
Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 1, 155–164
DOI: 10.34768/amcs-2021-0011

A COMMUNICATION NETWORK ROUTING PROBLEM: MODELING AND
OPTIMIZATION USING NON–COOPERATIVE GAME THEORY

SAPANA P. DUBEY a,∗, GANESH D. KEDAR b , SURESH H. GHATE b

aDepartment of Applied Mathematics
Priyadarshini Institute of Engineering and Technology

Priyadarshini Campus, Digdoh Hills, Hingna Road, Nagpur, 440019 India
e-mail: sapana.dubey10@gmail.com

bDepartment of Mathematics
RTM Nagpur University

Amravati Road, Nagpur, 440033 India
e-mail: gdkedar@rediffmail.co.in,sureshghate@gmail.com

We consider a communication network routing problem wherein a number of users need to efficiently transmit their through-
put demand in the form of data packets (incurring less cost and less delay) through one or more links. Using the game
theoretic perspective, we propose a dynamic model which ensures unhindered transmission of data even in the case where
the capacity of the link is exceeded. The model incorporates a mechanism in which users are appropriately punished (with
additional cost) when the total data to be transmitted exceeds the capacity of the link. The model has multiple Nash equi-
librium points. To arrive at rational strategies, we introduce the concept of focal points and get what is termed focal Nash
equilibrium (FNE) points for the model. We further introduce the concept of preferred focal Nash equilibrium (PFNE)
points and find their relation with the Pareto optimal solution for the model.
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1. Introduction

The dynamics of modern networks are well understood
by game theoretical models to deal with the routing
problem in networking (Orda et al., 1993). Here the
term “dynamics” refers to a situation where users change
their behavior based on the state of the network. A
model for a two-node parallel link communication system
was developed for multiple competing users (Sahin and
Simaan, 2006). The authors derived flow and routing
control policies for each user to get a Nash equilibrium
point(s). Conditions for the uniqueness of the Nash
equilibrium are also established (Altman et al., 2002).
A number of areas are highlighted in which common
features between transportation and telecommunication
network model existed (Altman and Wynter, 2004).

Routing games were also studied as bottleneck
routing games (Banner and Orda, 2007). The authors
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investigated the fact that “bottleneck” (worst) routing
games appear in two main routing scenarios, namely,
when a user can split its traffic over more than one
path (splitable bottleneck game) and when it (we use the
neutral gender for users) cannot (unsplitable bottleneck
game). They showed that a bottleneck game always
admits a Nash equilibrium; moreover, best response
dynamics in unsplitable games converge to a Nash
equilibrium in finite time. This Nash equilibrium (both in
splitable and unsplitable bottleneck games) can, however,
be very inefficient. In order to cope with this inefficiency,
the authors investigated, for each game, “reasonable”
conditions under which Nash equilibria were socially
optimal, i.e., when all users routed their traffic along paths
with a minimum number of bottlenecks.

A telecommunication model was also described
using queuing theory (Massey, 2002). In this model the
impact of time varying behavior on the communication
system was studied. Many researchers have used
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game theory to model and resolve the problems of
communication networks. An agent based study of a
network was also modeled using game theory. Here, the
problem of the network and product agents who have
conflicting interests was resolved and integrated using
cooperative game theory (Nguyen et al., 2013). The game
theoretic view of the network provides an equilibrium
state of the network having rational users. Attackers
change the equilibrium characteristics and hence this
attack could be detected. Thus, using this concept,
game theory deals with the security problem in networks
(Ignatenko, 2016). A probabilistic routing scheme based
on game theory for opportunistic networks was also
developed (Qin et al., 2019). In this model the messages
are forwarded by participating nodes that will then be
rewarded. Virtual money is used for this mechanism. This
process of forwarding messages was modeled as a bargain
game.

The model of transmission in the form of a
continuous flow of data over a multiple-link network has
also been described (Orda et al., 1993). The links have
fixed capacity. The situation where the flow desired by
the users together exceeds the capacity of the link is ruled
out by making the cost infinite to each of the users. In such
a situation, in effect, none of the users is able to transmit
its flow irrespective of the size of an individual’s desired
transmission. Thus, even if a user is wishing to transmit
a small amount of data flow, it may not be able to do so
because of the greed of other users (resulting in exceeding
the link capacity).

In the presented model, an effort has been made to
fill in this gap. In its simplistic form, we consider a
transmission network consisting of a single link wherein
each user is allowed to transmit its flow (in the form of
data packets) in a fixed number of discrete time slots.
For each time slot, the capacity of the link is considered
to be fixed. From the practical viewpoint, where late
transmission of data packets may result in a loss and hence
an additional cost to the user, we let the transmission cost
increase with time. Of course, as usual, the cost function
will also be increasing as a function of individual’s desired
flow size (number of data packets) at a given time slot.
Each user is assumed to be aware of this. From the game
theoretic point of view, then, this leads to a competitive
game. Each user will now have a strategy to transmit as
many data packets as early (time slots) as possible. Thus
each user is expected to plan a strategy of transmitting its
entire flow of data packets over the given number of time
slots, keeping in mind the capacity of the link, the total
number of slots, and the cost of transmission. The strategy
of each user will now be an m-tuple with integer entries
as the number of data packets the user intends to transmit
in that time slot, where m is the total number of slots.

In the absence of any communication or cooperation,
the users will not be aware of each other’s strategies. A

situation may soon develop where the total flow (total of
the data packets) to be transmitted by all the users together
at a given slot exceeds the capacity. The mechanism
that we propose is that, even in such a situation, the net
flow equaling the capacity of the link is transmitted with
different users being able to transmit different amounts of
data packets depending on their intended flow size. The
entire data (packets) of the user desiring to transmit the
least amount of data in that slot is transmitted, while the
data of the users planning to transmit a higher amount of
data will be transmitted only partially in some proportion
of their proposed flow (explained in the mathematical
model below). The leftover from such a slot for such a
user is accommodated/added to the amount of data that
the user has planned to transmit in the next time slot.
This rule is then applied for each subsequent time slot.
This mechanism, however, leads to a proportional increase
in the cost to different users. The model thus punishes
greedy users proportionally without failing transmission
of data in any slot. The actual data transmission that will
take place over different time slots for a user may thus not
be the same as that proposed by the user in the form of its
initial strategy set.

2. Mathematical model

To explain the proposed model mathematically, we
consider two users sharing one link connecting a source
node to a destination node. We assume that the link is
available to the users over a discrete time span known as
time slots and there are m time slots in a single cycle with
a fixed λ as the capacity of the link for each time slot.
We allow the cost function to increase in both the size of
data transmission and time (slot). With users expected to
be rational/ selfish with the knowledge of cost function,
the situation resembles a competitive game. Each user,
n(= 1, 2), has throughput demand D(n) which it wants
to transmit from source to destination distributed over m
slots in a single cycle. Thus each user comes up with an
m-tuple representing its initial strategy.

2.1. Mechanism for data packet transmission.
Let {p1, p2, p3, . . . , pm} and {q1, q2, q3, . . . , qm} be the
initial strategy sets for the two users, respectively. That
is, the first user plans to transmit pi packets while the
second user plans to transmit qi packets in the i-th slot,
1 ≤ i ≤ m. Obviously, pi ≤ λ, qi ≤ λ, 1 ≤ i ≤ m.

If p1 + q1 ≤ λ, then packets p1 of user 1 and q1 of
user 2 will be transmitted in the first slot with appropriate
cost to each of them. Therefore, we now consider the
case p1 + q1 > λ. An appropriate number of packets of
each user would be transmitted depending on the relation
between p1 and q1. The rule to be followed is that all the
data packets of the user with minimum packets intended to
be transmitted will be transmitted while only those many
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packets of the other user will be transmitted equaling the
remaining capacity of the link. For example, if p1 > q1,
then q1 packets of User 2, will be transmitted, while
only λ − q1 packets of User 1 will be transmitted from
its intended p1 packets. The remaining p1 − (λ − q1)
packets will have to be accommodated in the next time
slot. Therefore, while q2 will remain unchanged, p2 will
now increase to p2 + (p1 − (λ − q1)). If p1 = q1 (and,
of course, p1 + q1 > λ), then λ/2 packets of each user
will be transmitted while both p2 and q2 will increase to
p2+(p1−(λ/2)) and q2+(q1−(λ/2)), respectively. Same
logic will be followed at each subsequent time slot. Thus,
according to this mechanism, not only may the values of
pi and qi keep on changing while the cycle is in progress,
but the actual data packets that may get transmitted at the
i-th slot may also not indeed be equal to pi and qi.

To explain this succinctly, we need to introduce
new sets in addition to pi’s and qi’s. Thus, we shall
denote by {ri}mi=1 and {si}mi=1 the intermediate/modified
values of {pi} and {qi}, respectively. We shall let
{u1, u2, u3, . . . , um} and {v1, v2, v3, . . . , vm} denote the
data packets actually transmitted for Users 1 and 2,
respectively, over the entire cycle. Obviously, we shall
always have r1 = p1 and s1 = q1.

It should be clear that while the values of pi and qi
are initially specified by the user itself, the values of ri, ui

and si, vi get generated as the cycle progresses over the m
time slots.

With the help of this new notation, the cases
discussed above can be expressed mathematically as
follows:

Case I. When p1 + q1 ≤ λ, we have r1 = u1 = p1; s1 =
v1 = q1.

Case II. When p1 + q1 > λ:

(a) if p1 > q1, then

s1 = v1 = q1, u1 = λ− q1 = λ− s1,

s2 = q2, r2 = p2 + (r1 − u1);

(b) if q1 > p1, then

r1 = u1 = p1, v1 = λ− p1 = λ− r1,

r2 = p2, s2 = q2 + (s1 − v1);

(c) if p1 = q1, then

u1 = v1 =
λ

2
,

r2 = p2 +
(
p1 − λ

2

)
, s2 = q2 +

(
q1 − λ

2

)
.

The same logic will be applied to ri and si stepwise
for 2 ≤ i ≤ m. In general, as ri and si may be greater
than pi and qi, respectively, the actual cost incurred by a
user may be greater than the expected cost corresponding
to its initial planned strategy (given by {pi} or {qi}).

2.2. Strategy sets and constraints. Some of the
simple properties of pi, ri, ui and qi, si, vi following from
the mathematics described above are as follows:

P1 : pi, qi, ri, si, ui, vi ≥ 0, ∀ i = 1, 2, . . . ,m
(non-negativity constraint),

P2 :
∑
i

pi = D(1) and
∑
i

qi = D(2) (demand constraints

for the first and the second user),

P3 : pi ≤ ri and qi ≤ si,

P4 : ri = pi+(ri−1−ui−1) and si = qi+(si−1−vi−1),
m ≥ i ≥ 2 (recurrence relations of ri and si),

P5 : λi = ui + vi ≤ λ, ∀ i = 1, 2, . . . ,m (capacity
constraint for each i),

P6 :
∑
i

ui ≤ D(1) and
∑
i

vi ≤ D(2).

It may happen at the end of the cycle, that is, after
the final m-th time slot, that a few data packets of a user
may be left which could not be transmitted in the m-th
time slot, i.e., when rm + sm exceeds λ. Since the values
of {ri} and {si} are determined by {pi} and {qi}, we
can rule out such strategy sets by assigning a very high
total cost of data packet transmission after the m-th slot.
Thus, from the point of view of cost minimization, such
strategy sets would be irrelevant or non-feasible. The last
constraint P6 may thus be replaced by

P ′
6:

∑
i

ui = D(1) and
∑
i

vi = D(2),

i.e., both the users are able to transmit all their data
packets. Since over the complete cycle at most mλ data
packets can be transmitted, the case where D(1)+D(2) <
mλ will mean the underutilized capacity of the link. Thus,
to make the game more realistic and competitive, we shall
consider only the case D(1) +D(2) = mλ.

3. Cost function and the Nash equilibrium

We shall now discuss the kind of cost functions that are
suitable for the model, and see if the very basic conditions
on such a cost function can lead to results about the
existence of Nash equilibrium strategies.

3.1. General assumptions on the cost function. We
shall denote by C(n) the total cost accrued to the n-th user
over an entire cycle consisting of m number of time slots,
i.e.,

C(n) =

m∑
i=1

C
(n)
i .

On the lines of the earlier work presented by Orda et al.
(1993), the following general assumptions on the cost
function C

(n)
i will be imposed. Here, C(n)

i is the cost
borne by the n-th user over the i-th time slot.
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A1: Cost function C
(n)
i is a non-negative function

of three variables i, xi and λi, where i(=
time slot), xi(= ui or vi depending on n = 1 or 2)
and λi(= ui + vi).

A2: C
(n)
i is strictly increasing with respect to all the

three arguments. Although it is not of any particular
significance in the subsequent discussion in this
paper, we may explicitly separate the dependence on
the time slot from the dependence on the number of
packets transmitted to write

C
(n)
i = f(i) · φ(xi, λi), (1)

where i = 1, 2, . . . ,m.

A3: C
(n)
i is sufficiently smooth.

A4: C
(n)
i is zero when xi is zero, i.e., if no data

packets of a user are transmitted in a time slot, then
that particular user does not bear any cost for that
slot. This condition does not significantly affect the
arguments presented here. Indeed, a user may be
made to bear a certain minimum cost for every time
slot and this can be achieved by slightly modifying
the cost function and without affecting any of the
above properties.

3.2. Nash equilibrium. It should be noted from the
definition of the cost function that cost to a user for any
time slot i depends on the numbers ui and vi of the actual
packets transmitted by the users in that slot. Since u’s and
v’s are derivable from p’s and q’s forming the strategy sets
of the two users, we can still treat the costs incurred to be
functions of the initial strategy sets.

By the definition, the combination of strategies
{p̃1, p̃2, p̃3, . . . , p̃m} for User 1 and {q̃1, q̃2, q̃3, . . . , q̃m}
for User 2 correspond to the Nash equilibrium point
provided

C(1)(p̃1, p̃2, p̃3, . . . , p̃m, q̃1, q̃2, q̃3, . . . , q̃m)

≤ C(1)(p1, p2, p3, . . . , pm, q̃1, q̃2, q̃3, . . . , q̃m) (2)

for all possible strategies {p1, p2, p3, . . . , pm} of User 1
and

C(2)(p̃1, p̃2, p̃3, . . . , p̃m, q̃1, q̃2, q̃3, . . . , q̃m)

≤ C(2)(p̃1, p̃2, p̃3, . . . , p̃m, q1, q2, q3, . . . , qm) (3)

for all possible strategies {q1, q2, q3, . . . , qm} of User 2.

If pi + qi = λ, ∀i, then all data packets will be
transmitted without any penalty.

Mathematically this situation can be expressed as

pi = ri = ui, qi = si = vi, 1 ≤ i ≤ m. (4)

Each (and only) of these strategy sets will therefore be
Nash equilibrium strategies.

The model described in this paper thus represents a
game with multiple Nash equilibrium points.

4. Focal points and Pareto optimality

Since the two users in this network model may not
be expected to be communicating or cooperating, the
question then is the following: What strategy sets may
be preferred by the users as rational human beings?
To answer this question, we consider the concept of
“focalness.”

The theory of “focal points” was introduced by
Schelling (1960). This theory suggests that in some
“real life” situations players may be able to coordinate
on a particular equilibrium by using information that is
abstracted away by the strategic form. The “focalness”
of various strategies depends on the players’/users’ past
experiences, social norms and information provided to
them.

For example, if two cars are being driven in opposite
directions on a road, and if head on collision is to be
avoided, then (R,R) or (L,L), i.e., both driving on their
right or both driving on their left would be equilibrium
strategies. However, if they are driving in India, then,
because of the traffic rules of driving on one’s left,
the (L,L) strategy would be preferred over the (R,R)
one. This has happened because of their traffic rule
knowledge. Thus, although (R,R) and (L,L) are two
Nash equilibrium points, (L,L) is the focal point strategy.
Similarly, consider a game consisting of two players, each
of whom is shown a frame of four colored rectangles and
is asked to choose one rectangle. They are rewarded if
both select the rectangle of the same color. Suppose each
one is shown a frame consisting of three blue rectangles
and one red rectangle. Obviously, (b, b) or (r, r) would
be benefitting strategies, with greater probability of (b, b)
being chosen. However, if the culture of the players has
a special relevance for, say, the red color, then instead of
(b, b) they will end up with (r, r) choice. The choice has
thus been governed by the cultural/social background, and
(r, r) then represents a focal point strategy. Unlike in both
the examples given above, in a general scenario, a focal
point strategy need not necessarily be a Nash equilibrium
one. This will become clear in the subsequent discussion.

Now we will try to find out answers to the following
queries based on our model:

Q1. What concept of focalness is relevant to the
situation depicted by the model and what are the
corresponding focal point strategies?

Q2. In the case of a plenty of focal point strategies, can
some of them also be Nash equilibrium strategies?
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In the present network problem, one can use the
rational/selfish thinking of the users as the background
that will lead to their focal point strategies. Since the
cost of transmission increases with the time and number
of data packets to be transmitted, as a motive to minimize
individual cost a user may be tempted to have an m-tuple
strategy, which is heavily loaded (large values) with the
initial entries. If both the players follow this strategy,
then from the initial time slots themselves the capacity of
the link will get exceeded, resulting in penalty and thus
additional cost to both. These kinds of strategies may thus
be ruled out as being prone to be costly.

Another possible way of distributing the throughput
demand over the m time slots is to use the extended
pigeonhole principle.

The Extended pigeonhole principle states that “If
n pigeons are assigned to m pigeonholes then one of
the pigeonholes must contain at least �(n− 1)/m� + 1
pigeons.”

Although the pigeonhole principle does not rule out
zero pigeons or less than average pigeons in one or more
holes, in the present scenario, however, this strategy may
lead to additional cost to an individual user. Thus, in
all likelihood, a user may be tempted to distribute its
throughput demand more or less uniformly. Let

β1 =

⌊
D(1) − 1

m

⌋
, β2 =

⌊
D(2) − 1

m

⌋
,

α1 = D(1) − β1m, α2 = D(2) − β2m. (5)

Since D(1) +D(2) = mλ, it follows that

α1 + α2 = (λ− β1 − β2)m. (6)

User 1 may thus choose to distribute its throughput
demand D(1) over the m slots as β1 data packets in each
of the m slots and remaining α1 data packets distributed
as additional over the m slots as per its wish. User 2 may
also choose to have a similar distribution of its throughput
demand.

We shall call a strategy of User 1 to be a focal point
strategy if the strategy is given by an m-tuple having entry
values greater than or equal to β1.

A focal point strategy for User 2 is similarly defined.
In the above definition, it is understood that the entries of
the strategy m-tuple add to the throughput demand.

It is obvious from the above that not every
combination of focal point strategies of the two users will
result in a Nash equilibrium strategy. There will, however,
be a good number of focal point strategies which will
also be Nash equilibrium strategies as discussed in the
following subsection.

We shall call such focal point strategies which are
also Nash equilibrium strategies focal Nash equilibrium

strategies (FNEs).

Another question is about the efficiency of such focal
Nash equilibrium strategies. To this end, we recollect
the concept of a Pareto optimal solution. It is a strategy
set corresponding to the state of a game where resources
are allocated in the most efficient manner. In other
words, Pareto optimality is a set of conditions under
which the state of economic efficiency (where no one can
be made better off without making someone worse off)
occurs. Pareto optimality thus corresponds to the situation
or strategies where no player can be better off without
adversely affecting some other player.

For the network problem under consideration, a
Pareto optimal solution can be defined as a strategy set
of two users for which the total combined cost of the two
users is a minimum.

Thus, to the two queries raised above, we can add
the third one, as follows:

Q3. From among the focal Nash equilibrium strategies,
can a Pareto optimal solution be obtained? Will there
be unique or many FNE’s leading to the Pareto optimal
solution?

To be able to answer these queries, we shall try to
identify FNEs first. To this end, we need to find the
relation between the numbers β1, β2 and λ as is done
below.

4.1. Relation between β1, β2 and λ. Since we are
considering cycle of transmission consisting of multiple
time slots, without loss of generality, we can assume that
m ≥ 2.

Case I. Consider the case D(1) = D(2),

∴ D(1) = D(2) =
mλ

2
.

If λ is even, say λ = 2λ1, then

β1 = β2 =

⌊
mλ1 − 1

m

⌋
=

⌊
λ1 − 1

m

⌋
= λ1 − 1,

∴ β1 + β2 = 2λ1 − 2 = λ− 2. (7)

If λ is odd, say λ = 2λ1 + 1, then

β1 = β2 =

⌊ m
2 (2λ1 + 1)− 1

m

⌋
=

⌊
mλ1 +

m
2 − 1

m

⌋

=

⌊
λ1 +

1

2
− 1

m

⌋
= λ1,

∴ β1 + β2 = 2λ1. (8)
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That is, β1 + β2 = λ− 1.

Case II. Consider the case D(1) �= D(2).
For convenience, let D(2) < D(1). We can write D(1) =
mλ−D(2).

Let

β2 ≡
⌊
D(2) − 1

m

⌋
= r,

i.e.,
D(2) − 1

m
= r + s,

for some s, where 0 ≤ s < 1,

∴ D(2) = mr +ms+ 1, (9)

∴ D(1) − 1

m
=

mλ− (mr +ms+ 1)− 1

m

= λ− r −
(
s+

2

m

)
,

∴
⌊
D(1) − 1

m

⌋
=

⌊
λ− r −

(
s+

2

m

)⌋
. (10)

Obviously, λ > r as D(1) +D(2) = mλ. Then

∴ β1 =

⌊
D(1) − 1

m

⌋
=

⌊
λ− r −

(
s+

2

m

)⌋
. (11)

From (9),D(2) = mr+ms+1 yields sm+1 = D(2)−mr,
which implies

sm+ 2

m
=

D(2) −mr + 1

m
,

i.e.,
sm+ 2

m
=

D(2) + 1

m
− r.

Hence
β1 = λ− r − 1

iff
sm+ 2

m
≤ 1.

Therefore,
D(2) + 1

m
− r ≤ 1

iff
D(2) ≤ m+mr − 1.

With r = β2, we shall have

β1 + β2 = λ− 1 iff D(2) ≤ m+mr − 1. (12)

However, D(2) = mr + ms + 1, 0 ≤ s < 1 implies
D(2) < mr +m+ 1.

Thus, in general, we have

D(2) ≤ mr +m. (13)

If D(2) = m+mr, we shall have

β2 =

⌊
D(2) − 1

m

⌋

=

⌊
m+mr − 1

m

⌋
=

⌊
1 + r − 1

m

⌋
= r

and

β1 =

⌊
mλ−D(2) − 1

m

⌋

=

⌊
mλ−m−mr − 1

m

⌋
=

⌊
λ− r − 1− 1

m

⌋

= λ− r − 2,

giving

β1 + β2 = λ− 2. (14)

Thus, summarizing the two cases discussed above,
we have the following: If m divides D(1) (and hence
D(2)), then

β1 + β2 = λ− 2,

otherwise

β1 + β2 = λ− 1. (15)

In case m divides D(1) (and hence D(2)), it follows that

β1 + 1 =
D(1)

m

and

β2 + 1 =
D(2)

m
.

Hence

α1 = α2 = m. (16)

4.2. Focal Nash equilibrium strategies and the Pareto
optimal solution. We shall now try to identify focal
Nash equilibrium strategies first and then see if some of
them are also a Pareto optimal solution.

To this end, we shall use the relations (15) between
β1, β2 and λ.

We first consider the case β1+β2 = λ−1. Here, α1+
α2 = m (follows from Eqn. (6)). Therefore, a strategy
set for which the m-tuple strategy of User 1 has entries
β1 + 1 in any α1 places and β1 in the remaining m − α1
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places while the m-tuple strategy of User 2 has entries
β2 whenever User 1’s m-tuple has entries β1 + 1 and the
remaining entries of User 2’s m-tuple strategy are β2 + 1,
each will be an FNE.

In the case β1+β2 = λ−2 , we have α1 = α2 = m,
and FNEs will be the collection of all m-tuple strategy
pairs of User 1 and User 2 which are such that User 1’s
m-tuple will have possible entries β1 + 2 or β1 + 1 or
β1 and corresponding entries in the m-tuple of User 2’s
strategy given by β2 or β2 + 1 or β2 + 2, respectively.

Our next objective is to locate a Pareto optimal
solution for the given problem. The best way is to search
for it among the FNEs. To this end, we first identify a
typical class of FNEs. As the Pareto optimal solution has
been defined as the one set of strategies for which the
total the cost to the two users is minimum, we use this
criterion to shortlist some of the FNEs. If D(1) ≥ D(2),
then from the fact that cost of transmission increases with
respect to both time as well as the number of data packets,
minimization of the total cost may be achieved if the cost
for the first user is minimized and then, accordingly, the
strategy for User 2 is determined. For the case β1 + β2 =
λ − 1, we thus consider that FNE which has entries
β1 + 1 in the first α1 places in the m-tuple strategy of
User 1. For User 2 the strategy m-tuple will get fixed as
the pair of strategies is an FNE. Similarly, for the case
β1 + β2 = λ − 2, we consider that FNE which has all
entries as β1 + 1 in the m-tuple strategy of User 1 and
entries β2 + 1 in the m-tuple strategy of User 2.

We shall call such a strategy set a preferred focal
Nash equilibrium (PFNE) strategy. Thus the pair of
strategy m-tuple corresponding to the PFNE is given by

{(β1 + 1, β1 + 1, . . . (α1 times), β1, β2, . . . β1)} ,

{(β2, β2, . . . (α1times), β2 + 1, β2 + 1 . . . β2 + 1)}
and

{(β1 + 1, β1 + 1, . . . β1 + 1, β1 + 1)} ,
{(β2 + 1, β2 + 1, . . . β2 + 1, β2 + 1)} ,

respectively, for the cases β1+β2 = λ− 1 and β1+β2 =
λ− 2.

Figure 1 shows the relation between various
strategies discussed in this paper. The Pareto optimal
point lies inside the set of the Nash equilibrium points and
it is very difficult to achieve the Pareto optimal point by
the users, so with the help of the focal Nash equilibrium
and the preferred focal Nash equilibrium the user can
sometimes achieve the Pareto optimal point.

Now the following questions arise:

Q.1 When does the preferred focal Nash equilibrium
(PFNE) becomes the Pareto optimal solution (POS)?

Fig. 1. Relation between various strategies.

Q.2 Is there any condition to get the POS using the
PFNE?

Our next objective is to find the conditions discussed in
the questions.

5. Determining conditions of the Pareto
optimal solution using examples

In this section, we will determine various factors which
are responsible for the POS using a Nash equilibrium
point. The cost function depends on the number of data
packets and it is differentiable. The second derivatives
of any function reveal the nature of the extreme point,
which helps us characterize the strategy. Therefore, first
we check the effect of the second order derivative of cost
function with respect to xi (number of data packets).

Table 1 shows various combinations of the cost
function and relations between the POS and PFNE. (In
Table 1, the function C

(n)
i is given by C.)

From Table 1, we can conclude that, if a second order
derivative of the cost function with respect to xi is zero,
then the total cost for the network (i.e., the sum of the
total cost incurred by both the users) remains constant for
every Nash equilibrium point strategy. This constant is
determined only by the cost function, m and λ. Also the
probability of the PFNE to be the POS is 1. In two other
cases, we mostly get a unique POS and the variable cost at
different NEPs. When ∂2C

(n)
i /∂x2

i > 0, approximately
50% PFNEs will be POSs, which is not possible in the
remaining cases.

From the above study we can conclude that the nature
of the second order derivative is the first and major factor
for the POS.

Again we start with the case (∂2C
(n)
i /∂x2

i > 0) for
which approximately 50% PFNEs will be POSs. Now
the question arises which condition must be satisfied for
getting those 50% POSs from PFNEs. Tables 2–4 show
some examples of the second case and relative study of
the POS and the PFNE for different sets of m and λ.

By the observation of Tables 2–4, we conclude that,
if D(2) > D(1)/2 (when D(1) ≥ D(2)), then the
PFNE will definitely be a POS, On the other hand if
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Table 1. Effect of the second order derivative on the POS.

Functions Nature of second Pareto optimal Probability Total cost
order derivative solution and NEP of PENE be POS

C = ix
∂2C

(n)
i

∂x2
i

= 0 All NEP are POS 1 Constant (its value

C = i2x depends on
C = −xi+ (m+ 1)x+mλi function used,

C = i3x m and λ)
C = xi+ 10i+ 15x

C = ix2 ∂2C
(n)
i

∂x2
i

> 0 Mostly unique POS ≈ 0.5 Variable

C = x3i
C = x2i+ 10i+ 15x

C = eix1/2 ∂2C
(n)
i

∂x2
i

< 0 Unique POS 0 Variable

Table 2. Detailed study of
∂2C

(n)
i

∂x2
i

> 0 when m = 4 and λ = 6.

D(1) D(2) Pareto optimal strategy PFNE strategy Whether PFNE is
POS

18 6 {(6, 4, 4, 4), (0, 2, 2, 2)} {(5, 5, 4, 4), (1, 1, 2, 2)} No
15 9 {(4, 4, 4, 3), (2, 2, 2, 3)}

(Not unique)
{(4, 4, 4, 3), (2, 2, 2, 3)} Yes

14 10 {(4, 4, 3, 3), (2, 2, 3, 3)}
(unique)

{(4, 4, 3, 3), (2, 2, 3, 3)} Yes

16 8 {(5, 4, 4, 3), (1, 2, 2, 3)} {(4, 4, 4, 4), (2, 2, 2, 2)} No
20 4 {(6, 5, 5, 4), (0, 1, 1, 2)} {(5, 5, 5, 5), (1, 1, 1, 1)} No

D(2) ≤ D(1)/2, then it cannot be a POS. From the above
discussion we come to the point that another factor which
affected the POS from the PFNE is the relation between
demands of both the users. In each pair of demands, the
lower demand must be greater than 50% of the larger one.

6. Comparative analysis of the model

The traffic engineering (TE) method was introduced to
optimize the cost and performance of traffic delivering
by an online service provider (OSP) network to its
users (Zhang et al., 2010). The authors assumed that
consistently applying low-cost strategies in each short
interval can reduce the actual traffic cost over the billing
period. In a similar manner we have also assumed that
utilizing the complete capacity of link in each and every
time slot can reduce the cost of packet transmission over
the link.

As we have discussed in this paper, many strategies
(depending on m,λ,D(1) and D(2)) exist for a given
combination but the Nash equilibrium strategies will be
optimal. Zhang et al. (2010) also observed that the

number of strategies is combinatorial but not all strategies
are worth exploring, only a small subset of optimal
strategies need to be considered. They used a linear
programming problem (LPP) to minimize the pseudocost,
which consists of capacity constraints, wRTT (weighted
average round trip time) constraints and the constraint
ensuring traffic to the destination constrains.

Similarly, throughput optimization routing and
network congestion minimization routing problems are
formulated in LPP (Wellons et al., 2008) for predictive
and oblivious mesh network routing. Instead of LPP,
we have used a game theoretic model. Constraints used
in our model are described in Section 2.2. To find
an optimal solution of this model, we concentrate on
Nash equilibrium strategies of the game. Specifically,
to minimize the network cost, we found strategies which
are Pareto optimal for the game. This paper presents the
mathematical aspect of optimizing a network, which was
described in the game theoretic view.
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Table 3. Detailed study of
∂2C

(n)
i

∂x2
i

> 0 when m = 4 and λ = 5.

D(1) D(2) Pareto optimal strategy PFNE strategy Whether PFNE is
POS

10 10 {(3, 3, 2, 2), (2, 2, 3, 3)} {(3, 3, 2, 2), (2, 2, 3, 3)} Yes
11 9 {(3, 3, 3, 2), (2, 2, 2, 3)} {(3, 3, 3, 2), (2, 2, 2, 3)} Yes
13 7 {(4, 3, 3, 3), (1, 2, 2, 2)} {(4, 3, 3, 3), (1, 2, 2, 2)} Yes
14 6 {(4, 4, 3, 3), (1, 1, 2, 2)}

{(5, 3, 3, 3), (0, 2, 2, 2)}
{(4, 4, 3, 3), (1, 1, 2, 2)} Yes

15 5 {(5, 4, 3, 3), (0, 1, 2, 2)} {(4, 4, 4, 3), (1, 1, 1, 2)} No
12 8 {(3, 3, 3, 3), (2, 2, 2, 2)} {(3, 3, 3, 3), (2, 2, 2, 2)} Yes

Table 4. Detailed study of
∂2C

(n)
i

∂x2
i

> 0 when m = 4 and λ = 7.

D(1) D(2) Pareto optimal strategy PFNE strategy Whether PFNE is
POS

18 10 {(5, 5, 4, 4), (2, 2, 3, 3)}
{(6, 4, 4, 4), (1, 3, 3, 3)}

{(5, 5, 4, 4), (2, 2, 3, 3)} Yes

17 11 {(5, 4, 4, 4), (2, 3, 3, 3)} {(5, 4, 4, 4), (2, 3, 3, 3)} Yes
15 13 {(4, 4, 4, 3), (3, 3, 3, 4)} {(4, 4, 4, 3), (3, 3, 3, 4)} Yes
14 14 {(4, 4, 3, 3), (3, 3, 4, 4)} {(4, 4, 3, 3), (3, 3, 4, 4)} Yes
21 7 {(7, 5, 5, 4), (0, 2, 2, 3)} {(6, 5, 5, 5), (1, 2, 2, 2)} No
16 12 {(4, 4, 4, 4), (3, 3, 3, 3)} {(4, 4, 4, 4), (3, 3, 3, 3)} Yes
20 8 {(6, 5, 5, 4), (1, 2, 2, 3)}

{(7, 5, 4, 4), (0, 2, 3, 3)}
{(5, 5, 5, 5), (2, 2, 2, 2)} No

24 4 {(7, 6, 6, 5), (0, 1, 1, 2)}
{(7, 7, 5, 5), (0, 0, 2, 2)}

{(6, 6, 6, 6), (1, 1, 1, 1)} No

7. Conclusion

The model described above can indeed be considered a
dynamic generalization allowing transmission even in the
case where the total intended transmission exceeds the
link capacity, while not being just a simple generalization
where the number of links is replaced by the number of
time slots.

We obtained necessary and sufficient condition for
the Nash equilibrium point. We developed a procedure
to find the focal point and the preferred focal point from
these multiple Nash equilibrium points. We determined
the conditions for the PFNE as a Pareto optimal solution.

In the future, we would like to determine a function
which will provide the Pareto optimal strategy directly.
As mentioned in the present study, a link is used while
planning to explore the Pareto optimality conditions for
the network having multiple links with various capacities.
The route selection part becomes very important in this
scenario.
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