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Model predictive control (MPC) algorithms are widely used in practical applications. They are usually formulated as
optimization problems. If a model used for prediction is linear (or linearized on-line), then the optimization problem is a
standard, i.e., quadratic, one. Otherwise, it is a nonlinear, in general, nonconvex optimization problem. In the latter case,
numerical problems may occur during solving this problem, and the time needed to calculate control signals cannot be
determined. Therefore, approaches based on linear or linearized models are preferred in practical applications. A novel,
fuzzy, numerically efficient MPC algorithm is proposed in the paper. It can offer better performance than the algorithms
based on linear models, and very close to that of the algorithms based on nonlinear optimization. Its main advantage is
the short time needed to calculate the control value at each sampling instant compared with optimization-based numerical
algorithms; it is a combination of analytical and numerical versions of MPC algorithms. The efficiency of the proposed
approach is demonstrated using control systems of two nonlinear control plants: the first one is a chemical CSTR reactor
with a van de Vusse reaction, and the second one is a pH reactor.
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1. Introduction

MPC algorithms offer good control quality resulting
from the way they are formulated. Therefore, they can
be successfully used in control systems of processes
with difficult dynamics and constraints, and of MIMO
processes. This is because during the generation of the
control signals a model of the control plant is used to
predict the behavior of the control system (see, e.g.,
Camacho and Bordons, 1999; Karimi Pour et al., 2018;
Maciejowski, 2002; Rossiter, 2003; Tatjewski, 2007;
2017).

Standard formulations of the MPC algorithms are
based on linear control plant models (see, e.g., Camacho
and Bordons, 1999; Tatjewski, 2014). However, the
operation of the control system of a nonlinear control plant
may be usually improved using the MPC algorithm based
on a nonlinear model. It is especially important if the
MPC algorithm should operate well at different operating
points as in control system structures with steady-state
set-point optimization (see, e.g., Blevins et al., 2003;
Ławryńczuk et al., 2008; Tatjewski, 2007).

If a nonlinear process model is used for prediction,
then the optimization problem solved at each iteration
by the algorithm may be in general a nonconvex,
nonlinear optimization problem—hard to solve and with
unpredictable time needed to find the solution; such
algorithms will be called NMPC. One of the solutions
to cope with the complexity of the optimization task is
to allow a slightly suboptimal solution. This idea was
proposed, in the case of MPC algorithms based on linear
models, by Kouvaritakis et al. (2002). In the case of
NPMC algorithms, fast NMPC algorithms were designed
in which the solution is generated faster than in the
standard approach also at the expense of suboptimality
(see, e.g., Diehl et al., 2002; Schäfer et al., 2007; Zavala
et al., 2008). Another approach, described, e.g., by
Dominguez and Pistikopoulos (2010) or Johansen (2002;
2004), is the explicit one, in which most calculations are
done off-line. Furthermore, this approach is optimal in
the case when a linear model is used (Bemporad et al.,
2000; 2002; Pistikopoulos et al., 2000). Unfortunately,
an important disadvantage of the approach is that the
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complexity of the controller grows significantly with the
number of inequality constraints included in the problem.

When a fuzzy Takagi–Sugeno model is used in the
MPC algorithm, then obviously nonlinear optimization
can be applied. The structure of the fuzzy model can
be, however, exploited to formulate algorithms which are
easier to solve than the standard NMPC. The first group of
such algorithms includes classical fuzzy Takagi–Sugeno
controllers composed of a few linear controllers which
are switched in a fuzzy way (see, e.g., Killian and Kozek,
2017; Marusak and Tatjewski, 2002). Other algorithms,
exploiting the structure of fuzzy Takagi–Sugeno models,
are based on linear matrix inequalities (LMIs). An
interesting review of algorithms using this technique is
given by Guerra et al. (2009), and recently proposed
algorithms can be found in the works of Khooban et al.
(2016), Kong and Yuan (2019a; 2019b), Shen et al. (2020)
or Wu et al. (2015).

In order to avoid the complexity of NMPC, often
on-line linearization at each algorithm iteration is used
(see, e.g., Boulkaibet et al., 2017; Essien et al., 2019;
Ławryńczuk, 2014; 2015; 2020; Marusak, 2009a; 2009b;
Morari and Lee, 1999; Tatjewski, 2007). After a
linear approximation of the nonlinear model is obtained,
a prediction linear to decision variables is acquired.
Therefore, the optimization problem solved at each
iteration of the algorithm is a quadratic one. The
prediction can be based on the classical linearization or
it can exploit the structure of the model the algorithm is
based on. Examples of algorithms using linearization of
the fuzzy Takagi–Sugeno model, in which both the free
response and the dynamic matrix are obtained using the
linearized model, are given by Boulkaibet et al. (2017)
and Marusak (2009a). Algorithms in which the free
response is calculated using the nonlinear model and the
model obtained after linearization is used to obtain the
dynamic matrix can be found in the works of Essien et al.
(2019) and Marusak (2009b).

The computational efficiency of MPC algorithms
is important when they are implemented in
micro-controllers, FPGAs or PLCs. The computational
power of these devices achieved such a level that
they allow to implement analytical versions of MPC
algorithms. An implementation of the DMC algorithm
runing on an FPGA and on a PLC was described recently
by Wojtulewicz and Ławryńczuk (2018b; 2018a);
implementation of the GPC controller for the STM32
ARM micro-controller is detailed by Chaber and
Ławryńczuk (2019). Both DMC and GPC algorithms
are based on linear models. However, in many cases
control performance can be improved after using an
MPC algorithm based on a nonlinear (e.g., fuzzy) model.
Therefore, fast MPC algorithms based on fuzzy models
are desirable. The present paper addresses this issue.

The approach proposed in this work consists in using

two models in the algorithm: a nonlinear model and its
(easy to obtain) fuzzy approximation. The algorithm is a
combination of analytical and numerical versions of MPC
algorithms. Thanks to such an approach, the time needed
to calculate the control value at each sampling instant
is much smaller compared with numerical algorithms.
However, thanks to skillful use of nonlinear models, the
algorithm offers almost the same performance as that with
nonlinear optimization.

The next section contains a description of MPC
algorithms. In Section 3 the proposed approach based
on fuzzy and nonlinear models is detailed. Example
results illustrating the efficacy of the proposed approach
are presented in Section 4. The paper is summarized in
the last section.

2. Model predictive control algorithms

Model predictive control (MPC) algorithms derive future
values of manipulated variables predicting the behavior
of the control plant many sampling instants ahead. The
values of manipulated variables are calculated in such a
way that the prediction fulfills assumed criteria. Usually,
the minimization of a performance index is demanded
subject to the constraints put on values of manipulated
and of output variables (Camacho and Bordons, 1999;
Maciejowski, 2002; Rossiter, 2003; Tatjewski, 2007):

argmin
Δu

ny∑

j=1

p∑

i=1

κj

(
yjk+i|k − yjk+i|k

)2

+

nu∑

m=1

s∑

i=0

λm

(
Δum

k+i|k
)2

(1)

subject to the constraints

Δumin ≤ Δu ≤ Δumax, (2)

umin ≤ u ≤ umax, (3)

ymin ≤ y ≤ ymax, (4)

where yjk+i|k is the value of the j-th output for the
(k + i)-th sampling instant predicted at the k-th sampling
instant using a control plant model, yjk+i|k are elements
of the reference trajectory for the j-th output, Δum

k+i|k
are future changes in manipulated variables, κj ≥ 0
and λm ≥ 0 are weighting coefficients for the predicted
control errors of the j-th output and for the changes
in the m-th manipulated variable, respectively; p and s
denote prediction and control horizons, respectively; ny ,
nu denote a number of output and manipulated variables,
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respectively;
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]
,

umin, umax and Δumin, Δumax are vectors of lower and
upper bounds on the values and on the changes of the
manipulated variables, and ymin, ymax are the vectors
of lower and upper bounds on the values of the output
variables. As a solution to the optimization problem
(1)–(4) an optimal vector of changes in the manipulated
variables is obtained. From this vector, the Δum

k|k
elements, corresponding to the current sampling instant,
are applied in the control system. The optimization
problem (1)–(4) is solved at each sampling instant.

The way the predicted values of output variables
yjk+i|k are derived depends on the dynamic control plant
model the predictive algorithm is based on. If a nonlinear
process model is used, then the optimization problem
(1)–(4) is, in general, a nonconvex nonlinear optimization
problem instead of a linear-quadratic one. In such an
algorithm, different kinds of process models can be used
but they are exploited in a similar way; therefore an
algorithm of this kind will be later referred to, in general,
as nonlinear MPC (NMPC). In the NMPC algorithm the
computational burden needed to solve such a problem can
be prohibitive, making practical implementation of the
predictive algorithm difficult and unreliable. On the other
hand, if the linear model is used, then the problem (1)–(4)
is a standard quadratic programming one. Unfortunately,
using the algorithm based on a linear plant model for the
nonlinear plant may be insufficient if control at a wide
range of set-points is needed. A possible solution to
these difficulties could be to use algorithms based on an
on-line linearization approach; see, e.g., Tatjewski (2007),
a survey paper by Mayne et al. (2000) and the references
therein.

The performance index (1) can be expresssed by

JMPC = (y − y) T · κ · (y − y) + ΔuT · λ ·Δu, (5)

where
y =

[
y1
k,y

2
k, . . . ,y

ny

k

]T

and every vector yj
k =

[
yjk+1|k, . . . , y

j
k+p|k

]
is of length

p, κ =
[
κ1, . . . ,κny

] · I , every vector κj = [κj , . . . , κj ]
is of length p (and the matrix I is of dimension
p · ny × p · ny), λ = [λ1, . . . ,λnu ] · I , every vector

λj = [λj , . . . , λj ] is of length s (and the matrix I is of
dimension s · nu × s · nu).

2.1. MPC algorithms based on linear models
(LMPC). If the prediction is obtained using a linear
process model, then the optimization problem (1)–(4)
is a standard quadratic programming one (Camacho
and Bordons, 1999; Maciejowski, 2002; Rossiter, 2003;
Tatjewski, 2007). This is because the superposition
principle applies and the vector of predicted output values
y can be described by the following formula:

y = ỹ +A ·Δu, (6)

where

ỹ =
[
ỹ1
k, ỹ

2
k, . . . , ỹ

ny

k

]T
,

ỹj
k =

[
ỹjk+1|k, . . . , ỹ

j
k+p|k

]

is called a free response of the control plant, because
it contains future values of output variables calculated
assuming that the control signals do not change in the
prediction horizon; A is called the dynamic matrix,
composed of the step response coefficients. It can be
shown that the dynamic matrix has the same form in
different types of LMPC algorithms using different types
of linear models (Tatjewski, 2007).

After applying the prediction (6), the performance
index (5) can be transformed to

JLMPC =(y − ỹ −A ·Δu)T · κ · (y − ỹ −A ·Δu)

+ ΔuT · λ ·Δu. (7)

The performance index (7) depends quadratically on
decision variables Δu; if it is minimized without
taking constraints into consideration, then the following
analytical solution is obtained:

Δu = K · (y − ỹ) , (8)

where the matrix

K =
(
AT · κ ·A+ λ

)−1

·AT · κ (9)

can be calculated only once, off-line, because the elements
of the dynamic matrix remain constant. If only control
changes for the current iteration are of interest, then (8)
can be simplified:

Δum
k|k = K(m−1)·s+1 · (y − ỹ) , (10)

where K(m−1)·s+1 is the ((m− 1) · s+ 1)-th row of the
matrix K.
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3. Efficient fuzzy MPC algorithm

Application of the LMPC algorithm to a nonlinear
process may result in unsatisfactory control performance,
especially if operation at different operating points is
demanded. However, a skillful usage of a fuzzy model
for prediction allows improving the control quality of
highly nonlinear processes. An algorithm which offers
control quality comparable with the one guaranteed by
the NMPC algorithm is the FMPC algorithm, in which
the free response is calculated using a nonlinear process
model. This FMPC algorithm is detailed by Marusak
(2009b) and is a numerical, optimization-based one.

The algorithm proposed in this section is a
combination of analytical LMPC, described in
Section 2.1, and of the FMPC algorithm by Marusak
(2009b). Thanks to such an approach it generates the
control signal fast and, at the same time, offers control
quality close to the one guaranteed by NMPC algorithms.
This is because in the proposed numerically efficient
FMPC (EFMPC) algorithm solving the optimization
problem in each iteration is avoided; the control action is
generated in a much simpler way.

In the EFMPC algorithm two models are used.
The original, nonlinear one is used to calculate the free
response, like in the FMPC algorithm, whereas the fuzzy
model, with step responses used as local models, is
employed in a skillful generation of the control law. The
proposed EFMPC algorithm will be now described.

Suppose that one has a nonlinear process model
which generates the output values

ŷk+1|k = f (yk,yk−1, . . . ,yk−na
,

uk−1,uk−2, . . . ,uk−nb
), (11)

where yk−i =
[
y1k−i, . . . , y

ny

k−i

]T
is the vector of the

measured values of the output variables at the (k − i)-th

sampling instant, uk−i =
[
u1
k−i, . . . , u

nu

k−i

]T
is the vector

of the values of manipulated variables at the (k − i)-th
sampling instant; let us also denote the outputs of the
model at the (k + i)-th sampling instant as ŷk+i|k =
[
ŷ1k+i|k, . . . , ŷ

ny

k+i|k
]T

, while na, nb determine how many
past output and control values are used by the model.

3.1. Generation of the free response. The model
(11) is then employed to obtain the free response, like in
the work of Marusak (2009b), for the whole prediction
horizon, iteratively, i.e.,
• First, the process model is used to obtain ŷk+1|k

(formula (11)).
• Then the values ŷk+1|k are used as the output values

for the (k + 1)-th sampling instant, to obtain the
output values for the next sampling instant ŷk+2|k .
Moreover, the assumption that the control signal

does not change (the free response is calculated) is
utilized:

ŷk+2|k = f(ŷk+1|k,yk, . . . ,yk−na+1,

uk−1,uk−1, . . . ,uk−nb+1); (12)

• thus, in general, in the i-th step, using the values
ŷk+1|k, . . . , ŷk+i−1|k and assuming that the control
signal does not change, one obtains

ŷk+i|k = f(ŷk+i−1|k, ŷk+i−2|k, . . . ,yk−na+i−1,

uk−1,uk−1, . . . ,uk−nb+i−1). (13)

• Then the free response is calculated taking into
consideration the estimated disturbances (containing
also the influence of modeling errors). The final
formula describing the elements of the free response
is then as follows:

ỹk+i|k = ŷk+i|k + dk , (14)

where ỹk+i|k =
[
ỹ1k+i|k, . . . , ỹ

ny

k+i|k
]T

and dk is the
DMC-type disturbance model, i.e., it is assumed the
same for all instants in the prediction horizon and

dk = yk − ŷk|k−1. (15)

3.2. Formulation of the control law. In order to
simplify the algorithm and make the calculation of the
control signal faster, the latter part of the algorithm is done
in a way described below. Assume that a Takagi–Sugeno
fuzzy model composed of local models in the form of step
responses was obtained:

Rulef : (16)

if yjk−1 is Bf,j
1 and . . . and yjk−i is Bf,j

i and

um
k−1 is Cf,m

1 and . . . and um
k−i is Cf,m

i

then ŷj,fk =

nu∑

m=1

p−1∑

i=1

aj,m,f
i ·Δum

k−i + aj,m,f
p · um

k−p,

where yjk is the j-th output variable value at the k-th
sampling instant, um

k is the m-th manipulated variable
value at the k-th sampling instant, Bf,j

1 , . . . , Bf,j
i ,

Cf,m
1 , . . . , Cf,m

i are fuzzy sets, aj,m,f
i are the coefficients

of step responses in the f -th local model, j = 1, . . . , ny ,
m = 1, . . . , nu, f = 1, . . . , l; here l is the number of
rules.

The design process of such a model is rather
simple. It is sufficient to collect a few sets of step
responses (around a few operating points). Then, using
expert knowledge, the premises can be formulated and,
subsequently, they can be tuned using, e.g., a fuzzy neural
network.
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Now, for each local model a dynamic matrix is
obtained:

Af =

⎡

⎢⎢⎢⎢⎣

Af
11 Af

12 . . . Af
1nu

Af
21 Af

22 . . . Af
2nu

...
...

. . .
...

Af
ny1

Af
ny2

. . . Af
nynu

⎤

⎥⎥⎥⎥⎦
, (17)

Af
jm =

⎡

⎢⎢⎢⎣

aj,m,f
1 0 . . . 0 0

aj,m,f
2 aj,m,f

1 . . . 0 0
...

...
. . .

...
...

aj,m,f
p aj,m,f

p−1 . . . aj,m,f
p−s+2 aj,m,f

p−s+1

⎤

⎥⎥⎥⎦ .

(18)
Next, for each dynamic matrix Af the appropriate

matrix Kf is calculated using the formula (cf. (9))

Kf =
(
AfT · κ ·Af + λ

)−1

·AfT · κ. (19)

Each matrix Kf can be calculated off-line. Thus, the
following fuzzy controller can be obtained (compare the
local controllers with (8)):

Rulef : (20)

if yjk−1 is Bf,j
1 and . . . and yjk−i is Bf,j

i and

um
k−1 is Cf,m

1 and . . . and um
k−i is Cf,m

i

then Δuf = Kf · (y − ỹ) .

If only control changes for the current iteration are of
interest, then (20) can be simplified:

Rulef : (21)

if yjk−1 is Bf,j
1 and . . . and yjk−i is Bf,j

i and

um
k−1 is Cf,m

1 and . . . and um
k−i is Cf,m

i

then Δuf,m
k|k = Kf

(m−1)·s+1 · (y − ỹ) ,

where Kf
(m−1)·s+1 are the ((m− 1) · s+ 1)-th rows of

the matrices Kf . The output of the fuzzy controller (21)
is given by

Δum
k|k =

l∑

f=1

w̃f ·Kf
(m−1)·s+1 · (y − ỹ) , (22)

where w̃f is the normalized firing strength of the f -th rule,
obtained using fuzzy reasoning.

3.3. Taking constraints into consideration. In order
to take control constraints into consideration in the
proposed algorithm, the control projection onto the
constraint set can be applied (see, e.g., Tatjewski, 2007).
The mechanism consists in application of the following
rules of Δum

k|k modification, leading to the fulfillment of
the constraints on control changes:

• for lower bound constraints:
—if Δum

k|k < Δum
min, then Δum

k|k = Δum
min,

• for upper bound constraints:
—if Δum

k|k > Δum
max, then Δum

k|k = Δum
max;

and leading to fulfillment of the constraints on control
values:
• for lower bound constraints:

—if um
k−1 +Δum

k|k < um
min, then

Δum
k|k = um

min − um
k−1,

• for upper bound constraints:
—if um

k−1 +Δum
k|k > um

max, then

Δum
k|k = um

max − um
k−1.

Using this mechanism it is also possible to take constraints
on predicted output values into consideration; for details
see the work of Marusak (2010).

3.4. Properties of the algorithm. The diagram of
the algorithm is depicted in Fig. 1. Many actions, also
the most computationally demanding calculation of the
matrices Kf (using (19)), are done off-line; these include
the following:

I. Development of the fuzzy model (16).

II. Construction of the dynamic matrices Af from (17),
for each of the local models from (16).

III. Calculation of the matrices Kf using (19), for each
dynamic matrix obtained in the previous step.

IV. Construction of the fuzzy controller (21) using
appropriate elements of the Kf matrices.

Thanks to the proposed approach, in each iteration of the
EFDMC algorithm (in each sampling instant) only the
following actions should be done (see Fig. 1):

1. The nonlinear control plant model is used to generate
the free response (14) of the control plant.

2. For each fuzzy rule from the model (16) the value of
w̃f , the normalized firing strength, is calculated.

3. The obtained free response ỹ, the firing strengths
w̃f and the appropriate rows of the matrices Kf are
used in the control law (22) to calculate the control
signals. No optimization routines are used.

The proposed algorithm usually gives better
results than the standard LMPC one and generates
results very close to those obtained with a numerical,
optimization-based FMPC algorithm, in which the free
response is generated the same way. However, it needs
much fewer computations to obtain the control values
than its counterpart, which uses quadratic optimization.

The proposed algorithm, like other algorithms based
on linearization, is an approximate one compared with
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Fig. 1. Diagram of the EFMPC algorithm.

an NMPC algorithm. However, in the example control
systems it will be demonstrated that both algorithms can
offer comparable results. Moreover, the algorithm can be
used not only as a stand-alone one, but also as support for
NMPC algorithms to improve their numerical properties.
In the latter case the numerically efficient algorithm can
be employed to generate the starting control trajectory for
a nonlinear optimization routine, using (20). Next, the
NMPC algorithm tries to improve the initial trajectory.
If it manages to do so during one sampling instant, then
the newly derived control action is applied to the process.
If it fails to improve the approximate solution, then the
control signal generated by the proposed algorithm can be
used, as it offers performance very close to the optimal
one, anyway.

Remark 1. The model given by (16) is obtained
from the model (11). The membership functions can be
chosen by a designer after analyzing the shape of the
steady-state characteristic of the process. It is done in the
examples detailed in the next section. Such an approach
is relatively simple and allows obtaining the EFMPC
controller offering better control performance than the
LMPC one, fast. However, parameters of the membership
functions can be also tuned using optimization.

Remark 2. The premises of the obtained controller
(21) can be changed if needed to improve the control

Fig. 2. Diagram of the isothermal CSTR with a van de Vusse
reaction.
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Fig. 3. Steady-state characteristic of the control plant.

system performance. This can be done either by using
a trial-and-error method or by optimizing the parameters
of the membership functions. In the case of the local
controllers the main tuning parameters are κj and λm. An
increase in λm in relation to κj increases robustness of
the controller but, at the same time, slows it down. In the
MIMO case, if one needs to improve stabilization of the
j-th output, then κj should be increased. More advanced
methods of tuning allow varying the values of κj and λm

at different instants of the prediction horizon. Such an
approach allows obtaining interesting results but demands
significant effort during the tuning process; for details, see
the work of Nebeluk and Marusak (2020).

4. Simulation experiments

4.1. SISO control plant. The control plant under
consideration is an isothermal CSTR in which a van de
Vusse reaction is carried out (Fig. 2). The steady-state
characteristic of the control plant is shown in Fig. 3.

The process model of the reactor contains two
composition balance equations (Doyle et al., 1995):

dCA

dt
= −k1 · CA − k3 · C2

A +
F

V
(CAf − CA) ,

dCB

dt
= k1 · CA − k2 · CB − F

V
CB,

(23)
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where CA, CB are the concentrations of components A
and B, respectively, F is the inlet flow rate (equal to the
outlet flow rate; it is assumed that it is constrainted, and
Fmin = 0 l/h, Fmax = 60 l/h), V is the volume in which
the reaction takes place (it is assumed constant and V =
1 l), CAf is the concentration of component A in the inlet
flow stream (it is assumed that CAf = 10 mol/l). The
values of the parameters are k1 = 50 1/h, k2 = 100 1/h,
k3 = 10 l/(h ·mol).

The output variable is the concentration CB of
substance B, the manipulated variable is the inlet flow
rate F of the raw substance, CAf concentration is the
disturbance variable.

The fuzzy model is composed of three step
responses, with membership functions shown in Fig. 4.
The step responses were obtained in a vicinity of the
following operating points (Marusak, 2009a):

1. CB0 = 0.91mol/l, CA0 = 2.18mol/l, F = 20 l/h;
2. CB0 = 1.12 mol/l, CA0 = 3 mol/l, F = 34.3 l/h;
3. CB0 = 1.22mol/l, CA0 = 3.66mol/l, F = 50 l/h.

Operation of the proposed EFMPC algorithm will be
compared with that of three other MPC algorithms: an
NMPC one with nonlinear optimization, an LMPC one
with a linear model and the optimization-based FMPC by
Marusak (2009b). The sampling time was assumed equal
to Ts = 3.6 s; tuning parameters of all three algorithms
were as follows: prediction horizon p = 70, control
horizon s = 35, λ1 = 0.001 and κ1 = 1. Responses
generated with the predictive algorithms will be also
compared with the ones obtained with the PID controller
proposed by Krishna et al. (2012) (called SA-PID) and
considered the best there.

The responses obtained after changes in the set-point
value are shown in Figs. 5 and 6. In the case when
the set-point was changed to CB = 1.25 (Fig. 5),
the responses obtained in the control system with the
proposed EFMPC algorithm (solid lines) are almost the
same as those generated with the optimization-based
FMPC algorithm (dotted lines). Despite significant
simplification of calculations, the obtained responses
are practically the same. The responses obtained with
FMPC algorithms are faster than those obtained with
the NMPC algorithm (dashed lines). All the algorithms
based on nonlinear models outperform the standard
LMPC algorithm (dash-dotted lines), which works very
slow—the control time is much longer than in the case of
other algorithms. The PID controller is the slowest among
all tested algorithms. In all cases there is no overshoot.

The responses obtained after the change in the
set-point value to CB = 0.8 are shown in Fig. 6. In this
experiment the responses obtained in the control system
with the EFMPC algorithm (solid lines) are also very
close to those obtained with optimization-based FMPC

Fig. 4. Membership functions of the fuzzy model.
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Fig. 5. Responses of control systems to the change in the
set-point value to CB = 1.25; EFMPC—solid lines,
optimization-based FMPC—dotted lines, NMPC—
dashed lines, LMPC—dash-dotted lines and PID—
dashed lines with points.

(dotted lines). Moreover, they are also similar to the
responses generated with the NMPC algorithm (dashed
lines). In all three cases there is practically no overshoot;
this time the NMPC algorithm is slightly faster than its
fuzzy counterparts. All the algorithms based on nonlinear
models outperform the standard LMPC (dotted lines) and
PID (dashed lines with points) algorithms. The LMPC
algorithm generates significant overshoot and control time
is longer than in the case of other algorithms. In this
experiment it is the worst among all tested algorithms.

It was also tested how the algorithms respond to
the disturbance change by 10% from CAf0 = 10 mol/l
to CAf1 = 11 mol/l (Fig. 7). The responses obtained
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Fig. 6. Responses of control systems to the change of the
set-point value to CB = 0.8; EFMPC—solid lines,
optimization-based FMPC—dotted lines, NMPC—
dashed lines, LMPC—dash-dotted lines and PID—
dashed lines with points.

in control systems with the EFMPC (solid lines) and
FMPC (dotted lines) algorithms are almost the same
and very similar to these obtained with the NMPC
algorithm (dashed lines). The LMPC and PID algorithms
(dash-dot lines and dashed lines with points, respectively)
compensate the disturbance faster than MPC algorithms
based on nonlinear models when operating near CB =
1.12, but slower when operating near CB = 1.25. In
the latter case the maximal control error generated with
the LMPC algorithm is lower than in the case when MPC
algorithms based on nonlinear models are used. Near both
operating points the maximal control error is the smallest
when the PID controller is used in the control system.

There was also an experiment conducted to show
the effectiveness in the constraint handling mechanism.
The algorithms were tuned to work faster at the expense
of a more aggressive control action (λ decreased to
0.0001); see Fig. 8. The responses obtained in control
systems with the EFMPC (solid lines) and FMPC (dotted
lines) algorithms are almost the same. The difference
can be noticed in control signal between the 1st and
2nd minute of the experiment; the output responses are
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Fig. 7. Responses of control systems to the change in the dis-
turbance by 10% to CAf1 = 11 mol/l: EFMPC—
solid lines, optimization-based FMPC—dotted lines,
NMPC—dashed lines, LMPC—dash-dotted lines and
PID—dashed lines with points.

almost the same (the difference is barely perceptible).
For comparison, also the responses obtained in a control
system with the EFMPC algorithm in the unconstrained
case (dashed lines) are shown. In such a case the rise time
is faster, but at the expense of small overshooting.

There were also experiments conducted with changes
of the parameters of the control plant—reaction rate
constants ki (i = 1, 2, 3). The responses obtained after a
decrease by 10% are shown in Fig. 9 and the ones obtained
after an increase by 10% are shown in Fig. 10. The
changes in reaction rate constants significantly influence
the behavior of the control plant. Despite that, in all cases
the control system is stable. Moreover, in most cases the
obtained responses are good. In some cases, the set-point
value CB = 1.25 cannot be achieved due to the upper
bound of the control signal, but in these cases the output
signal stabilizes on the value which is as close to the
set-point as possible.

4.2. MIMO control plant. The next control plant
considered is a pH reactor (Fig. 11). The process
model is given by the set of the following equations
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Fig. 8. Responses of control systems to the change in the set-
point value to CB = 1.25, λ = 0.0001: EFMPC—solid
lines, optimization-based FMPC—dotted lines, EFMPC
and no constraints—dashed lines.
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Fig. 9. Responses obtained in the control system for k1 = 45
(solid line), k2 = 90 (dotted line) and k3 = 9 (dashed
line).
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Fig. 10. Responses obtained in the control system for k1 = 55
(solid line), k2 = 110 (dotted line) and k3 = 11
(dashed line).

(Chen and Huang, 2004; Dougherty and Cooper, 2003; Hu
et al., 2000; Marusak, 2009a):

dh

dt
=

1

A
Q1 +Q2 +Q3 +Q4, Q4 = CV

√
h,

(24)

dWa4

dt
=

1

A · h
[
(Wa1 −Wa4) ·Q1

+ (Wa2 −Wa4) ·Q2 + (Wa3 −Wa4) ·Q3

]
,

(25)

dWb4

dt
=

1

A · h
[
(Wb1 −Wb4) ·Q1

+ (Wb2 −Wb4) ·Q2 + (Wb3 −Wb4) ·Q3

]
,

(26)

Wa4 + 10pH−14

+Wb4
1 + 2 · 10pH−pK2

1 + 10pK1−pH + 10pK2−pH
− 1

10pH
= 0,

(27)

where Q1 is the flow rate of acid (HNO3), Q2 is the
flow rate of buffer (NaHCO3), Q3 is the flow rate of base
(NaOH), Q4 is the gravitational outflow of the product, h
is the level of the liquid in the reactor, pH indicates the
composition of the product. The values of the parameters
in the pH reactor model are as follows:

Wa1 = 3 · 10˘3 M, Wa2 = ˘3 · 10˘2 M,

Wa3 = ˘3.05 · 10˘3 M, Wb1 = 0 M,

Wb2 = 3 · 10˘2 M, Wb3 = 5 · 10˘5 M,

A = 207 cm2, CV = 8.75 ml
cm·s ,

pK1 = 6.35, pK2 = 10.25.

Moreover, there is a delay of pH measurement,
which is equal to Td = 30 s. The control task is thus
difficult because of the delay and high nonlinearity of the
control plant; the steady-state characteristic pH(Q1, Q3)
is shown in Fig. 12.

It is assumed that the manipulated variables are the
flow rates: of acid—Q1 and of base—Q3; the controlled
variables are: the level of the liquid in the reactor—h and
the composition of the product—pH . It is assumed that
the liquid level should be stabilized on the fixed value
h0 = 14 cm.

The fuzzy model by Marusak (2009a) is used; it is
composed of five sets of step responses, with membership
functions shown in Fig. 13. The step responses were
obtained in vicinity of the following operating points:

1. h0 = 14 cm, pH0 = 4,
Q10 = 19.48 ml

s , Q30 = 12.71 ml
s ;
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2. h0 = 14 cm, pH0 = 5,
Q10 = 18.89 ml

s , Q30 = 13.30 ml
s ;

3. h0 = 14 cm, pH0 = 6.5,
Q10 = 17.29 ml

s , Q30 = 14.90 ml
s ;

4. h0 = 14 cm, pH0 = 8,
Q10 = 16.14 ml

s , Q30 = 16.05 ml
s ;

5. h0 = 14 cm, pH0 = 10,
Q10 = 14.51 ml

s , Q30 = 17.68 ml
s .

Operation of the proposed EFMPC algorithm will
be compared with that of optimization-based FMPC and
of LMPC. The sampling time was assumed equal to
Ts = 10 s; tuning parameters of all three algorithms are
assumed the same as in the work of Marusak (2009a):
prediction horizon p = 100, control horizon s = 50,
λ1 = 1, λ2 = 1, κ1 = 1 and κ2 = 1. During
the experiments the value of the flow rate of buffer Q2

in the equations used to simulate the control plant was
increased by 10%. The responses obtained after changes
of the set-point value are shown in Figs. 14 and 15. The
LMPC algorithm (dash-dot lines), based on a single set
of step responses, obtained near the 4th operating point,
works well near this point—for the set-point change to 9.
For other set-point values, the LMPC algorithm is much
slower than fuzzy algorithms. Both EFMPC (solid lines)
and optimization-based FMPC (dotted lines) offer much
better control performance. Fuzzy algorithms generate
responses very similar to each other.

The output variable pH reaches the set-point
values much faster in the control systems with fuzzy
algorithms. There is some overshoot, although it is
small. The responses obtained for different set-point
values have shapes similar to each other—the influence
of control plant nonlinearities on control quality is then
significantly reduced, thanks to the application of control
algorithms based on nonlinear models. The second output
variable—the liquid level in the reactor h is stabilized
properly by all the algorithms.

5. Summary

The proposed algorithm is computationally efficient and,
at the same time, offers very good control performance.
It uses the nonlinear model to derive the free response
of the control plant and the approximate, easy to obtain,
fuzzy model to calculate the control signal in a fast and
efficient way. Thanks to such an approach, repetition
of on-line optimization at each iteration of the algorithm
is avoided. Despite that, the proposed algorithm offers
control performance very close to that granted by the
algorithms with optimization.

The control signal in the proposed algorithm is
generated fast. Therefore the algorithm, although it is
based on a nonlinear model, can be used with relatively
small sampling times. The proposed algorithm can be

Fig. 11. Diagram of the pH reactor.
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Fig. 12. Steady-state characteristic pH(Q1, Q3).

Fig. 13. Membership functions of the fuzzy model.

used not only as a stand-alone one, but also in the control
systems with NMPC algorithms, to improve the numerical
properties of the latter ones. It is also possible to
obtain the free response using other methods than the one
exploited in the paper, for example, methods dedicated
to particular types of models; the proposed approach is
independent of the technique of free response generation.

References
Bemporad, A., Borrelli, F. and Morari, M. (2000). Piecewise

linear optimal controllers for hybrid systems, Proceedings
of the 2000 American Control Conference, ACC, Chicago,
USA, Vol. 2, pp. 1190–1194.



A numerically efficient fuzzy MPC algorithm with fast generation of the control signal 69

time (min)
0 5 10 15 20 25 30

7

8

9

10

11
pH

time (min)
0 5 10 15 20 25 30

13.9

13.95

14

14.05

14.1
h

time (min)
0 5 10 15 20 25 30

13.5

14

14.5

15

15.5

16

16.5
Q

1

time (min)
0 5 10 15 20 25 30

15.5

16

16.5

17

17.5

18

18.5
Q

3

Fig. 14. Responses of control systems to the change of pH set-points from 7 to 8, 9 and 10: EFMPC—solid lines, optimization-based
FMPC—dotted lines and LMPC—dash-dotted lines, set-point trajectory—dashed lines; left—output variables pH and h,
right—manipulated variables Q1 and Q3.

Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E.N.
(2002). The explicit linear quadratic regulator for
constrained systems, Automatica 38(1): 3–20.

Blevins, T., McMillan, G., Wojsznis, W. and Brown, M. (2003).
Advanced Control Unleashed, ISA—The Instrumentation,
Systems, and Automation Society, Research Triangle Park.

Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T. and
Chadli, M. (2017). A new T–S fuzzy model predictive
control for nonlinear processes, Expert Systems with Ap-
plications 88: 132–151.

Camacho, E. and Bordons, C. (1999). Model Predictive Control,
Springer, London.
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