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In the frame of stochastic filtering for nonlinear (discrete-time) dynamic systems, the unscented transformation plays a
vital role in predicting state information from one time step to another and correcting a priori knowledge of uncertain state
estimates by available measured data corrupted by random noise. In contrast to linearization-based techniques, such as the
extended Kalman filter, the use of an unscented transformation not only allows an approximation of a nonlinear process
or measurement model in terms of a first-order Taylor series expansion at a single operating point, but it also leads to an
enhanced quantification of the first two moments of a stochastic probability distribution by a large signal-like sampling of
the state space at the so-called sigma points which are chosen in a deterministic manner. In this paper, a novel application
of the unscented transformation technique is presented for the stochastic analysis of measurement uncertainty in magnet
resonance imaging (MRI). A representative benchmark scenario from the field of velocimetry for engineering applications
which is based on measured data gathered at an MRI scanner concludes this contribution.
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1. Introduction

Although MRI techniques are widely associated with
medical examinations, they have gained a significant
amount of interest also in various engineering disciplines
such as fluid mechanics. This fact mostly stems from
the possibility of gathering spatially multi-dimensional
insight into complex (opaque) structures without
requiring optical or physical access as most conventional
measurements do (e.g., by applying laser-optical tech-
niques). Engineering applications of MRI, for example,
in fluid mechanics, include the quantification of the
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mean velocities and temperature fields in complex flow
systems, which could not be obtained with any other
measurement technique (Bruschewski ef al., 2019). As
the fundamental principle of these MRI techniques, the
measured information is encoded in the phase angle
values of the reconstructed image.

Possible applications in this context were reported
for the optimization of fluidic components, such as
fuel injection systems for combustion engines, internal
cooling for turbine blades, or various types of heat
exchangers (Elkins and Alley, 2007). The fact that
the use of MRI simplifies the investigation of such
opaque structures also opens up a wide range of
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future applications in the field of control, especially for
experimental validation of simplified dynamic models
for complex thermo-fluidic systems. In such cases,
the admissibility of the replacement of complex,
commonly nonlinear, models consisting of coupled
partial differential equations for heat and mass transfer
has to be validated. This replacement is possible if
sufficiently accurate formulations can be found in terms
of lumped-parameter, reduced-order models, which are
typically derived by finite volume, finite difference, or
finite element approaches (Rauh et al., 2011; Kostin
etal.,2014). As such, MRI results may help in optimizing
future control scenarios, where a trade-off between high
modeling accuracy and a minimum amount of numerical
effort is required.

It is especially in the engineering applications
mentioned above that reliable quantitative data are
required.  Therefore, it is essential to quantify the
effect of measurement uncertainty that is ubiquitous
due to the thermal noise of the receiver chain. As
shown by Bruschewski et al. (2016), this noise can
be characterized with good accuracy by a Gaussian
probability density (Gaussian PDF) for each measured
data point if the variance between two equally measured
images is determined. The influence of these
measurement uncertainties is even more pronounced if
advanced measurement techniques are applied, which
require iterative image reconstruction (Zhou et al., 2020).

These reconstruction methods generally become
necessary if the data acquisition in MRI is undersampled
to allow a significant acceleration of the data acquisition.
This enables, for example, time-resolved measurements
(Niebergall et al., 2013) or acceleration of high accuracy
measurements (John et al., 2020a). However, iterative
approaches suffer from reconstruction artifacts which
may lead to the so-called staircase effect. This effect
becomes especially pronounced if the aforementioned
undersampling techniques are employed. Qualitatively
speaking, the staircase effect leads to the phenomenon
that some regions in the reconstructed image turn
into virtually constant ones. Hence, it is essential
to find relations between this undesirable effect and
stochastically distributed measurement errors to develop
algorithms in future work which will counter those
phenomena.

Our previous work has dealt with a first approach
to quantify the effect of measurement uncertainty
by representing the possible ranges of consistently
reconstructed data in MRI-based signal processing
with the help of purely set-valued, non-probabilistic
approaches.  John er al. (2020b) and Rauh et al.
(2020) showed that interval analysis (as a set-valued
approach) provides a helpful tool to detect those domains
in the reconstructed images that are influenced most
by the assumed bounded measurement uncertainty.

Quantification of these effects became possible with the
help of computing the worst-case deviations between
the estimated suprema and infima of reconstructed phase
angles.

However, a fundamental drawback of the use of
interval analysis is its property to overestimate the
resulting domains in a conservative manner. Moreover,
interval analysis does not provide any information
regarding the probability distribution of reconstructed
data within the computed bounds. Before tackling
this latter issue by employing a combination of interval
analysis with the notion of fuzzy sets or type-2 interval
arithmetic in future research, as suggested by Mices
and Stadtherr (2013) or Piegat and Dobryakova (2020),
to predict certain confidence intervals or uncertainty
in interval bounds, a purely stochastic analysis of
measurement errors is performed in this paper. As shown
in the following sections, the aforementioned iterative
image reconstruction is characterized by nonlinear
least-squares optimization that can be cast into an iterative
solution of the corresponding necessary optimality
conditions.

Previously, the evaluation of these conditions was
performed with the help of interval analysis. However,
those interval approaches require application-specific
insight concerning the derivation of meaningful bounds
for the expected measurement errors. As discussed
by John et al. (2020b) and Rauh et al. (2020),
suitable options for such models are the assumption of
independent additive bounds for each measured point
in the frequency domain or uncertainty models that are
related to the power spectral density of the acquired data.
The validity of such assumptions, however, needs to be
checked for each measurement scenario. In contrast,
the use of uncertainty models relying on Gaussian PDFs
(mainly focusing on the thermal noise in the MRI receiver
chain) is application-independent and therefore in the
focus of this paper.

To quantify the stochastic distribution of
measurement errors in all signal processing stages,
an unscented transformatior] approach, well known
from the prediction stage of nonlinear discrete-time
filtering procedures (cf. the unscented Kalman filter
developed originally by Julier et al. (2000)), is proposed
in this paper to solve the corresponding identification
task. Due to the use of the so-called sigma points
(which are generated in a deterministic way despite the
probabilistic nature of the measurement process), the
first two moments of the probability distribution of the

IThis kind of transform represents a mathematical function that al-
lows estimating the stochastic moments resulting from some nonlinear
mapping in terms of a finite number of input arguments. Most com-
monly, it is employed to estimate the mean and covariance in nonlinear
filtering. The notion of an unscented transformation, however, is a more
or less arbitrary name that was introduced by its developer, J. Uhlmann,
to avoid referring to his own name (Uhlmann, 2021).
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reconstructed image can be characterized accurately
despite nonlinearities. Using sigma points avoids the
often tedious and time-consuming evaluation of Jacobian
matrices of large dimensions, which a first-order Taylor
series linearization would require. Besides, the unscented
transformation commonly enhances state estimates in
comparison with a pure first-order linearization and often
represents a computationally efficient alternative to brute
force Monte-Carlo sampling or particle filtering.

Section [2] of this paper provides a summary of the
nonlinear least-squares optimization task that is typically
solved if compressed sensing techniques in the frame
of MRI are considered. As mentioned above, this
optimization problem is cast into the iterative solution
of a nonlinear set of algebraic equations. In this
paper, a strict proof of convergence of this iteration
is provided by proving the Lipschitz continuity of the
respective contracting map.  Section [ focuses on
the unscented transformation allowing quantifying the
uncertainty of the reconstructed images, which permits
one to predict the first two moments of the PDF
reliably. In addition, the distribution of the sigma points
provides further insight into possible multi-modality
and higher moments of the PDF for low-dimensional
characteristics deduced from the image reconstruction,
such as flow rates or mean temperatures in the case of
velocity-encoded or temperature-encoded measurements.
Details on numerical results, including a comparison
between a standard CPU implementation and the use of
the GPU (Datta et al., 2019) to massively parallelize the
required multiplication of large matrices, are given in
Sectionfl The data employed for the numerical validation
were measured at the MRI Flow Lab, which is part of
the Institute of Fluid Mechanics at the University of
Rostock, Germany. Finally, conclusions and an outlook
on future work with a focus on interfacing set-valued with
probabilistic evaluation techniques are given in Section

2. Least-squares estimation techniques for
compressed sensing in the frame of MRI

An acceleration of MRI measurements becomes possible
with the use of so-called compressed sensing (Holland
et al., 2010; Zhao et al., 2012; Zhao, 2014). This method
relies on the fact that information in the frame of MRI has
a sparse representation in a known transformation domain.
In compressed sensing, undersampling enables a strong
acceleration of the measurement. This undersampling is
performed randomly to avoid coherent aliasing artifacts.
The unmeasured data are set to zero.

MRI  measurement data (denoted by the
complex-valued matrix Y € C™*™ throughout this
paper) consist of spatial frequencies. If the frequency
range were fully sampled, the inverse multi-dimensional
discrete Fourier transformation (DFT) would enable the

transformation of the data into the spatial domain. As a
linear operator, the (inverse) DFT is characterized by the
fact that Gaussian noise in the frequency domain results
in perfectly Gaussian uncertainty in the reconstructed
image. It is assumed that this property is lost due to
additional uncertainty resulting from undersampling
which can partially be traced back to the staircase effect
described by Zhou et al. (2020), as well as due to
nonlinear operations applied to the reconstructed data
set X &€ C™*" in further signal processing stages.
For the sake of the compact notation of the following
mathematical problem formulation, the operators
X = col(X) e C" andy = col(Y) e C™™ are
further employed, which turn the matrices X and Y into
stacked column vectors in a column-wise form.

Within this paper, the loss of the property of
Gaussian probability distributions is confirmed by the
mapping of specific sigma points in Sections 3] and @ into
frequency distributions with a non-Gaussian shape.

Randomly undersampling the data Y leads to
additional noise-like artifacts. These are reduced with
the help of an iterative nonlinear image reconstruction,
where sparsity is enforced by means of regularization
terms that involve finite difference and Wavelet
operators applied to the reconstructed image X. As
discussed by John et al. (2020b), most state-of-the-art
techniques for this reconstruction make use of classical
floating-point optimization techniques (for example,
complex-valued conjugate gradient approaches or variants
of Gauss—Newton methods) (Holland et al., 2010; Tamir
et al., 2016). However, drawbacks of such numerical
solvers are an increase in the computing times for
signal processing and the lack of possibilities for
direct quantification of the influence of measurement
uncertainty in the data Y unless multiple image
reconstructions are performed in a Monte-Carlo like
manner. Unfortunately, such approaches rapidly turn into
excessively time-consuming tasks. A significant reduction
of computing times, as well as enhanced possibilities
for an algorithmic parallelization, are obtained by the
iteration procedure derived in the following.

2.1. Specification of the cost function for an iterative
image reconstruction. In previous work, we focused
on a first attempt to quantify the influence of uncertainty
during the minimization of the cost function

760 = Qa0+ A1 Qrv (x) 0

+ A2 - Qw (%) + Az - Qb (x)
by means of an interval-based iteration scheme in the
set-valued context mentioned in Introduction (cf. Rauh
et al., 2020). The cost function () consists of the
following four individual summands:

aamcs
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e ()1 (x) as the fundamental requirement for
consistency between the measured data Y and the
reconstructed image X (which are interconnected in
terms of the multi-dimensional DFT),

e Qrv(x) and Qw(x) as two penalty terms that
enforce the aforementioned property of sparsity, and

e Qb (x) for windowing out data outside a certain
domain of investigation.

The consistency between Y and X in @, (x)
restricts the global minimum to be in accordance with
the measured data, whereas the constituents Qv (x) and
Qw (x) of (D) restrict the solution under the assumption
that the MRI image has a sparse representation in a known
transform domain if noise and undersampling artifacts are
eliminated. Therefore, they enforce the sparsity of the
solution. Finally, as noise and undersampling artifacts
lead to non-zero background signal intensities, Qup ()
aims at forcing them to zero. Note that Qnp, (x) can only
be applied when the geometry of the measured object is
well known, such as in engineering applications.

According to the state-of-the-art in signal processing
for MRI (cf. Holland et al., 2010; Tamir et al., 2016;
Zhou et al., 2020), the data consistency requirement is
expressed as the quadratic no

Q1 (x) = M0 F@ {X} - Y|

M 2)

=Ms-x—y')" - Ms-x—Y'),
where the vectory’ € CV ', N’ < mn, is a sub-vector of
the measurement reshaped into the column-wise notation
y = col(Y) after removing all zero elements.

In addition, the matrix M, (representing
undersampling and zero-filling) is connected by
the element-wise Hadamard product with the
two-dimensional (2D) DFT

FOX}=F {]—'{X}T}T . 3)

In the second line of @), this connection is alternatively
expressed by

M, =M, - (W2 W), @)

where My is the counterpart of Ms in a classical matrix
product notation.
The relation (@) is based on a column-wise notation

col(F@ {X}) = col(W; - X - W7T)

5
:(W2®W1)-x ©)

2Throughout the paper, () * represents the complex conjugate of the

given argument and ()H = (()*)T is the conjugate transpose of a
vector or matrix.

of the 2D-DFT. It is obtained in a straightforward way
by formulating the 2D-DFT in terms of a complex-valued
matrix product (cf. Rao and Yip, 2000; Gentleman, 1968;
Theilheimer, 1969; Proakis and Manolakis, 1996), and
subsequently applying fundamental rules for Kronecker
matrix products (Weinmann, 1991) after reshaping the
matrix X into its equivalent column vector form x =
col(X) € C™™. In @) and (3), the matrices

W, =F{I,} and Wy =F{I,} (6)
result form a column-wise application of the normalized
1D-DFT operator to the square identity matrices I,,, €
R™*™ and I,, € R™*™; the normalization of the DFT
yields their inverses in terms of

W'=W{ and W;!'=WYI (7)

due to the unitarity of the respective matrices.

The next two terms Qrv (x) and Qw (x) of (@
are given as the sparsity-enforcing finite differencd] and
wavelet transform operators TV and W as suggested
by Holland ef al. (2010). To ensure global differentiability
of these terms for the following algorithmic steps,
these operators are accounted for by the square root
approximations

Q.(x) = \/I1®, - x|+, c€{TV,W}, (8

representing a regularized version of the usually applied
1-norms (John et al., 2020b) with the sufficiently small
parameters p, > 0, € {TV,W}.

As described in detail by John er al. (2020b), the
two-dimensional finite difference operator Qv (x) can
be expressed with the help of

where the matrices

Beoi(~1,1) ec

0!, 0

T, = for £ € {m,n} (10)

are constructed by the (£ —1)-th unit vector ec_; €
R&~1, in which all elements are zero except for the entry
in the position £ — 1, which is equal to one, the zero
vector O¢_; of dimension £ — 1, and the upper bi-diagonal

3Without loss of generality concerning the presented unscented trans-
formation approach for uncertainty quantification, we restrict ourselves
to a first-order finite-difference scheme for the T'V transform opera-
tor. However, extensions towards finite-difference approximations of
second-order spatial derivatives as proposed by Zhou et al. (2020) for
a reduction in the staircase effect can be introduced analogously in fu-
ture work by a generalization of (8) and (@).
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Toeplitz matrix

a b 0 0
0 a b :

Be¢(a,b) = ol €REXE (1)
. a b
0 0 a

Note, in a similar fashion, also the general Wavelet
transformation operator Qw (x) can be restated in
dependence of the complex-valued matrix-vector product
Wy - x, (cf. John et al., 2020b).

The final term

Qun (%) = [|(T - My) o X3
=x. diag {col(I — Mb)} - X (12)
=xT My x

of the cost function (I) contains a binary mask M, with
which all points in the image X are set to zero at which
no relevant measurement signals exist (for example, tube
walls or the outside area of a liquid-filled tube). In all
following stages, the weighting factors A1, A2, Az in (@)
are assumed to be given as strictly nonnegative values that
are fixed prior to the minimization of the cost function ().

2.2. Necessary optimality criterion.

Theorem 1. (Necessary optimality criterion) The nec-
essary optimality condition for the iterative image re-
construction is given by the nonlinear, implicit algebraic
equation

Nap-x=MI.y - (A1 - frv (x) + A2 - fw(x)) (13)
with
N = MI Mg+ 23 M, (14)
to be solved for the vector x € C™™.

Proof. By differentiating the cost function J (x)
defined in (@) independently with respect to the
vectors x and x* according to the rules for the
complex-valued Wirtinger derivative (Bouboulis, 2010;
Hormander, 1990)—see John et al. (2020b), the equality

oJ (x 0J(x)\*
ox* Ix

is obtained. It can be shown that both the left- and
right-hand side of (I3) provide the same necessary

optimality condition (in terms of a regular unconstrained
minimum) according to

0 = e
= (%) + Ay - Fry (x)
+ A2 - fw (x) + A3 - fa (x) = 0

(16)

with the individual terms

8@1 (X)
f =
1 (X) ax*
=M (My-x—y),aD)
6QL(X)
f, =
(X) 6}(*
v, x
= ——, e {TV,W},
QQL(X)
(18)
and
OQum (x
furp (x) = T() =M, -x. (19)
X
Separating the linear dependency on x from all nonlinear
terms completes the proof. [ |
Remark 1.  The nonlinearity on the right-hand side

of (I6) is the reason why there exist no analytic results for
the optimal solution, except for the case of \; = Ao = 0.
The latter case is used in the following subsection to
initialize a converging fixed-point iteration as a solution
to the necessary optimality conditions.

2.3. Iterative solution approach.

Theorem 2. (Fixed point-based image reconstruction) As-
suming dominance of the data consistency term Q1 (x)
with sufficiently small non-negative values of \1 < 1 and
Ao < 1, a converging fixed-point iteration for the solution
of the necessary optimality condition according to Theo-
rem[llis given by

X+ = By’ x()
= I\/Hsb . Mf : y/
— Msb . ()\1 . fTV (X<N>) + /\2 . fW (X<H>))

(20)

with
x0 = Mg, - My, (1)

Proof. Pre-multiplication of (T6) by N, approximated
by means of

NG~ My, =210 — N (22)

leads to the formulation given in (20), where all nonlinear
terms are evaluated for the vector x*) of the previous
iteration step. The approximation of the matrix inverse
in (22) results from a straightforward truncation of the
Neumann series

(-1 '=>T (23)
k=0
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after its linear term. As shown by John er al. (2020b),
this approximation avoids numerical problems of finding
the exact matrix inverse ' of dimension (m - n) x
(m - n) and converges as HT’C H < 1 is satisfied for some
k> 1.

The iteration in Theorem[2] converges, since

|F(y',xa) = F(y',xs)|| <L |xa —x5]| (24)

holds with the Lipschitz constant L < 1 for two arbitrary
complex-valued arguments x and Xp.

An upper bound L > L for this Lipschitz constant
can be computed by

/
ve s {2021

{[IMsb - (A - Hry (x) + A - Hw (x)) [}

= sup
XG(C"L'"

< s {NMHr (] + [ (9 )
xeCmn
=L (25)

)

where the partial derivatives

of,
i, (x) - 20 26)
Cerw, (U0, x) (e, x)"
N 2QL(x) 4Q?(x)

are well-defined and bounded for arbitrary complex
arguments x. Choosing suitably small values 0 <
A < land 0 < Ay < 1 (complying with the
practical requirement that the consistency criterion ()4 (x)
defined in @) has dominant influence on the optimal
solution) completes the proof that L < 1 and so that the
iteration (20) converges. [ |

Remark 2. The advantage of the iteration, according to
Theorem[] is that it converges surely towards the globally
optimal solution of the cost function (I). In contrast,
this cannot be ensured for classical conjugate gradient
approaches. Inappropriately chosen step size control
procedures may prevent the desired convergence and
probably lead to limit cycles during the iterative solution.
Moreover, the admissible step sizes in gradient-based
optimization techniques (unless chosen excessively small)
depend on the actual values of the data y’. Hence, the
parallelization of such techniques is more challenging
than the parallelization of fixed point iterations according

to Eqn. @20).

Remark 3. The subdivision of F(y’ ,x<”>) into terms
that are either independent or dependent on x (%) has the
advantage that the term Mgy, - MbH -y’, corresponding
to the initialization x(® , only needs to be evaluated once,
which reduces the computational effort.

3. Unscented transformation for stochastic
uncertainty quantification

This section describes the application of the unscented
transformation approach to the quantification of
measurement  uncertainty in  MRI-based image
reconstruction. It is then applied to further processing
stages towards quantifying the influence of nonlinearities
in phase angle reconstructions and resulting aggregations
into an overall measurement result.

The algorithm consists of Steps U1-US listed in the
following. It should be pointed out that either option (a)
or option (b) of Step U5 is used depending on the
information of interest in the application scenario at hand.
The focus of option (a) is the numerical quantification
of the accuracy of each reconstructed data point, while
option (b) aims at determining the probability distribution
of some aggregated information such as the overall flow
rate through a specific cross section area in a pipe. For
the sake of compliance and comparability with the results
of John et al. (2020b) and Rauh et al. (2020), this paper is
focused on option U5b.

U1 Determine the standard deviations or. and oy, of
the real and imaginary parts R{Y} and S{Y},
respectively, over several repetitions of the identical
measurement scenario.

U2 Initialize the expected value vector p as the average
over the real and imaginary parts R{Y} and 3{Y}
of the measurement repetitions considered in Ul.

U3 Treat the real and imaginary parts of all measured
points in the vector y’ as 2N’ independent quantities
and, hence, compute 4N’ sigma points according to

Yo =B+Ye . i€{l,. AN}, Q2]

where the increment vectors )721.) are defined by

)721-) =e; V2N -« - (+URC + jO’Im), (28)
}N’QH_N/) =€; -V 2N/ s (+0Re — ]O'Im), (29)
Yiitany = €i- V2N a - (~0ore + j01m), (30)
Yiirany =€i- V2N'-a- (=0re — J0mm), (31)

with e; being the i-th unit vectof] of dimension
N and i € {1,...,N’}. Here, 0 < a < 1
is a user-defined scaling parameter, determining the
distance of the sigma points from the expected value
p of the measurements. Its optimal choice is a matter
of ongoing research.

U4 Perform the iterative image reconstruction of
Theorem [2] for each sigma point in the range 7 €

4Defined according to Eqn. (T0).
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{1,...,4N’'} according to
(r+1) _ / ()
xa = F ¥ X)) (32)
and denote by x(;) the result of the iteration.

USa Determine the expected value over all sigma points
X(;) propagated through the iteration formula F()
as well as the respective covariance according to

1 4N’
X= T Z X(i) (33)
=1
and
4N’

1 _ N\H
Co=1n ; (x@) =%) (x@) —%)" 34

as the uncertainty model of the image reconstruction.

USb Compute the value ;) of the phase angle for all
sigma points (i.e., the atan2 function applied to
each entry of x(;) which contains the measured
value, e.g., the fluid velocity v(;) as described in
the following section. Average over all v(; (resp.,
®(i)) to obtain Vv (resp., ¢) and determine their
scalar variance to describe a Gaussian approximation
of the reconstructed mean value on the basis of
the unscented transformation. In addition, extract
the histogram over all v(; to estimate the effects
of nonlinearities in the reconstruction in terms of
deviations of the shape (skewness and kurtosis) from
that of an idealized Gaussian PDF.

Remark 4. For a computationally efficient MATLAB
implementation, it is reasonable to avoid the evaluation
of the individual sigma points ¢ € {1,...,4N’} in a
for loop. Instead, all vectors yzi) should be collected
as columns of a matrix of dimension N’ x (4N’) on
which the iteration F(-) is applied. In such a way,
also a massively parallelized implementation on NVIDIA
GPUs becomes possible by converting the data yzi) (prior
to the iteration) into the datatype gpuArray provided by
the PARALLEL COMPUTING TOOLBOX

4. Experimental validation of the unscented
transformation technique for uncertainty
quantification in MRI

To validate the presented unscented transformation
approach, the phase data for a velocity-sensitive MRI
measurement of the fluid flow in a circular-shaped pipe
acquired for a specific cross-section as published by John
et al. (2020b) are employed. These phase data are
converted to the fluid velocity via

‘/CI]C
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V=@

) (35)

T
™
2
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;32
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Fig. 1. Predicted uncertainty in the reconstruction of
the phase angle Z[X] for the sampling percentage
60%.

where V., denotes the velocity sensitivity value. As a
global measure, the velocity data points are integrated
over the cross-section which yields the flow rate

Q=> wvi-M-dA4, (36)

i=1

where dA is the area of each data point and M =
col(Mb) is the binary mask defining the fluid filled
cross-section in the image. In addition, also the parameter
settings Ay = 1073, A = 0, A3 = 0.01, and
pry = 107% were employed. From a practical point of
view, the suitability of these parameters can be confirmed
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Fig. 3. Detailed view of the estimated PDF of the reconstructed
flow rate for 60% sampling.

by comparing the result of the flow rate reconstruction
with a flow rate assessment using a diverse sensor. For
all results summarized in the following, the scaling
parameter introduced in @8)-@GI) is set to a = 1
in accordance with the original work of Julier et al.
(2000). Then, for the range of sampling percentages
S = {10%,20%, ...,100%} of the k-space, the phase
distributions of the complex-valued images X ;) were
reconstructed for each sigma pointy(,), i € {1,...,4N"}.
Computing the minimum and maximum phase
angles over the respective matrix entries of all
reconstruction results X(i), the prediction results
visualized in Fig. [I] are obtained. Exemplarily, Fig. [I]
makes use of the sampling percentage 60%. The
uncertainty range in Fig. corresponds to the
point-wise difference of the maxima and minima
in Figs. and and confirms the uncertainty
distribution already forecasted by John et al. (2020b) with
the help of a non-probabilistic interval approach.
Considering further the flow rate @ as defined in (36)
for the cross section under investigation, and computing
normalized histograms overall i € {1,...,4N"} for each
sampling percentage as an approximation to the PDF in

terms of the frequency distribution of the reconstructed
flow rate, the result in Fig. Plis obtained. Here, it becomes
obvious that it is only in the case of a fully sampled data
set (100%) that the resulting PDF becomes unimodal and
close to a normal distributionE In all other cases, the PDF
characterizing the uncertainty in the reconstructed flow
rate exhibits a multi-modal shape. Exemplarily, this is
shown in Fig.Blagain for the case of a 60% sampling.

The multi-modality of the PDFs in Figs. 2] and [3]
seems to be related to the staircase effect described
by Zhou et al. (2020). Hence, future research will be
directed towards analyzing not only the influence of
replacing the first-order approximation of the sparsity
enforcing TV operator by higher-order alternatives,
but also the introduction of further penalty terms
in the cost function (1) that reduce the sensitivity
of the reconstruction with respect to randomly
leaving out further measured data points as a kind
of artificial undersampling. = Note that ideas from
other image processing techniques which gradually
try to gather further data points for enhancing the
result of reconstruction contradict the general goal
of undersampling where the speed-up of MRI data
acquisition is crucially achieved by minimizing the
amount of gathered data.

The uncertainty in the reconstructed flow rate @)
increases continuously when the sampling percentage in
the k-space data is gradually reduced. Figure [l depicts
the expected values of an approximating Gaussian PDF
resulting from the unscented transformation by means of
black bullets, the 1-standard deviation ranges by black
error bars and the range over all reconstruction results for
it € {1,...,4N’} in terms of gray boxes. Comparing
these results with the corresponding PDFs in Fig. [ it
can be noticed that the reconstruction results are quite
insensitive against the sampling percentage, except for the
two lowest values.

As already stated in Remark 2] the proposed iterative
solution technique is well suited for parallelization as well
as easily portable to modern GPU architectures. The
comparison according to Fig. [3] is based on a MATLAB
R2019b implementation on Windows 10, 64-bit, where
two Intel Xeon E5-2609v2 CPUs (@2.50GHz) with 64
GB RAM and an NVIDIA Tesla K20c GPU (@0.7GHz,
5GB memory) are available. Using comparable stopping
criteria for a gradient-based optimization (cf. John et al.,
2020b), as well as for the novel procedure, it is obvious
that, even for a single data set, the new iteration
outperforms the classical gradient-based implementation
by a factor of more than 2.5 concerning its speed.

Accounting for the matrix-vector implementation
of @0), the GPU version is faster by a factor of

SNote that the reconstruction of the image X is normally distributed
for fully sampled data sets. Then, deviations from a Gaussian PDF are
caused by the arc-tangent function in the phase reconstruction.
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Fig. 5. Computing time per image reconstruction for a non-
parallelized CPU implementation of a conjugate gradi-
ent approach (solid line), a vectorized CPU implementa-
tion of Theorem[2](¢)), and a GPU-based counterpart (o).

approximately 10 up to the fully sampled data set with
16, 384 parallel evaluations of the image reconstruction,
where each data set consists of 4096 pixels. This
image size also becomes a limiting factor due to
memory restrictions of the GPU. Note that the vertical
variabilities of the data points in Fig. ] result from
various sampling percentages where choosing smaller
ones typically accelerates the reconstruction.

5. Conclusions and future work

In this paper, an unscented transformation technique
for the stochastic uncertainty quantification of MRI
measurements was derived and successfully validated.
Future work will aim at the derivation of more detailed
confidence intervals based on this research to refine the
solution already investigated by John et al. (2020b) by
means of interval analysis. Related approaches for such
a kind of uncertainty quantification can be found with the
help of the so-called type 2 interval arithmetic (Piegat

and Dobryakova, 2020), where the interval boundaries
themselves turn into uncertain quantities.

Moreover, the influence of the sigma point scaling
parameter « will be investigated for the case of
more complex fluidic systems. Currently, numerical
investigations have shown that variations of this parameter
only have very little influence on the reconstruction
results. Finally, reasons for the arising multi-modalities
in the reconstructed PDFs, their correlation with specific
frequencies in the measured data set, and strategies for
their avoidance by enhanced undersampling and image
reconstruction techniques will be taken into consideration.
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