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The topologies of protein-protein interaction networks are uncertain and noisy. The network topology determines the reli-
ability of computational knowledge acquired from noisy networks and can impose the deterministic and non-deterministic
character of the resulting data. In this study, we analyze the effect of the network topology on Lyapunov exponents and
its relationship with network stability. We define the methodology to convert the network data into signal data and obtain
the Lyapunov exponents for a variety of networks. We then compare the Lyapunov exponent response and the stability
results. Our technique can be applied to all types of network topologies as demonstrated with our experiments, conducted
on both synthetic and real networks from public databases. For the first time, this article presents findings where Lyapunov
exponents are evaluated under topological mutations and used for network analysis. Experimental results show that Lya-
punov exponents have a strong correlation with network stability and both are correlatively affected by the network model.
Hence we develop a novel coefficient, termed LEC, to measure the robustness of biological networks. LEC can be applied
to real or synthetic biological networks rapidly. Results are a striking indication that the Lyapunov exponent is a potential
candidate measure for network analysis.
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1. Introduction

Networks are used to describe the interactions between
objects of interest in various areas. In molecular biology,
network representations are useful to analyze important
biological activities. These activities do not result from
a single molecule but ensue from the effects of multiple
molecules interacting with each other (Yu et al., 2013).
Intermolecular interactions are modeled with networks
so that edges represent interactions and nodes represent
molecules (Gabr and Kahveci, 2015). Biological networks
are abstract representations of biological systems.
Networks capture many of the essential characteristics
which cannot be obtained from an individual component
of biological systems. Most biological networks are
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incomplete. They are difficult to interpret because of
the complexity of relationships (Vocaturo and Veltri,
2017). Analyzing biological networks provides novel
information in understanding basic mechanisms that
control cellular processes. Essentially, we expect that
networks will change how we think about biological
systems in a fundamental way (Alm and Arkin, 2003).

Although the number of living species, the number
of proteins, and the number of interactions are different
in each protein-protein interaction database, there is a
difference in the amount and content of information
derived from the same source. Of the 14,899 publications
shared by at least two databases, 5,782 (39%) were
reported with different numbers of interactions in different
databases (Altuntaş and Gök, 2020). Even the low rate
differences found in the databases affect the results of
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the algorithms that use these data. Network stability
is important as the effect of the difference in the
predicted results using the network data is greater than
the difference in the network data (Altuntas et al.,
2018). There may be significant differences in the
information received from databases from the same
publication. According to the information obtained from
different databases referring to the same publication, 42%
of the interactions and 62% of the proteins were the
same (Turinsky et al., 2010). In addition, it is emphasized
that more than half of the total networks contain protein
interaction networks with false positive and false negative
data (Stumpf and Wiuf, 2010). The reason why the results
are not the same may be that the parameters that provide
a different interpretation of the experimental data, such as
the use of a different confidence set or threshold, are not
used in the same way.

The Lyapunov exponent is a parameter used to
quantify the sensitivity of the system to the initial
conditions and it is widely used as a distinctive feature
in many areas (Nazarimehr et al., 2017). Also, due to the
nature of biological events, Lyapunov exponents provide
useful information to explain the biological activities that
occur. It has been claimed that many biological systems
have chaotic properties (Nazarimehr et al., 2017). Based
on the successful results using Lyapunov exponents in the
literature, this parameter can also be used on biological
networks and we can understand the hidden properties of
biological networks by the Lyapunov exponent.

In this paper, unlike the existing studies, we take
into account that the existing mutations in the network
topology can influence the Lyapunov exponent response
to the network. Our contributions are the following. In
order to test our hypothesis, we define the methodology
to convert the network data into signal data and obtain
Lyapunov exponents. To evaluate the relationship
between Lyapunov exponents and the stability of the
network, we define some measure based on the stability
of the network. Our technique can be applied to all
types of network topologies. This is the first time
that the Lypunov exponents have been evaluated under
topological mutations and have been used for network
analysis. Calculating the stability of biological networks
is a method that requires time and processing power. With
the method we developed in this study, stability can be
expressed with a rapidly calculated coefficient.

The rest of this paper is organized as follows.
In the next section, we present the literature overview
about network stability, diffusion state, and the Lyapunov
exponent. We then discuss our methodology which
measures the Lyapunov exponents of a given network
topology and we describe the centrality measures that we
use in our method. The last section includes details about
the experimental setup and data sets, and presents our
discussion of related findings.

2. Background

Network stability. Some studies aim to model and test
the stability or robustness of biological systems under
mutations that cause conditions of uncertainty (Stelling
et al., 2004; Li et al., 2010; Altuntas et al., 2018).
Biological systems have been shown to be highly
resistant to a diverse set of perturbations, both through
mathematical modeling and experimental observations.

Studies that consider topological perturbations
mostly concentrate on random or selective node
removals (Albert and Barabási, 2002; Holme
et al., 2002; Altuntaş and Gök, 2017). These methods test
the hypothesis that most complex systems contain noise
for various reasons such as mutation and that the detected
nodes may be incorrect. They accept that all interactions
associated with a node are all true or all false. For
several network characteristics such as the shortest path
and clustering coefficient, they assess the effect of node
removals. According to their findings, it is possible to say
that there is a strong correlation between robustness and
the network topology. Especially scale-free networks are
less affected by random node removals than by selective
node removals.

Furthermore, in several studies, the effect of noise on
edges has been studied. Holme et al. (2002) investigated
the effect of edge deletion on the geodesic length and the
size of the target network. To test the performance of
prediction algorithms that identify and prioritize disease
genes and drug targets, some studies work with random
edge removal models (Erten et al., 2011). Altuntas
et al. (2018) defined an algorithm that generates the most
influential mutation in the network and the concept of
stability that measures the robustness of mutant networks.
In the human protein-protein interaction (PPI) network,
Zhang et al. (2016) define the concept of indispensable
nodes with respect to the structural changes by using a
selective edge removal with the confidence scores of the
interactions.

In this paper, we consider the most influential
mutations. Unlike the existing literature, we consider the
influence of topological perturbations on the Lyapunov
exponent response of the given network. To the best of our
knowledge, this is the first study in which the Lyapunov
exponents are used for network analysis and have been
evaluated under topological mutations.

Diffusion state. Diffusion analysis is widely used in
interaction networks. It provides successful results for
many problems such as protein function prediction (Cao
et al., 2013; Cho et al., 2015), conserved network module
detection (Jeong et al., 2016), gene prioritization (Köhler
et al., 2008; Erten et al., 2011), and sub-network
detection (He et al., 2017). The random walk based
diffusion state distance is used as a measure of the
protein neighborhood distance for the protein function
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prediction by Cao et al. (2013). Cho et al. (2015) reduced
the number of variables for the network diffusion state.
Jeong et al. (2016) detected conserved functional network
modules with the use of the random walk model. Köhler
et al. (2008) prioritized the candidate hereditary disorders
genes, and Erten et al. (2011) prioritized the candidate
disease genes with the random walk. For the detection of
PPI subnetworks, He et al. (2017) used a limited K-walks
algorithm.

Lyapunov exponent. The Lyapunov exponent (LE)
of a system is a quantity that characterizes the rate of
separation of infinitesimally close trajectories. Lyapunov
exponents tell us the rate of divergence of nearby
trajectories. The Lyapunov exponent is used as a
feature extraction method in many studies. Liu et al.
(2015) used the largest LE as a metric of the balance
ability during human quiet standing. They proposed
a metric of the human body’s standing balance ability
based on the multivariate largest LE. For the prediction
of critical transitions in biological systems, Nazarimehr
et al. (2017) proposed LE as an indicator of “critical
slowing down”. Gao (2012) used the LE for multiscale
analysis of biological data. They analyzed heart-rate
variability and electroencephalography data to detect a
congestive heart failure and seizures consecutively. For
the detection of irregular regions in proteins, Gök et al.
(2016) developed a new feature coding technique that
connects physicochemical properties using the LE. The
LE was used for anomaly detection (Ruiz and Finke,
2019) and impulsive control (Li et al., 2019). Han and
Wang (2007) analyzed the heart rate variability of healthy
people versus those with arrhythmia.

3. Methods

We define a methodology to measure the Lyapunov
exponents of network topologies. Given a network,
our method finds the largest Lyapunov exponents
to characterize the target network. We introduce
the networks and mutations in Sections 3.1 and 3.2
respectively. We discuss our method in Section 3.5. We
then describe the centrality measures that we use in our
method in Section 3.6. In this section, we describe our
method in detail.

3.1. Networks. Biological activities are not the result
of a single molecule, but rather through coordinated
interaction of multiple systems that interact with others.
Molecular systems that jointly perform cellular tasks such
as gene expression, information transfer, or regulation of
metabolism are modeled by biological networks (Albert
and Barabási, 2002). Synthetic networks are those
produced by adhering to a particular mathematical model.
Networks contain inter-node interaction information. A

graph network G with n vertices can be represented by an
n×n adjacency matrix. The rows and columns correspond
to the vertices and a matrix-element Aij = 1 if and only
if there is an edge between the vertices vi and vj , and
Aij = 0 otherwise. When we use inter-node similarity
criteria, Aij represents the similarity ratio or distance by
taking a value between 0 and 1. The line of the node in the
matrix is a signal of the similarity/distance change of that
node relative to all other nodes in the network. All nodes
in the network have their unique signals, and a network
contains as many signals as the number of nodes in the
network.

3.2. Mutations and stability. Biological networks
have uncertain topologies since biological processes
governing interactions are inherently uncertain
events (Gabr et al., 2015). We know that there are
studies reporting that false positive and false negative
rates in the data of protein interaction networks often
exceed half the total network, particularly (Stumpf and
Wiuf, 2010). In a network with n edges, to find the
most influential set of r elements to produce synthetic
mutations, we use the novel metaheuristic method on
all target networks (Altuntas et al., 2018). For a given
amount of perturbation ε, we compute the stability of G
under the function q. After mutating the topology of G
by a factor of ε stability is the largest amount of alteration
in the diffusion quality function q. Stability is defined
mathematically as (Altuntas et al., 2018)

argmax
Gε
{|q(G)− q(Gε)|}. (1)

The formulation above seeks the network topology
among all possible ε perturbations of G with the highest
change in the diffusion state. For a given ε, the smaller
|q(G) − q(Gε)|, the more stable the network (Altuntas
et al., 2018).

3.3. Random walk (RW). The random walk method is
simulation of a random walk that starts from a given node
in the target network. At walking each step, it chooses
a random direction. For a given network G = (V,E),
write the walking distance from the source node ni in
terms of the number of steps as restriction parameter k,
the adjacency matrix of network G as AG, and set the
diagonal matrix D of the same size as AG with DG, where
each diagonal entry DG[i, i] has the value 1/degree(ni),
and M = DG × AG. We denote by matrix RWk the
random walk after k steps. We compute it as RW1 = DG,
and for k > 1, RWk = MTRWk−1 (Can et al., 2005).

3.4. Diffusion state distance (DSD). For a given node
pair (nx, ny) and the number of steps k we compute DSD
using the previously calculated matrix RWk. In detail, it
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is the L1 norm of the difference between the nx and ny

node columns of RWk. The L1 norm is the sum of the
magnitudes of vectors. Let us denote by RWk(ni) the
column of RWk corresponding to a node ni. The DSD
formally defined as (Cao et al., 2013)

DSDk(nx, ny) = ‖RWk(nx)−RWk(ny)‖1. (2)

3.5. Lyapunov exponent. The Lyapunov exponent
(LE) quantifies the sensitivity of the system to the initial
conditions. Actually, it is a quantity that characterizes the
rate of separation of close trajectories. Nearby trajectories
is the path that a signal vector follows through the phase
space. For different orientations of the phase space,
the rate of divergence can be different. Thus, there is
a whole spectrum of LEs in the phase space and the
number of them is equal to the number of phase space
dimensions. A positive exponent means divergence. The
trajectories are initially close to each other and move
apart over time. In the same way, a negative exponent
means convergence. The trajectories move closer to each
other (Kennel et al., 1992).

In this section, we describe our method in detail.
Denote by V and E the set of nodes, and the set of
interactions among those nodes, respectively; we also
denote by G = (V,E) the given network. In this
paper, we focus on PPI networks. Therefore G is an
undirected network. The input graph G has n nodes
V = (v1, v2, . . . , vn). For a specific node vi there are
n edges E(vi) = (e1, e2, . . . , en) that represent distances
of node vi to all other nodes. The phase space matrix of
node i, named si, is calculated from E(vi) and s(k)i =
[E(vi)(k), E(vi)(k + T ), . . . , E(vi)(k + (M − 1)T )].
M and T are the embedding dimension and the delay,
respectively. Denote by s(n)i the reference point and by
s(m)i the nearest neighbor of s(n)i on a nearby trajectory.
The LE is calculated for each dimension of the phase
space as

λ =
1

N

N∑

n=1

ln
d(s(n+ 1)i, s(m+ 1)i)

d(s(n)i, s(m)i)
, (3)

where d(s(n)i, s(m)i) is the initial Euclidean distance
between the nearest neighbors. Here d(s(n + 1)i, s(m +
1)i) is the Euclidean distance between the next pair of
neighbors on their trajectories (Abarbanel, 2012). When
calculating the Lyapunov exponent from network data, the
size of N is the size of network nodes. For the calculation
of the LE we use the TISEAN package (Hegger et al.,
1999). This program is based on the work of Sano and
Sawada (1985), and it estimates the whole spectrum of
the LE.

Our method takes an undirected graph G = (V,E)
as its input parameter and reports the LE frequency for
input graph G. Algorithm 1 presents the pseudo-code

of our method. The purpose of reconstructing the signal
in the phase space is to provide a sufficiently large
Euclidean space to see the structure of the system’s
attractor without any uncertainty. The space dimension,
where all uncertainties are resolved, gives the embedded
dimension (Abarbanel et al., 1993). The phase space
dimension can be determined by increasing the embedded
dimension until the value changes in the calculated
quantities stops (Cao, 1997). Our experiments on
synthetic and biological networks show that using 6 as
the embedding dimension can be used to differentiate
the different responses of the networks. The embedding
dimension can be reduced to 4 to speed up the
calculations. In the method we proposed, the embedding
dimension was not reduced in order to avoid reducing
the coverage of the networks with possible different
characteristics.

Our algorithm first divides the input graph G into
n lines that correspond to each node. Let us denote
by Le(vi) = (ex1, ex2, ex3, ex4, ex5, ex6) the largest
6 LEs of node vi. Starting from the first node v1, the
algorithm calculates the LE for each node of input graph
G as Le(G) = {Le(v1), Le(v2), . . . , Le(vn)}. Having
computed Lyapunov exponents, we find the positive
exponent frequency of Le(G) by counting positive
exponents. Denote by pf(G) = (f0, f1, f2, f3, f4, f5, f6)
the positive exponent frequency of graph G. Here pf(G)
has a value of 7 that represents no positive exponent
and 1, 2, 3, 4, 5, 6 positive exponents frequencies
of graph G, respectively. The frequency value is
proportional to the number of nodes in the graph. We
normalized the frequency values of G to percentage
Lyapunov exponent values (ranging from 0 to 100) by
dividing them by the number of nodes in the network
and multiplying the result by 100. The resulting vector
can be used as a 7-element feature vector showing the
percentage of Lyapunov exponents for any given network.
Each Lyapunov exponent attribute that represents LEs in
7-element feature vector is a cumulative value. Hence
f1 ≥ f2 ≥ f3 ≥ f4 ≥ f5 ≥ f6. The minimum value
for these attributes is 0 and the maximum value is 100.
In order to produce a single measurement representing the
Lyapunov exponent response of the networks, we use the
arithmetic mean of f1 ≥ f2 ≥ f3 ≥ f4 ≥ f5 ≥ f6
as a coefficient. The Lyapunov exponent response for
each network is a measurement between 0 and 100. We
named the Lyapunov exponent based network coefficient
measurement as LEC, which we described in this section.

Incorrect data or noise that do not belong to the
systems can dramatically change the system dynamics
and this may affect the Lyapunov exponent response
of systems (Serletis et al., 2007). According to the
hypothesis that we present in this study, incorrect
detections in protein-protein interaction networks may
affect the Lyapunov exponent of the network by changing
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Algorithm 1. LEC calculation.
Require: G

1: for each node in G do
2: E(vi)← (e1, e2, . . . , en) {distance signal vector}
3: Le(vi)← (ex1, ex2, ex3, ex4, ex5, ex6) {estimate

spectrum of Lyapunov exponents}
4: end for
5: Le(G)← {Le(v1), Le(v2), . . . , Le(vn)} {Lyapunov

exponents of G}
6: for each exponent in Le(G) do
7: if exponent > zero then
8: increasef1, f2, f3, f4, f5, f6 {update related

frequency}
9: else

10: increasef0 {update no positive exponent
frequency}

11: end if
12: end for
13: pf(G) ← (f0, f1, f2, f3, f4, f5, f6) {positive

exponent frequency of G}
14: pfn(G)← normalize0−1(pf(G))x100
15: LEC ← mean(pfn(G))
16: return LEC, pfn(G)

the topological dynamics of the networks and this effect
may be related to the stability of the network. For the
calculation of d(s(n+ 1), s(m+ 1)) the noise has the
following effect (Koçal et al., 2008):

E[d(s(n+ 1), s(m+ 1))2]

= d(s(n+ 1), s(m+ 1))2 + 2σ2D, (4)

where D is the embedding dimensions and σ is the
standard deviation of noise. Inaccurate data in the network
can be considered as noise in the calculation of the
Lyapunov exponent in phase space. The effect of noise in
the phase space can be seen in the previous equation. As
a result, inaccurate edges have an effect on the Lyapunov
exponent calculation, as shown in this equation.

3.6. Node centrality. In graph theory and network
analysis, node centrality indicators are used to identify
important nodes in a graph. This is used to characterize
the importance of each node relative to their position
within the network, with network centrality indicators
closely related to distance criteria. The concepts of
centrality were first developed in social network analysis,
and many of the terms used to measure centralization
reflect their sociological origins (Newman, 2018). The
centrality of nodes, or the identification of which nodes
are more “central” than others, has been a key issue in
network analysis (Freeman et al., 1991).

Nodes in real networks do not have a specific order.
The node sequence may vary from database to database,

or even within the database. The node order can affect
the results because it changes the signal to be used in the
Lyapunov exponent computation. We have established
a sorting standard for networks through node centrality
measurements and examined the effect of sorting on
results.

Denote by c(vi) the centrality of node i in a given
network G = (V,E). The input of the sorting algorithm
is a network G and the output is a new network Gs whose
nodes are sorted according to the target measurement.
The algorithm calculates the centrality value of all nodes
{c(v1), . . . , c(vn)} in the given network G using the
target measurement metric. Denote by o1 and on the
first node order number and the last node order number
with, respectively. The algorithm determines node order
with centrality values for each node in the network G
from big to small and creates node order vector no =
(o1, o2, . . . , on). Finally, the algorithm changes the node
order of network G by using the centrality order vector
no and creates a new sorted network Gs for the Lyapunov
exponent calculation.

Degree centrality. The degree measures the node
centrality by using the local structure around nodes
only. In undirected graphs, the degree of a node can be
calculated by using the number of adjacent nodes that
directly connected to the node or simply the number of
edges connected to that node (Borgatti, 2005). The degree
is important because it provides an advantage or risk in
terms of whether or not to generate an alternative path to
the information flowing through the network. A node with
a larger degree is likely to have higher influence than a
node with smaller degree.

Betweenness centrality. The betweenness centrality
allows one node to act as a bridge along the shortest
path between the other two nodes. Nodes with a
high probability of occurrence in the shortest randomly
selected path between two randomly selected nodes have
a high weight. Betweenness centrality measures how
important a node is to the shortest paths through the
network. It is calculated by taking the ratio of all the
shortest distances in the network where the measured node
is located to all the shortest distances in the network.
To compute betweenness for a node n, select a pair of
nodes and find all the shortest paths between those nodes.
Then compute the fraction of those shortest paths that
include node n (Freeman, 1977). For a given network
G = (V,E) denote by σst the total shortest path number
from node s to node t and by σst(n) the total shortest path
number from node s to node t that pass through node n.
Betweenness centrality for node n is calculated as

B(n) =
∑

s�=t�=n∈V

σst(n)

σst
. (5)
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Closeness centrality. In a connected graph, the
proximity center of a node is the average length of the
shortest path between the node and all other nodes in
the graph. Thus, the more central node is, the closer
it will be to all other nodes (Perez and Germon, 2016).
The benefits of closeness centrality are that it indicates
nodes as more central if they are closer to most nodes in
the graph. This strongly corresponds to visual centrality;
a node that would appear toward the center of a graph
when we draw it, usually has a high closeness centrality.
Denote by d(y, x) the distance between vertices x and y.
The closeness centrality for node x is calculated by the
following formula:

C(x) =
N − 1∑
y d(x, y)

. (6)

Load centrality. Load centrality is the fraction of all
shortest paths passing through that node. It is very close to
the measurement of the betweenness centrality (Hagberg
et al., 2008). Load centrality is a betweenness-like
measure defined through a hypothetical flow process. For
a given network G = (V,E) denote by σst(n) the total
shortest path number from node s to node t that pass
through node n. Load centrality for node n is calculated
as

L(n) =
∑ 1

σst(n)
. (7)

Clustering coefficient centrality. The clustering
coefficient is a measure of the degree of clustering of
nodes in a graph. In many real networks, the nodes tend
to form tightly linked groups characterized by a relatively
high link density. This centrality has an intuitive meaning.
The clustering coefficient reflects the extent to which
neighbors of the target node are also neighbors of each
other, and thus the clustering coefficient measures the
cliquishness of a typical connection circle (Watts and
Strogatz, 1998). Denote by kv the vertices count within
the k neighbourhood of node v. There may exist vertices
counts within the k neighbourhood of node v with
pv = k × (k − 1). The clustering coefficient centrality
for node v is calculated as

C(v) =
kv
pv

. (8)

Random centrality. In this sorting criterion, the node
priorities are determined by random numbers so that the
nodes are in random order as in the databases. To create
a random node order, we use a random number generator
so that the numbers do not repeat and each number can be
used once. Denote by ron(o1, o2, . . . , on) the generated

random number vector for n nodes. For a given network
G = (V,E) we change the order of the nodes in G using
the random order vector ro to generate Gs. Although G
and Gs are the same networks, the node order of Gs is
different from G.

4. Results

In this section, we examine experimentally the
performance of our methods on target networks. On
both synthetic and real datasets, we run experiments.
Then using previously defined Lyapunov exponent
measures, we measure the performances (cf. Section 3.5).
In the following, we describe the datasets used in
experiments and describe the implementation details.

4.1. Datasets. We performed comprehensive
experiments on synthetically produced and real networks.
The network type, the number of nodes, the number of
edges, and average node degree are parameters to express
the networks.

Synthetic datasets. In order to evaluate the response
of the Lyapunov exponent under mutations on different
artificial networks, we use synthetic networks with
different topological properties. We use three well-known
reference network models named Erdos–Renyi (ER),
Watts–Strogats (WS) and Barabasi–Albert (BA) as target
synthetic networks. To observe the effect of network
parameters, we use varying network parameters such
as node size: 500, 1000, 1500 and 2000, average node
degree: 2, 3, 4 and 5. Each experiment was repeated 5
times. Therefore, for each specific network a total of 240
synthetic networks were studied. In this section we shortly
describe the reference synthetic network models.

Denote by n and p the number of edges and the
probability of possible edges, respectively. The ER model
generates a random network G = (n, p) that, with
probability p, connects node pairs by an edge. This model
has binomial degree distribution, it has a small clustering
coefficient and small-world characteristic (the average
path length is very small). In the resulting network, the
number of edges is Cn

2 × p. The WS model is also called
the small-world (SW) network. On a one-dimensional
ring, this model first arranges each vertex. Then edges
are assigned to vertices by connecting each vertices to its
k/2 nearest neighbors. The WS network model has a high
clustering coefficient. The average path length of network
scales linearly with the network size. For n vertices the
number of edges in the resulting network is n× k/2. The
BA network model has scale-free (SF) degree distribution
and this distribution follows the power-law characteristic.
The BA model starts with a network with m nodes and
zero edges. What is required for the enlargement of a
network are new nodes attached to existing edges with
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m edges. High-grade nodes are preferentially selected
for a new edge connection. In the resulting network, for
n vertices, there are (n − m) × m edges. We create
a network for a target node size and the average node
degree for each network model. Thus the edge size is
determined by these parameters. In order for a network
to be sufficient, the created network must have a sufficient
number of edges, otherwise the process is repeated until
the desired number of edges is reached. Similarly, if
the created network has more edges than desired, we
discarded these edges. In this manner, we ensure the
edge size criterion with these rules. For the creation and
manipulation of complex synthetic networks, we use the
NetworkX Python package (Hagberg et al., 2008).

Real datasets. We use eight protein-protein interaction
networks of different organisms. Real networks have
a variety of node sizes, edge sizes, and average
node degrees. Networks were downloaded from the
BioGRID (Chatr-Aryamontri et al., 2015) and STRING
(Szklarczyk et al., 2014) databases. Before using the
datasets, firstly we discard the redundant edges and
then the largest connected component derived from
the experimental PPI network, which is the result of
a physical interaction of all microorganisms, is used.
Table 1 displays topological properties of resulting real
target networks.

Experimental setup. Our new Lyapunov exponent
based analysis method LEC runs on an ordinary system
with 8 processors and 16 GB RAM. Besides, stability
analysis with the most influential edge set searching
algorithm run on single instruction multiple data (MIMD)
distributed architecture that has far too much computation
power (421 processors and 212 GB RAM).

4.2. Results on synthetic data. We use synthetic
networks to observe the response of the Lyapunov
exponent on synthetic networks. This paper contains
a wide variety of network parameters representing
topological properties and experiments with various
network mutation. We measure the relevant response
using previously defined Lyapunov exponent measures on
the original and the mutant networks (see Section 3.5).

4.2.1. Evaluation of network parameters. This
study focuses on revealing the Lyapunov exponent
response on the network topology and diffusion state.
Therefore, we first investigated whether the response
of the Lyapunov exponent depends on the topological
properties of synthetic networks. The purpose of this
experiment is to evaluate how the different parameters
governing the network topology affect the Lyapunov
exponent response of the target network. To observe the

Fig. 1. Evaluation of network parameters on synthetic networks.
Columns: ER, WS, BA, row 1: Le(RW ), row 2:
Le(DSD). For all heat maps, the left axis indicates the
average node degree and the bottom axis indicates the
number of nodes.

effect of topological changes, we use network models of
ER, WS, BA and 500, 1000, 1500, 2000 as the number of
total nodes and 2, 3, 4, 5 as the number of average node
degrees with 5 repetitions. We use the Le(G) measure
to evaluate the response of the Lyapunov exponent on the
target networks. Figure 1 illustrates the results.

As displayed in Fig. 1, RW and DSD distributions
of ER, WS and BA synthetic networks have different
Lyapunov exponent responses. In all experiments, the
RW distribution has a higher percentage of the Lyapunov
exponent than the DSD distribution. For each network
model and distribution, the average node degree and the
number of node topological properties have almost no
effect on the Lypunov exponent response and all results
are almost the same. In all experiments, the WS synthetic
networks have greater Lyapunov exponents than the ER
and BA synthetic networks. Results for ER and BA
synthetic networks are very similar.

Consequently, this study contributes to our
understanding of the Lyapunov exponent response
of networks highly dependent on the network topology.
These observations show that the Lyapunov exponent
response varies depending on the topological properties
of synthetic networks, especially the network model and
distribution. When the results are compared with the
results of the network stability (cf. Altuntas et al., 2018,
Figs. 2 and 4), there are similarities between them. The
comparisons show that Lyapunov exponent at a higher
percentage in networks with high stability.

4.2.2. Evaluation of mutations. One of our
motivations for this study is that protein interaction
networks are noisy. They have false positive and
false negative edges at varying rates. The next
question is whether the Lyapunov exponents of networks
change according to the topological mutations. In this
experiment, we measure the effect of the mutations on
Lyapunov exponents of the target network.



696 V. Altuntas et al.

Table 1. Real network properties.
Organism Number of nodes Number of edges Average node degree

Saccharomyces cerevisiae (7) 5,936 65,139 10.9
Homo sapiens (8) 6,122 14,426 2.3
Arabidopsis thaliana (6) 5,726 13,409 2.3
Caenorhabditis elegans (5) 2,937 5,333 1.8
Plasmodium falciparum (4) 1,262 2,598 2.0
Helicobacter pylori (1) 733 1,480 2.0
Mus musculus (2) 1,340 1,416 1.0
Rattus norvegicus (3) 631 704 1.1

To observe the effect of topological mutations, we
use ER, WA, BA network models. As the numbers of
total nodes, we use 500, 1000, 1500, 2000, and 2, 3,
4, 5 as the numbers of average node degrees. We fix
the mutation ratio as 1% of edges. All experiments run
with 5 repetitions. Then, for each network G we create
maximum influential mutations by using the previously
defined mutation algorithm (see Section 3.2) to create
the mutant network G′. We use the Le(G′) measure
to evaluate the response of the Lyapunov exponent on
the target mutant networks. Figure 2 illustrates the
comparison results of original and mutant networks.

The mutation operator ensures that the minimum
number of edges is deleted, which ensures the most
effective change in the network. The process continues
until the change is ineffective. The resulting network
is stable to mutation. In all experiments, the networks
formed as a result of edge mutations have a higher rate
of Lyapunov exponents. It is seen that for all type
of networks RW distribution is more stable than DSD
distribution to topological mutations (cf. Altuntas et al.,
2018, Figs. 2 and 4). For all types of networks,
similar to the stability results, the less stable DSD
distribution exhibits a higher rate of Lyapunov change
after mutation and a lower rate of Lyapunov change in
the RW distribution that is more resistant to mutations.
In all experiments the WS networks are more resistant to
mutations, more stable and have lower Lyapunov change.

Our findings prove that networks that become more
stable with topological mutations have a higher rate
of Lyapunov exponents. The RW distribution is more
resistant to mutations, more stable, and has a lower
Lyapunov exponent change after mutations. The DSD
distribution is fragile to mutations, less stable, and has
a higher Lyapunov exponent change after mutations.
Lyapunov exponents have a correlation with network
stability and both correlatively affected by the network
model.

4.2.3. Evaluation of order. One of the questions is
whether the response of Lyapunov exponents depends on

the node order of synthetic networks. Also, we examine
how different node orders affect the response of the
Lyapunov exponents.

To observe the effect of node order, we use ER,
WS, BA models as a network creation model. As the
numbers of total nodes we use 500, 1000, 1500, 2000,
and as the numbers of average node degrees we use 2, 3,
4, 5, respectively. All experiments run with 5 repetitions.
Then, for each network G we change the node order by
using the previously defined node centrality algorithms
(see Section 3.6) to create a node reordered network Gr.
We use the Le(Gr) measure to evaluate the response of
the Lyapunov exponent on the target reordered network.
Figure 3 illustrates the comparison results of original and
reordered networks.

According to the obtained results, it is clear that the
RW and DSD distributions of ER, WS and BA synthetic
networks to the Lyapunov exponent response are not
affected by different node orders. In all experiments,
the node order parameter has effect on the Lyapunov
exponent response but this effect is not significant. For
each network model, both RW and DSD distributions
are affected by the node order. The Lyapunov exponent
results obtained by order using OCC, OBC, OLC, OCLC
and ORA are almost identical to the predefined order
Lyapunov exponent results. The changes with these orders
are near zero. The ODC order has insignificant influence
on the Lyapunov exponent. With ODC order of all
networks, the models produce similar results. A random
node order ORA is produced in 10 replicates and there is
no difference between the results.

In conclusion, our experimental results show that
node order has an insignificant effect on the Lyapunov
exponents of the target network. There is always a
possibility that a different sorting type may distort the
significance of the Lyapunov exponent results. The nodes
can be randomly arranged to avoid the possibility that the
target network has an order that will affect the Lyapunov
exponent calculation.

The insensitivity of the signal generated from the
network to the order results from the protein-protein
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Fig. 2. Evaluation of mutations on synthetic networks.

interaction network data structure. The PPI network
matrix is a repetitive matrix and mutual values are equal.
With this feature, the network consists of similar series.
For instance, a sample interaction network p with 3
protein nodes consisting of 6 interaction values is defined
as [(n1,2, n1,3)(n2,1, n2,3)(n3,1, n3,2)]. This is a matrix of
3 rows, 3 columns and 6 independent interaction results.
Assuming that the interaction results such as n1,2 and n2,1

are the same, the network matrix becomes a similar series
[(n1,2, n1,3)(n1,2, n2,3)(n1,3, n2,3)]. Another factor is
node similarity. The PPI networks contain topologically
and biologically similar nodes (i.e., n1 = n2).
This increases the sequence similarity and repetition.
[(n1,2, n1,3)(n1,2, n1,3)(n1,3, n1,3)]. Because of the
series repetitions and similarity of the network matrices,
when the node order changes, for many series, only
the location in the network is changed. This ensures
that the signal set generated from the network is
order-independent.

4.3. Results on real data. So far, we have
demonstrated the Lyapunov exponent response of
synthetic networks with a variety of parameters, different
node orders, and topological mutations. However,
we foresee that there may be differences between the
Lyapunov exponent responses of real and synthetic
networks. For this purpose, we observe the response
of the Lyapunov exponent on real networks, using
eight protein-protein interaction networks of different

organisms in this section. They have a variety of average
node degrees, edge sizes, and node sizes. We measure the
relevant response using the previously defined Lyapunov
exponent measures (see Section 3.5).

4.3.1. Evaluation of organisms. Our next topic is to
determine whether artificial and real networks are similar
in terms of the Lyapunov exponent response. With this
experiment, we succeed to reveal the Lyapunov exponent
response of different real networks. We use the Le(G)
measure to evaluate the response of Lyapunov exponent
on the target real networks. Figure 4 illustrates the results.
We present detailed results in Appendix (Table A1).

It is seen that the RW and DSD distributions
of real networks have different Lyapunov exponent
responses. Similarly to experimental results of synthetic
networks, in all experiments, the RW distribution has a
higher percentage of Lyapunov exponents than the DSD
distribution. Rattus norvegicus (3) is the network with
the least exponential rate of the Lyapunov exponent and
Helicobacter pylori (1) is the network with the most
exponential rate of the Lyapunov exponent.

Based on our experimental results, we found that RW
and DSD distributions have similar Lyapunov exponent
responses to synthetic networks. Observations show that
the Lyapunov exponent response varies depending on the
topological properties of real networks. When the results
are compared with the results of the network stability
(cf. Altuntas et al., 2018, Fig. 5), there are similarities
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Fig. 3. Evaluation of node order on synthetic networks. OCC: Closeness Centrality, OBC: Betweenness Centrality, OLC: Load Cen-
trality, OCLC: Clustering Coefficient Centrality, ODC: Degree Centrality, ORA: Random Centrality.
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Fig. 4. Evaluation of organisms. The number in brackets repre-
sents the organism code, (x): x is the organism code.

between them. The comparisons show the Lyapunov
exponent at a higher percentage in networks with high
stability.

4.3.2. Evaluation of order. The interaction data of
proteins are presented in different orders in each database.
The next question is whether the response of Lyapunov
exponents depends on the node order of real networks.
We expect to answer this question and also to observe
how different node orders affect the Lyapunov exponents’
response to the real network’s response.

We explore its effect using eight protein interaction
networks from different organisms. Then, for each
real network G, we change the node order by using
the previously defined node centrality algorithms (see
Section 3.6) to create a node reordered real network Gr.
We use the Le(Gr) measure to evaluate the response of
Lyapunov exponent on the target reordered real network.
Figure 5 illustrates the comparison results of original and
reordered real networks. Appendix (Table A2) contains
detailed results.

It is seen that the RW and DSD distributions of
real networks yields similar Lyapunov exponent responses
under different node orders. In all experiments, the node
order parameter has effect on the Lyapunov exponent
response but the effect is not significant. For each network
model, both RW and DSD distributions are affected by
the node order. The Lyapunov exponent results obtained
by order using OCC, OBC, OLC, OCLC and ORA
are almost identical to the predefined order Lyapunov
exponent results. The changes with these orders are near
zero. The ODC order has insignificant influence on the
Lyapunov exponent. Unlike synthetic networks, the effect
of ODC order is minor. The random node order ORA
is produced in 10 replicates and there is no difference
between the results.

In conclusion, our experimental results show that the
node order has an insignificant effect on the Lyapunov
exponents of target real network. There is always a

possibility that a different sorting type may distort the
significance of the Lyapunov exponent results. The nodes
can be randomly arranged to avoid the possibility that the
target network has an order that will affect the Lyapunov
exponent calculation.

5. Conclusions

Inspired by the reported works that put theoretical and
experimental evidence for the existence of the Lyapunov
exponent success in nature data, we have investigated
Lyapunov exponents for network analysis. In this study,
we present the effect of network topology and mutations
on Lyapunov exponents and its relationship with network
stability. This is the first study in which the Lyapunov
exponents are used for network analysis and have been
evaluated under topological mutations. With the purpose
of demonstrating the effect of topological mutations on
both real and synthetic networks, first we define the
methodology to convert the network data into signal data
and obtain the Lyapunov exponents with our Lyapunov
exponent based coefficient LEC for a variety of networks.
Then, we evaluate the relationship between Lyapunov
exponents and stability of the network by measuring
the stability and Lyapunov exponent response of each
network.

Our experiments demonstrated that our technique
LEC can be applied to all types of network topologies.
Network topologies and mutations have a significant
influence on the Lyapunov exponents of the network.
Lyapunov exponents have a correlation with network
stability and both are correlatively affected by the network
model. The stability of a network can be measured by
Lyapunov exponents. Experimental results have shown
the potential of Lyapunov exponents to be used for
the detection of network stability. Thanks to the LEC
method we developed, the stability of the networks can be
determined more quickly by saving time and processing
power. For the resource diversity and size of biological
networks, the speed of network analysis is of high
importance. Additionally, results are a striking indication
that the Lyapunov exponent is a potential candidate
measure for network analysis. These observations can
initiate subsequent novel studies for future researches on
network analysis.
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