koch and Reichhartinger, 2019;
Ghane and Menhaj, 2015)

σk+1 = Λ (sδ,k)σk + pk, (47)

σk =

[
sδ,k
zk

]
,

Λ (sδ,k) =

[
1− ks1 T
−kintT
|sδ,k| 1

]
,

pk =

[
0
Δk

]
.

The characteristic equation of the pseudo-linear
system (45) can be found as

F (z) = det (zI − Λ) = 0, (48)

which yields

F (z) = a2z
2 + a1z + a0 (sδ,k) = 0, a2 > 0, (49)

a2 = 1, a1 = ks1 − 2,

a0 = 1− ks1 +
kintT

2

|sδ,k| .

The convergence area can be determined using the
Jury stability test that examines the system characteristic
equation. Stability conditions for the second order system
(47) are given through the following inequalities F (1) >
0, F (−1) > 0 and |a0| < a2. In the case of (49) these
conditions are expressed by the following requirements

kintT
2

|sδ,k| > 0,

4− 2ks1 +
kintT

2

|sδ,k| > 0,

kintT
2

|sδ,k| < ks1.

(50)

Since kint > 0 and ks1 ≤ 1, the first two conditions are
always fulfilled. The convergence area can be determined
from the third condition as (46). �

Therefore, the system (47) is stable within the space
defined by the condition (46), i.e., the system trajectories
are directed towards the sliding manifold sδ = 0. It is
important to notice that in the case of constant and slowly
varying disturbances, for which can be assumed that dk =
dk−1, the system (47) is autonomous since the external
input Δk = 0. Then the system trajectories will reach the
convergence boundary |sδ,k| = kintT

2/ks1.
To determine a quasi-sliding domain in the case of

arbitrary disturbances, a worst-case analysis is applied.

Suppose that the system state reached the convergence
boundary |sδ,k| = kintT

2/ks1. Let the compensational
control be uc,k = 0 (the integrator is empty or reset)
and let the system be affected by a disturbance having
a maximal magnitude of |dk| = d0. Then the sliding
variable dynamics (42) is described by

sδ,k+1 = (1− ks1) sδ,k + Tdk. (51)

Hence

|sδ,k+1| ≤ (1− ks1) |sδ,k|+ T |dk|

= (1− ks1)
kintT

2

ks1
+ Td0.

(52)

Thus, according to (46) the quasi-sliding domain is
obtained as

kintT
2

ks1
< |sδ,k+1| ≤ T

[
(1− ks1) kintT

ks1
+ d0

]
, (53)

and the system accuracy is of order

O
(
T 2

)
< |sδ,k+1| ≤ O (T ) . (54)

The obtained upper bound (53) of |sδ| is valid
only when disturbance affects the system (d0 �= 0) and
represents the maximal possible deviation from the
sliding manifold. However, the effective width of the
quasi-sliding domain is much smaller, since the integrator
output uc has been accumulated after some time to
compensate the disturbance.

4. Design example

The proposed control structure has been examined in an
illustrative example and verified through simulation tests.
For that purpose, let an arbitrary (academic) fifth order
unstable controllable linear plant model (1) be defined by

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 −5 6
−2 6 −3 −4 −7
2 −4 6 −10 12
−8 −6 −4 3 1
4 12 −6 −8 −14

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

1
−2
3
−1
2

⎤
⎥⎥⎥⎥⎦ ,

with the initial state x (0) =
[
10 −5 0 −10 5

]T
.

The corresponding discrete-time δ-model (9) for the
sampling time T = 0.001 s has the following matrices:

Aδ =

⎡
⎢⎢⎢⎢⎣

1.0097 2.0521 2.9996
−1.9801 5.9919 −2.9920
2.0272 −3.9198 6.0112
−8.0161 −6.0213 −4.024
−3.9601 11.9839 −5.984

−5.0531 5.9695
−3.97 −6.9979

−10.0902 11.967
3.0528 0.9676
−7.94 −13.9958

⎤
⎥⎥⎥⎥⎦ ,
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bδ =

⎡
⎢⎢⎢⎢⎣

1.0115
−2.0165
3.031

−1.0046
1.967

⎤
⎥⎥⎥⎥⎦ .

The control task is to bring the system state
from the initial state into the equilibrium (the origin)
with the prescribed dynamics by organizing SM along
the appropriate manifold. Let the desired SM
dynamics be defined by the eigenvalue spectrum λ =[−1 −2 −3 −4 0

]
in the CT domain. Using

λδ,i =
(
eλiT − 1

)
/T, i = 1, . . . , n − 1, the δ-domain

spectrum is obtained as

λδ =
[−0.9995 −1.998 −2.9955 −3.992 0

]

To provide the SM mode dynamics, the required sliding
manifold vector cδ is calculated using (13), which yields

cδ =
[
0.4437 0.5794 0.3072 −0.6614 0.063

]

In order to accomplish the control task, the proposed
controller (21) is employed, whose parameters are set as
follows: ks1 = 0.9, ks2 = 0.1 and kint = 100. Also, let
the actuator saturation be defined by U0 = 150.

To check the analytically predicted system
behaviour, let the system first be subjected to an action
of step external disturbance d (t) = 100h(t − 3), where
h(t) is the Heaviside function. The next four figures show
the simulation results of this case. Evolution of the state
variables is presented in Fig. 1(a), which shows that the
state variables asymptotically reach the origin despite
the action of the disturbance. The controller output is
given in Fig. 2(a). It can be noted that the control signal
is initially saturated, but exits saturation after a short
period of time. Figure 1(b) indicates that the condition
(27), which ensures convergence during saturation and
consequently provides saturation termination, is satisfied
during the whole system motion. The dashed line in
Fig. 1(a) denotes U0. Also, Fig. 2(b) shows that the
compensation control component uc accurately estimates
the disturbance, and thus eliminates its impact.

According to the sliding variable, which is presented
in Fig. 3(a) and enlarged in Fig. 3(b), it can be concluded
that the DTSM occurs in a very short time, providing
desired dynamics and robustness to matched disturbances.
It can be noticed in Fig. 3(b) that the disturbance
initial action forces the system state to leave the sliding
manifold, but the controller compensation part restores
sliding motion.

It is important to emphasize that the sliding motion
takes place in some vicinity of the sliding manifold due
to the discrete nature of the controller. Proposition 2
finds convergence area defined by (46). This means that
there is no convergence in the immediate vicinity of the
sliding manifold up to the bounds given by (46). For

0 2 4 6 8 10
-600
-400
-200

0
200
400

0 2 4 6 8 10
t [s]

0

50

100

150

a)

b)

Fig. 1. System response: state coordinates (a), the fulfilment of
the condition (27) (b).

0 2 4 6 8 10

-100

0

100

0 2 4 6 8 10
t [s]

0

50

100

a)

b)

Fig. 2. Output of controller (21): the overall control signal (a),
compensation control component uc and disturbance d
(b).

constant disturbances, such as in this case, it is shown
that the system trajectory should reach the convergence
boundary |sδ,k| = kintT

2/ks1. This claim is confirmed
by the zoomed details of the sliding variable, given in
Fig. 4, where the dashed lines denote the convergence
boundaries and the circles represent the sliding variable in
discrete-time instants. It is evident that for all the circles in
the convergence area, the consequent system trajectory is
directed toward the sliding manifold. This property does
not exist in the space between the two dashed lines, which
confirms the correctness of Proposition 2.

In constructing the proposed control structure, one
of the goals was to eliminate the main shortcoming of the
STC algorithm (the appearance of an overshoot), while
reducing the chattering. Therefore, in the next simulation
test, a comparison of the performances of the proposed
and the discretized ST algorithm is performed. Parameters
of the discretized ST controller (20) are set as kp = 100
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Fig. 3. Sliding variable (enlarged scale in (b)).
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Fig. 4. Sliding variable (zoomed details).

and ki = 200. Since there are no specific methods of
parameter tuning of the ST controller, these values were
adopted by the criterion to obtain dynamics as close as
possible to the sliding manifold reaching ones compared
with the proposed controller. Now, the systems are
subjected to a more complex disturbance, consisting of
sinusoidal and constant parts, i.e., d (t) = 10 sin (4πt) +
100h (t− 3). The other conditions and settings in the
simulation are unchanged from the previous case.

Figure 5 shows evolution of the state variables of the
both controllers. The proposed controller provides the
desired dynamics, while a deviation can be observed in the
response of the STC. The reason for such behaviour can
be identified according to the sliding variables, which are
presented in Fig. 6. It is obvious that the STC produces
an overshoot in reaching the sliding manifold and is more
sensitive to abrupt changes in disturbance, which occurred
in t = 3 s. The performance of the proposed controller is
consistent with the previous case.

Both controllers give similar control signals,

0 2 4 6 8 10
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200
400

0 2 4 6 8 10
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-600
-400
-200

0
200
400

a)

b)

Fig. 5. State variables: the proposed controller (21) (a), the ST
controller (20) (b).
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5

6

Fig. 6. Sliding variables: solid line—the proposed controller
(21), dashed line—the ST controller (20).

presented in Fig. 7, although a more pronounced
chattering can be observed in the ST controller output.
This advantage of the proposed controller is more visible
in the enlarged plot of the sliding variables in Fig. 8.
The proposed controller creates a narrower quasi-sliding
domain around the sliding manifold, and the chattering is
hardly visible. The width of the resulting quasi-sliding
domain is greater than the convergence boundary, since
the external disturbance contains the varying component.

5. Conclusion

Based on the conducted simulation tests, it can be
concluded that the designed DT SMC system has
completely satisfied the predefined design requirements.
A fast response and good elimination of disturbances were
achieved. The overshoot, observed in the response of
the DT ST controller, was successfully avoided by the
proposed controller. The integrator wind-up did not occur,
either. Moreover, the proposed system induced a much
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Fig. 7. Control signals: the proposed controller (21) (a), the ST
controller (20) (b).
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Fig. 8. Sliding variables (enlarged scale): the proposed con-
troller (21) (a), the ST controller (20) (b).

smaller chattering than in the case of DT STC.
The proposed DT SM controller left the saturation

mode in finite time as predicted. The theoretically
proved stability and the obtained convergence bounds
are confirmed by the presented simulation results, which
speak in favor to the proposed controller.
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